Skip to content

msalibian/sparseFPCA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

47 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Robust FPCA for sparsely observed curves

Matias Salibian-Barrera & Graciela Boente 2021-06-13

This repository contains the sparseFPCA package that implements the robust FPCA method introduced in the paper

Boente, G and Salibian-Barrera, M. (2021) Robust functional principal components for sparse longitudinal data. METRON 79, 159–188 (2021). DOI: 10.1007/s40300-020-00193-3

LICENSE: The content in this repository is released under the “Creative Commons Attribution-ShareAlike 4.0 International” license. See the human-readable version here and the real thing here.

sparseFPCA - Robust FPCA for sparsely observed curves

The sparseFPCA package implements the robust functional principal components analysis (FPCA) estimator introduced in Boente and Salibian-Barrera, 2021. sparseFPCA computes robust estimators for the mean and covariance (scatter) functions, and the corresponding eigenfunctions. It can be used with functional data sets where only a few observations per curve are available (possibly recorded at irregular intervals).

Installing the sparseFPCA package for R

The package can be installed directly from this repository using the following command in R:

devtools::install_github('msalibian/sparseFPCA', ref = "master")

An example - CD4 counts data

Here we illustrate the use of our method and compare it with existing alternatives. We will analyze the CD4 data, which is available in the catdata package (catdata). These data are part of the Multicentre AIDS Cohort Study (Zeger and Diggle, 1994). They consist of 2376 measurements of CD4 cell counts, taken on 369 men. The times are measured in years since seroconversion (t = 0).

We first load the data set and arrange it in a suitable format. Because the data consist of trajectories of different lengths, possibly measured at different times, the software requires that the observations be arranged in two lists, one (which we call X$x below) containing the vectors (of varying lengths) of points observed in each curve, and the other (X$pp) with the corresponding times:

data(aids, package='catdata')
X <- vector('list', 2) 
names(X) <- c('x', 'pp')
X$x <- split(aids$cd4, aids$person)
X$pp <- split(aids$time, aids$person)

To ensure that there are enough observations to estimate the covariance function at every pair of times (s, t), we only consider observations for which t >= 0, and remove individuals that only have one measurement.

n <- length(X$x)
shorts <- vector('logical', n)
for(i in 1:n) {
  tmp <- (X$pp[[i]] >= 0)
  X$pp[[i]] <- (X$pp[[i]])[tmp]
  X$x[[i]] <- (X$x[[i]])[tmp]
  if( length(X$pp[[i]]) <= 1 ) shorts[i] <- TRUE
}
X$x <- X$x[!shorts]
X$pp <- X$pp[!shorts]

This results in a data set with N = 292 curves, where the number of observations per individual ranges between 2 and 11 (with a median of 5):

length(X$x)
## [1] 292
summary(lens <- sapply(X$x, length))
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   2.000   3.000   5.000   4.983   6.000  11.000
table(lens)
## lens
##  2  3  4  5  6  7  8  9 10 11 
## 51 52 35 43 39 20 23 10 15  4

The following figure shows the data set with three randomly chosen trajectories highlighted with solid black lines:

xmi <- min( tmp <- unlist(X$x) )
xma <- max( tmp )
ymi <- min( tmp <- unlist(X$pp) )
yma <- max( tmp ) 
n <- length(X$x)
plot(seq(ymi, yma, length=5), seq(xmi, xma,length=5), type='n', xlab='t', ylab='X(t)')
for(i in 1:n) { lines(X$pp[[i]], X$x[[i]], col='gray', lwd=1, type='b', pch=19, 
                     cex=1) }
lens <- sapply(X$x, length)
set.seed(22)
ii <- c(sample((1:n)[lens==2], 1), sample((1:n)[lens==5], 1), 
        sample((1:n)[lens==10], 1))
for(i in ii) lines(X$pp[[i]], X$x[[i]], col='black', lwd=4, type='b', pch=19, 
                   cex=1, lty=1)

Robust and non-robust FPCA

We will compare the robust and non-robust versions of our approach with the PACE estimator of Yao, Muller and Wang (paper - package). We need to load the following packages

library(sparseFPCA)
library(doParallel)
library(fdapace)

The specific versions of these packages that were used here (via the output of the function sessionInfo()) can be found at the bottom of this page.

The following are parameters required for our estimator.

ncpus <- 4
seed <- 123
rho.param <- 1e-3 
max.kappa <- 1e3
ncov <- 50
k.cv <- 10
k <- 5
s <- k 
hs.mu <- seq(.1, 1.5, by=.1)
hs.cov <- seq(1, 7, length=10)

We now fit the robust and non-robust versions of our proposal, and also the PACE estimator. This step may take several minutes to run:

ours.ls <- lsfpca(X=X, ncpus=ncpus, hs.mu=hs.mu, hs.cov=hs.cov, rho.param=rho.param, 
                  k = k, s = k, trace=FALSE, seed=seed, k.cv=k.cv, ncov=ncov,
                  max.kappa=max.kappa)
ours.r <- efpca(X=X, ncpus=ncpus, hs.mu=hs.mu, hs.cov=hs.cov, rho.param=rho.param,
                alpha=0.2, k = k, s = k, trace=FALSE, seed=seed, k.cv=k.cv, ncov=ncov,
                max.kappa=max.kappa)
myop <- list(error=FALSE, methodXi='CE', dataType='Sparse', 
             userBwCov = 1.5, userBwMu= .3, kernel='epan', verbose=FALSE, nRegGrid=50)
pace <- FPCA(Ly=X$x, Lt=X$pp, optns=myop)

The coverage plot:

plot(ours.ls$ma$mt[,1], ours.ls$ma$mt[,2], pch=19, col='gray70', cex=.8, 
     xlab='s', ylab='t', cex.lab=1.2, cex.axis=1.1)
points(ours.ls$ma$mt[,1], ours.ls$ma$mt[,1], pch=19, col='gray70', cex=.8)

The estimated covariance functions:

ss <- tt <- ours.r$ss
G.r <- ours.r$cov.fun
filled.contour(tt, ss, G.r, main='ROB')
ss <- tt <- ours.ls$ss
G.ls <- ours.ls$cov.fun
filled.contour(tt, ss, G.ls, main='LS')
ss <- tt <- pace$workGrid
G.pace <- pace$smoothedCov
filled.contour(tt, ss, G.pace, main='PACE')

Another take:

persp(ours.r$tt, ours.r$ss, G.r, xlab="s", ylab="t", zlab=" ",  
      zlim=c(10000, 130000), theta = -30, phi = 30, r = 50, 
      col="gray90", ltheta = 120, shade = 0.15, ticktype="detailed", 
      cex.axis=0.9, main = 'ROB')
persp(ours.ls$tt, ours.ls$ss, G.ls, xlab="s", ylab="t", zlab=" ", 
      zlim=c(10000, 130000), theta = -30, phi = 30, r = 50, 
      col="gray90", ltheta = 120, shade = 0.15, ticktype="detailed", 
      cex.axis=0.9, cex.lab=.9, main = 'LS')
persp(pace$workGrid, pace$workGrid, G.pace, xlab="s", ylab="t", zlab=" ",  
      zlim=c(10000, 130000), theta = -30, phi = 30, r = 50, 
      col="gray90", ltheta = 120, shade = 0.15, ticktype="detailed", 
      cex.axis=0.9, main = 'PACE')

The “proportion of variance” explained by the first few principal directions are:

dd <- eigen(ours.r$cov.fun)$values
ddls <- eigen(ours.ls$cov.fun)$values
ddp <- eigen(pace$smoothedCov)$values
rbind(ours = cumsum(dd)[1:3] / sum(dd[dd > 0]), 
      ls = cumsum(ddls)[1:3] / sum(ddls[ddls > 0]), 
      pace = cumsum(ddp)[1:3] / sum(ddp[ddp > 0]))
##           [,1]      [,2]      [,3]
## ours 0.9467379 0.9983907 0.9998978
## ls   0.9524343 0.9894052 0.9994967
## pace 0.8774258 0.9480532 0.9731165

In what follows we will use 2 principal components. The corresponding estimated scores are:

colors <- c('skyblue2', 'tomato3', 'gray70') #ROB, LS, PACE
boxplot(cbind(ours.r$xis[, 1:2], ours.ls$xis[, 1:2], pace$xiEst[, 1:2]), 
        names = rep(1:2, 3), col=rep(colors, each=2))
abline(h=0, lwd=2)
abline(v=c(2.5, 4.5), lwd=2, lty=2)
axis(3, las=1, at=c(1.5,3.5,5.5), cex.axis=1.4, lab=c('ROB', 'LS', 'PACE'),
     line=0.2, pos=NA, col="white")

We now compare the first two eigenfunctions.

G2 <- ours.r$cov.fun
G2.svd <- eigen(G2)$vectors
G.pace <- pace$smoothedCov
Gpace.svd <- eigen(G.pace)$vectors
G2.ls <- ours.ls$cov.fun
G2.ls.svd <- eigen(G2.ls)$vectors
ma <- -(mi <- -0.5) # y-axis limits
for(j in 1:2) {
  phihat <- G2.svd[,j]
  phipace <- Gpace.svd[,j]
  phils <- G2.ls.svd[,j]
  sg  <- as.numeric(sign(phihat  %*% phipace ))
  phipace <- sg * phipace
  sg <- as.numeric(sign(phihat  %*% phils ))
  phils <- sg * phils
  tt <- unique(ours.r$tt)
  tt.ls <- unique(ours.ls$tt)
  tt.pace <- pace$workGrid
  plot(tt, phihat, ylim=c(mi,ma), type='l', lwd=4, lty=1,
       xlab='t', ylab=expression(hat(phi)), cex.lab=1.1, 
       main=paste0('Eigenfunction ', j)) 
  lines(tt.ls, phils, lwd=4, lty=2) 
  lines(tt.pace, phipace, lwd=4, lty=3) 
  legend('topright', legend=c('Robust (ROB)', 'Non-robust (LS)', 
                              'PACE'), lwd=2, lty=1:3)
}

Potential outliers

We look for potential outliers, using the scores on the first two eigenfunctions.

kk <- 2
xis.r  <- ours.r$xis[, 1:kk]
dist.ous <- RobStatTM::covRob(xis.r)$dist 
ous <- (1:length(dist.ous))[ dist.ous > qchisq(.995, df=kk)]

We look at the 5 most outlying curves, as flagged by the robust fit:

xmi <- min( tmp <- unlist(X$x) )
xma <- max( tmp )
ymi <- min( tmp <- unlist(X$pp) )
yma <- max( tmp ) 
ii <- 1:length(X$x)
plot(seq(ymi, yma, length=5), seq(xmi, xma,length=5), type='n', xlab='t', ylab='X(t)')
title(main='Most outlying')
for(i in ii) { lines(X$pp[[i]], X$x[[i]], col='gray', lwd=1, type='b', pch=19, 
                     cex=1.2) }
ii4 <- order(dist.ous, decreasing=TRUE)[1:5]
for(i in ii4) lines(X$pp[[i]], X$x[[i]], col='black', lwd=3, type='b', pch=19, cex=1.2)

Note that these curves appear to either decrease too rapidly (with respect to the rest), or to remain at high values over time. In the following plot of all the outlying curves we note that they all show one of these two main patterns.

xmi <- min( tmp <- unlist(X$x) )
xma <- max( tmp )
ymi <- min( tmp <- unlist(X$pp) )
yma <- max( tmp ) 
ii <- 1:length(X$x)
plot(seq(ymi, yma, length=5), seq(xmi, xma,length=5), type='n', 
     xlab='t', ylab='X(t)')
for(i in ii) { 
  lines(X$pp[[i]], X$x[[i]], col='gray', lwd=1, type='b', pch=19, 
        cex=1.2) 
}
cols <- rainbow(length(ous))
for(i in 1:length(ous)) {
  lines(X$pp[[ous[i]]], X$x[[ous[i]]], col=cols[i], lwd=3, type='b', 
        pch=19, cex=1.2)
}
legend('topright', legend=ous, lty=1, lwd=2, col=cols, ncol=5, cex=0.8)

Comparing fits on “cleaned” data

We now remove the outliers and re-fit the non-robust estimators:

X.clean <- X
X.clean$x <- X$x[ -ous ]
X.clean$pp <- X$pp[ -ous ]

Now re-fit on the “clean” data:

ours.ls.clean <- lsfpca(X=X.clean, ncpus=ncpus, hs.mu=hs.mu, hs.cov=hs.cov,
                        rho.param=rho.param, k = k, s = k, trace=FALSE, 
                        seed=seed, k.cv=k.cv, ncov=ncov, max.kappa=max.kappa)
myop.clean <- list(error=FALSE, methodXi='CE', dataType='Sparse', 
             userBwCov = 1.5, userBwMu= .3, 
             kernel='epan', verbose=FALSE, nRegGrid=50)
pace.clean <- FPCA(Ly=X.clean$x, Lt=X.clean$pp, optns=myop.clean)

The estimated covariance functions:

ss <- tt <- ours.r$ss
G.r <- ours.r$cov.fun
filled.contour(tt, ss, G.r, main='ROB')
ss <- tt <- ours.ls.clean$ss
G.ls.clean <- ours.ls.clean$cov.fun
filled.contour(tt, ss, G.ls.clean, main='LS - Clean')
ss <- tt <- pace.clean$workGrid
G.pace.clean <- pace.clean$smoothedCov
filled.contour(tt, ss, G.pace.clean, main='PACE - Clean')

And:

persp(ours.r$ss, ours.r$ss, G.r, xlab="s", ylab="t", zlab=" ",  
      zlim=c(10000, 65000), theta = -30, phi = 30, r = 50, col="gray90",
      ltheta = 120, shade = 0.15, ticktype="detailed", cex.axis=0.9, main ='ROB')
persp(ours.ls.clean$ss, ours.ls.clean$ss, G.ls.clean, xlab="s", ylab="t", zlab=" ", 
      zlim=c(10000, 65000), theta = -30, phi = 30, r = 50, col="gray90",
      ltheta = 120, shade = 0.15, ticktype="detailed", cex.axis=0.9,
      main = 'LS - Clean')
persp(pace.clean$workGrid, pace.clean$workGrid, G.pace.clean, xlab="s", ylab="t", 
      zlab=" ", zlim=c(10000, 65000), theta = -30, phi = 30, r = 50, 
      col="gray90", ltheta = 120, shade = 0.15, ticktype="detailed", cex.axis=0.9, 
      main = 'PACE - Clean')

We can also compare the eigenfunctions:

G2 <- ours.r$cov.fun
G2.svd <- eigen(G2)$vectors
G.pace.clean <- pace.clean$smoothedCov 
Gpace.svd.clean <- eigen(G.pace.clean)$vectors
G2.ls.clean <- ours.ls.clean$cov.fun
G2.ls.svd.clean <- eigen(G2.ls.clean)$vectors
ma <- -(mi <- -0.5)
for(j in 1:2) {
  phihat <- G2.svd[,j]
  phipace <- Gpace.svd.clean[,j] 
  phils <- G2.ls.svd.clean[,j]
  sg <- as.numeric(sign(phihat  %*% phipace ))
  phipace <- sg * phipace
  sg <- as.numeric(sign(phihat  %*% phils ))
  phils <- sg * phils
  tt <- unique(ours.r$tt)
  tt.ls <- unique(ours.ls.clean$tt)
  tt.pace <- pace.clean$workGrid
  plot(tt, phihat, ylim=c(mi,ma), type='l', lwd=4, lty=1,
       xlab='t', ylab=expression(hat(phi)), cex.lab=1.1)
  lines(tt.ls, phils, lwd=4, lty=2) 
  lines(tt.pace, phipace, lwd=4, lty=3) 
  legend('topright', legend=c('Robust (ROB)', 'Non-robust (LS)', 
                              'PACE'), lwd=2, lty=1:3)
}

A prediction experiment

In this section we look at the prediction performance of these FPCA methods. We will randomly split the data into a training set (80% of the curves) and a test set (remaining 20% of trajectories), and then use the estimates of the covariance function obtained with the training set to predict the curves of the held out individuals.

We first re-construct the data:

data(aids, package='catdata')
X <- vector('list', 2) 
names(X) <- c('x', 'pp')
X$x <- split(aids$cd4, aids$person)
X$pp <- split(aids$time, aids$person)
n <- length(X$x)
shorts <- vector('logical', n)
for(i in 1:n) {
  tmp <- (X$pp[[i]] >= 0)
  X$pp[[i]] <- (X$pp[[i]])[tmp]
  X$x[[i]] <- (X$x[[i]])[tmp]
  if( length(X$pp[[i]]) <= 1 ) shorts[i] <- TRUE
}
X$x <- X$x[!shorts]
X$pp <- X$pp[!shorts]
X.all <- X

We now build the test and training sets. Note that we require that the range of times of the curves in the test set be strictly included in the range of times for the curves in the training set.

ok.sample <- FALSE
max.it <- 20000
set.seed(22) 
it <- 1
n <- length(X.all$x)
while( !ok.sample && (it < max.it) ) { 
  it <- it + 1
  X.test <- X <- X.all 
  ii <- sample(n, floor(n*.2))
  X.test$x <- X.all$x[ii] # test set
  X.test$pp <- X.all$pp[ii] # test set
  X.test$trt <- X.all$trt[ii] # test set
  X$x <- X.all$x[ -ii ] # training set
  X$pp <- X.all$pp[ -ii ] # training set
  X$trt <- X.all$trt[ -ii ]
  empty.test <- (sapply(X.test$x, length) == 0)
  empty.tr <- (sapply(X$x, length) == 0)
  X$pp <- X$pp[!empty.tr]
  X$x <- X$x[!empty.tr]
  X.test$x <- X.test$x[ !empty.test ]
  X.test$pp <- X.test$pp[ !empty.test ]
  ra.tr <- range(unlist(X$pp))
  ra.te <- range(unlist(X.test$pp))
  ok.sample <- ( (ra.tr[1] < ra.te[1]) && (ra.te[2] < ra.tr[2]) )
}
if(!ok.sample) stop('Did not find good split')

Now we calculate the three estimators on the training set, using the same settings as before (except for the bandwidth used to estimate the mean function, which is set to 0.3).

ncpus <- 4
seed <- 123
rho.param <- 1e-3 
max.kappa <- 1e3
ncov <- 50
k.cv <- 10
k <- 5
s <- k
hs.cov <- seq(1, 7, length=10)
hs.mu <- .3
ours.r.tr <- efpca(X=X, ncpus=ncpus, hs.mu=hs.mu, hs.cov=hs.cov, rho.param=rho.param, alpha=0.2,
                k = k, s = k, trace=FALSE, seed=seed, k.cv=k.cv, ncov=ncov, max.kappa=max.kappa)
ours.ls.tr <- lsfpca(X=X, ncpus=ncpus, hs.mu=hs.mu, hs.cov=hs.cov, rho.param=rho.param, 
                  k = k, s = k, trace=FALSE, seed=seed, k.cv=k.cv, ncov=ncov, max.kappa=max.kappa)
myop <- list(error=FALSE, methodXi='CE', dataType='Sparse', 
             userBwCov = 1.5, userBwMu= .3,
             kernel='epan', verbose=FALSE, nRegGrid=50)
pace.tr <- FPCA(Ly=X$x, Lt=X$pp, optns=myop)

Next, using these estimated mean and covariance functions we construct predicted curves for the patients in the test set:

# pr2.pace <- predict(pace.tr, newLy = X.test$x, newLt=X.test$pp, K = ncol(pace.tr$xiEst), xiMethod='CE')
# pp.pace <- pace.tr$phi %*% t(pr2.pace) 
pr2.pace <- predict(pace.tr, newLy = X.test$x, newLt=X.test$pp, K = ncol(pace.tr$xiEst), xiMethod='CE')
pp.pace <- pace.tr$phi %*% t(pr2.pace$scores) 

tts <- unlist(X$pp)
mus <- unlist(ours.ls.tr$muh)
mu.fn <- approxfun(x=tts, y=mus)
mu.fn.ls <- mu.fn(ours.ls.tr$tt)
kk <- 2
pred.test.ls <- pred.cv.whole(X=X, muh=mu.fn.ls, X.pred=X.test,
                        muh.pred=ours.ls$muh[ii],
                        cov.fun=ours.ls.tr$cov.fun, tt=ours.ls.tr$tt, 
                        k=kk, s=kk, rho=ours.ls.tr$rho.param)

tts <- unlist(X$pp)
mus <- unlist(ours.r.tr$muh)
mu.fn <- approxfun(x=tts, y=mus)
mu.fn.r <- mu.fn(ours.r.tr$tt)

pred.test.r <- pred.cv.whole(X=X, muh=mu.fn.r, X.pred=X.test,
                       muh.pred=ours.r$muh[ii],
                       cov.fun=ours.r.tr$cov.fun, tt=ours.r.tr$tt, 
                       k=kk, s=kk, rho=ours.r.tr$rho.param)

We now show 4 trajectories in the test set, along with the corresponding estimated curves:

xmi <- min( tmp <- unlist(X$x) )
xma <- max( tmp )
ymi <- min( tmp <- unlist(X$pp) )
yma <- max( tmp ) 
ii2 <- 1:length(X$x)
show.these <- c(4, 44, 46, 34)
for(j in show.these) {
  plot(seq(ymi, yma, length=5), seq(xmi, xma,length=5), type='n', xlab='t', ylab='X(t)')
  lines(X.test$pp[[j]], X.test$x[[j]], col='gray50', lwd=5, type='b', pch=19, cex=2)
  lines(pace.tr$workGrid, pp.pace[,j] + pace.tr$mu, lwd=3, lty=3) 
  lines(ours.ls.tr$tt, pred.test.ls[[j]], lwd=3, lty=2)
  lines(ours.r.tr$tt, pred.test.r[[j]], lwd=3, lty=1)
  legend('topright', legend=c('Robust (ROB)', 'Non-robust (LS)', 'PACE'), lwd=2, lty=1:3)
}

Technical specs of the above analysis

version
##                _                           
## platform       x86_64-w64-mingw32          
## arch           x86_64                      
## os             mingw32                     
## system         x86_64, mingw32             
## status                                     
## major          4                           
## minor          0.5                         
## year           2021                        
## month          03                          
## day            31                          
## svn rev        80133                       
## language       R                           
## version.string R version 4.0.5 (2021-03-31)
## nickname       Shake and Throw
sessionInfo()
## R version 4.0.5 (2021-03-31)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19042)
## 
## Matrix products: default
## 
## locale:
## [1] LC_COLLATE=English_Canada.1252  LC_CTYPE=English_Canada.1252   
## [3] LC_MONETARY=English_Canada.1252 LC_NUMERIC=C                   
## [5] LC_TIME=English_Canada.1252    
## 
## attached base packages:
## [1] parallel  stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
## [1] fdapace_0.5.6      doParallel_1.0.16  iterators_1.0.13   foreach_1.5.1     
## [5] sparseFPCA_0.0.0.1
## 
## loaded via a namespace (and not attached):
##  [1] xfun_0.22           splines_4.0.5       lattice_0.20-41    
##  [4] colorspace_2.0-1    vctrs_0.3.8         htmltools_0.5.1.1  
##  [7] RobStatTM_1.0.3     yaml_2.2.1          mgcv_1.8-35        
## [10] base64enc_0.1-3     pracma_2.3.3        utf8_1.2.1         
## [13] survival_3.2-11     rlang_0.4.11        pillar_1.6.1       
## [16] foreign_0.8-81      glue_1.4.2          RColorBrewer_1.1-2 
## [19] jpeg_0.1-8.1        lifecycle_1.0.0     stringr_1.4.0      
## [22] munsell_0.5.0       gtable_0.3.0        htmlwidgets_1.5.3  
## [25] codetools_0.2-18    evaluate_0.14       latticeExtra_0.6-29
## [28] knitr_1.33          fansi_0.4.2         htmlTable_2.1.0    
## [31] highr_0.9           Rcpp_1.0.6          scales_1.1.1       
## [34] backports_1.2.1     checkmate_2.0.0     Hmisc_4.5-0        
## [37] gridExtra_2.3       ggplot2_3.3.3       png_0.1-7          
## [40] digest_0.6.27       stringi_1.5.3       numDeriv_2016.8-1.1
## [43] grid_4.0.5          tools_4.0.5         magrittr_2.0.1     
## [46] tibble_3.1.2        Formula_1.2-4       cluster_2.1.2      
## [49] crayon_1.4.1        pkgconfig_2.0.3     MASS_7.3-53.1      
## [52] ellipsis_0.3.2      Matrix_1.3-2        data.table_1.14.0  
## [55] rstudioapi_0.13     rmarkdown_2.7       R6_2.5.0           
## [58] rpart_4.1-15        nnet_7.3-15         nlme_3.1-152       
## [61] compiler_4.0.5

About

FPCA for sparse (longitudinal) data

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages