Skip to content

Simple Code Implementation of "PeleeNet" architecture in "Pelee Paper" using PyTorch.

Notifications You must be signed in to change notification settings

hoya012/pytorch-peleenet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 

Repository files navigation

pytorch-peleenet

Simple Code Implementation of "PeleeNet" in NeurIPS 2018 architecture using PyTorch.

For simplicity, i write codes in ipynb. So, you can easliy test my code.

I tested PeleeNet using not ImageNet but CIFAR-10 because of very very long training time & GPU resource..

Last update : 2019/2/12

Contributor

  • hoya012

0. Requirements

python=3.5
numpy
matplotlib
torch=1.0.0
torchvision
torchsummary

1. Usage

You only run PeleeNet-PyTorch.ipynb.

Or you can use Google Colab for free!! This is colab link.

After downloading ipynb, just upload to your google drive. and run!

For training, testing, i used CIFAR-10 Dataset.

2. Paper Review & Code implementation Blog Posting (Korean Only)

“Pelee Tutorial [1] Paper Review & Implementation details”

3. PeleeNet and other blocks impelemtation.

In PeleeNet, there are some changes compared to DenseNet. This is my simple implemenatation.

Dense layer (Bottleneck layer in DenseNet)

In PeleeNet, we will use two-way dense layer.

class dense_layer(nn.Module):
  def __init__(self, nin, growth_rate, drop_rate=0.2):    
      super(dense_layer, self).__init__()
      
      self.dense_left_way = nn.Sequential()
      
      self.dense_left_way.add_module('conv_1x1', conv_bn_relu(nin=nin, nout=growth_rate*2, kernel_size=1, stride=1, padding=0, bias=False))
      self.dense_left_way.add_module('conv_3x3', conv_bn_relu(nin=growth_rate*2, nout=growth_rate//2, kernel_size=3, stride=1, padding=1, bias=False))
            
      self.dense_right_way = nn.Sequential()
      
      self.dense_right_way.add_module('conv_1x1', conv_bn_relu(nin=nin, nout=growth_rate*2, kernel_size=1, stride=1, padding=0, bias=False))
      self.dense_right_way.add_module('conv_3x3_1', conv_bn_relu(nin=growth_rate*2, nout=growth_rate//2, kernel_size=3, stride=1, padding=1, bias=False))
      self.dense_right_way.add_module('conv_3x3 2', conv_bn_relu(nin=growth_rate//2, nout=growth_rate//2, kernel_size=3, stride=1, padding=1, bias=False))
      
      self.drop_rate = drop_rate
      
  def forward(self, x):
      left_output = self.dense_left_way(x)
      right_output = self.dense_right_way(x)

      if self.drop_rate > 0:
          left_output = F.dropout(left_output, p=self.drop_rate, training=self.training)
          right_output = F.dropout(right_output, p=self.drop_rate, training=self.training)
          
      dense_layer_output = torch.cat((x, left_output, right_output), 1)
            
      return dense_layer_output

Transition layer

The only difference is bn_relu_conv to conv_bn_relu compared to DenseNet Implementation.

class Transition_layer(nn.Sequential):
  def __init__(self, nin, theta=1):    
      super(Transition_layer, self).__init__()
      
      self.add_module('conv_1x1', conv_bn_relu(nin=nin, nout=int(nin*theta), kernel_size=1, stride=1, padding=0, bias=False))
      self.add_module('avg_pool_2x2', nn.AvgPool2d(kernel_size=2, stride=2, padding=0))

StemBlock

PeleeNet use Stem Block. This is my implementation of Stem Block.

class StemBlock(nn.Module):
    def __init__(self):
        super(StemBlock, self).__init__()
        
        self.conv_3x3_first = conv_bn_relu(nin=3, nout=32, kernel_size=3, stride=2, padding=1, bias=False)
        
        self.conv_1x1_left = conv_bn_relu(nin=32, nout=16, kernel_size=1, stride=1, padding=0, bias=False)
        self.conv_3x3_left = conv_bn_relu(nin=16, nout=32, kernel_size=3, stride=2, padding=1, bias=False)
        
        self.max_pool_right = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
        
        self.conv_1x1_last = conv_bn_relu(nin=64, nout=32, kernel_size=1, stride=1, padding=0, bias=False)

    def forward(self, x):
        out_first = self.conv_3x3_first(x)
        
        out_left = self.conv_1x1_left(out_first)
        out_left = self.conv_3x3_left(out_left)
        
        out_right = self.max_pool_right(out_first)
        
        out_middle = torch.cat((out_left, out_right), 1)
        
        out_last = self.conv_1x1_last(out_middle)
                
        return out_last

DenseBlock

class DenseBlock(nn.Sequential):
  def __init__(self, nin, num_dense_layers, growth_rate, drop_rate=0.0):
      super(DenseBlock, self).__init__()
                        
      for i in range(num_dense_layers):
          nin_dense_layer = nin + growth_rate * i
          self.add_module('dense_layer_%d' % i, dense_layer(nin=nin_dense_layer, growth_rate=growth_rate, drop_rate=drop_rate))

PeleeNet

This is class implementation of PeleeNet. I use default setting of hyper-parameters. The only difference is num_classes. (ImageNet: 1000 vs CIFAR-10: 10)

class PeleeNet(nn.Module):
    def __init__(self, growth_rate=32, num_dense_layers=[3,4,8,6], theta=1, drop_rate=0.0, num_classes=10):
        super(PeleeNet, self).__init__()
        
        assert len(num_dense_layers) == 4
        
        self.features = nn.Sequential()
        self.features.add_module('StemBlock', StemBlock())
        
        nin_transition_layer = 32
        
        for i in range(len(num_dense_layers)):
            self.features.add_module('DenseBlock_%d' % (i+1), DenseBlock(nin=nin_transition_layer, num_dense_layers=num_dense_layers[i], growth_rate=growth_rate, drop_rate=0.0))
            nin_transition_layer +=  num_dense_layers[i] * growth_rate
            
            if i == len(num_dense_layers) - 1:
                self.features.add_module('Transition_layer_%d' % (i+1), conv_bn_relu(nin=nin_transition_layer, nout=int(nin_transition_layer*theta), kernel_size=1, stride=1, padding=0, bias=False))
            else:
                self.features.add_module('Transition_layer_%d' % (i+1), Transition_layer(nin=nin_transition_layer, theta=1))
        
        self.linear = nn.Linear(nin_transition_layer, num_classes)
        
    def forward(self, x):
        stage_output = self.features(x)
        
        global_avg_pool_output = F.adaptive_avg_pool2d(stage_output, (1, 1))  
        global_avg_pool_output_flat = global_avg_pool_output.view(global_avg_pool_output.size(0), -1)
                
        output = self.linear(global_avg_pool_output_flat)
        
        return output

4. Training phase

PeleeNet use Cosine Annealing Learning Rate Schedueling.

This is simple implemenation using torch.optim.lr_scheduler.

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=initial_lr, momentum=0.9)
learning_rate_scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=num_epoch)
  
for epoch in range(num_epoch):  
    learning_rate_scheduler.step()
    running_loss = 0.0
    for i, data in enumerate(train_loader, 0):
        inputs, labels = data
        inputs, labels = inputs.to(device), labels.to(device)

        optimizer.zero_grad()

        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        
        optimizer.step()
        
        running_loss += loss.item()
                
        show_period = 100
        if i % show_period == 0:    # print every "show_period" mini-batches
            print('[%d, %5d/50000] loss: %.7f, lr: %.7f' %
                  (epoch + 1, (i + 1)*batch_size, running_loss / show_period, learning_rate_scheduler.get_lr()[0]))
            running_loss = 0.0
            
    # validation part
    correct = 0
    total = 0
    for i, data in enumerate(valid_loader, 0):
        inputs, labels = data
        inputs, labels = inputs.to(device), labels.to(device)
        outputs = net(inputs)
        
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()
        
    print('[%d epoch] Accuracy of the network on the validation images: %d %%' % 
          (epoch + 1, 100 * correct / total)
         )

print('Finished Training')