Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Change README links to be doxygen-friendly #1927

Merged
merged 1 commit into from
Sep 25, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,7 @@ The only algorithms in `liboqs` that implement NIST standards are the [`ML-KEM`]

Falcon and SPHINCS+ have also been [selected for standardization](https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022), but the `liboqs` implementations of these algorithms are currently tracking Round 3 submissions and not NIST standards drafts.

All names other than `ML-KEM` and `ML-DSA` are subject to change. `liboqs` makes available a [selection mechanism for algorithms on the NIST standards track, continued NIST competition, or purely experimental nature by way of the configuration variable OQS_ALGS_ENABLED](CONFIGURE.md#oqs_algs_enabled). By default `liboqs` is built supporting all, incl. experimental, PQ algorithms listed below.
All names other than `ML-KEM` and `ML-DSA` are subject to change. `liboqs` makes available a [selection mechanism for algorithms on the NIST standards track, continued NIST competition, or purely experimental nature by way of the configuration variable OQS_ALGS_ENABLED](CONFIGURE.md#oQS_ALGS_ENABLED). By default `liboqs` is built supporting all, incl. experimental, PQ algorithms listed below.
dstebila marked this conversation as resolved.
Show resolved Hide resolved

#### Key encapsulation mechanisms

Expand Down Expand Up @@ -122,7 +122,7 @@ Various `cmake` build options to customize the resultant artifacts are available

The following instructions assume we are in `build`.

3. By default the main build result is `lib/liboqs.a`, a static library. If you want to build a shared/dynamic library, append [`-DBUILD_SHARED_LIBS=ON`](CONFIGURE.md#build_shared_libs) to the `cmake -GNinja ..` command above and the result will be `lib/liboqs.so|dylib|dll`. The public headers are located in the `include` directory. There are also a variety of programs built under the `tests` directory:
3. By default the main build result is `lib/liboqs.a`, a static library. If you want to build a shared/dynamic library, append [`-DBUILD_SHARED_LIBS=ON`](CONFIGURE.md#bUILD_SHARED_LIBS) to the `cmake -GNinja ..` command above and the result will be `lib/liboqs.so|dylib|dll`. The public headers are located in the `include` directory. There are also a variety of programs built under the `tests` directory:
dstebila marked this conversation as resolved.
Show resolved Hide resolved

- `test_kem`: Simple test harness for key encapsulation mechanisms
- `test_sig`: Simple test harness for signature schemes
Expand Down
Loading