Skip to content

Commit

Permalink
Merge branch 'bech32' of https://github.com/matheusd/dcrd into matheu…
Browse files Browse the repository at this point in the history
…sd-bech32
  • Loading branch information
davecgh committed Mar 19, 2019
2 parents 6c5f659 + afc76a6 commit 2713aab
Show file tree
Hide file tree
Showing 7 changed files with 852 additions and 0 deletions.
29 changes: 29 additions & 0 deletions bech32/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
bech32
==========

[![Build Status](http://img.shields.io/travis/decred/dcrd/bech32.svg)](https://travis-ci.org/decred/dcrd/bech32)
[![ISC License](http://img.shields.io/badge/license-ISC-blue.svg)](http://copyfree.org)
[![GoDoc](http://img.shields.io/badge/godoc-reference-blue.svg)](http://godoc.org/github.com/decred/dcrd/bech32)

Package bech32 provides a Go implementation of the bech32 format specified in
[BIP 173](https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki).

Test vectors from BIP 173 are added to ensure compatibility with the BIP.

## Installation and Updating

```bash
$ go get -u github.com/decred/dcrd/bech32
```

## Examples

* [Bech32 decode Example](http://godoc.org/github.com/decred/dcrd/bech32#example-Bech32Decode)
Demonstrates how to decode a bech32 encoded string.
* [Bech32 encode Example](http://godoc.org/github.com/decred/dcrd/bech32#example-BechEncode)
Demonstrates how to encode data into a bech32 string.

## License

Package bech32 is licensed under the [copyfree](http://copyfree.org) ISC
License.
347 changes: 347 additions & 0 deletions bech32/bech32.go
Original file line number Diff line number Diff line change
@@ -0,0 +1,347 @@
// Copyright (c) 2017 The btcsuite developers
// Copyright (c) 2019 The Decred developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.

package bech32

import (
"strings"
)

// charset is the set of characters used in the data section of bech32 strings.
// Note that this is ordered, such that for a given charset[i], i is the binary
// value of the character.
const charset = "qpzry9x8gf2tvdw0s3jn54khce6mua7l"

// gen encodes the generator polynomial for the bech32 BCH checksum.
var gen = []int{0x3b6a57b2, 0x26508e6d, 0x1ea119fa, 0x3d4233dd, 0x2a1462b3}

// toBytes converts each character in the string 'chars' to the value of the
// index of the correspoding character in 'charset'.
func toBytes(chars string) ([]byte, error) {
decoded := make([]byte, 0, len(chars))
for i := 0; i < len(chars); i++ {
index := strings.IndexByte(charset, chars[i])
if index < 0 {
return nil, ErrNonCharsetChar(chars[i])
}
decoded = append(decoded, byte(index))
}
return decoded, nil
}

// bech32Polymod calculates the BCH checksum for a given hrp, values and
// checksum data. Checksum is optional, and if nil a 0 checksum is assumed.
//
// Values and checksum (if provided) MUST be encoded as 5 bits per element (base
// 32), otherwise the results are undefined.
//
// For more details on the polymod calculation, please refer to BIP 173.
func bech32Polymod(hrp string, values, checksum []byte) int {
chk := 1

// Account for the high bits of the HRP in the checksum.
for i := 0; i < len(hrp); i++ {
b := chk >> 25
hiBits := int(hrp[i]) >> 5
chk = (chk&0x1ffffff)<<5 ^ hiBits
for i := 0; i < 5; i++ {
if (b>>uint(i))&1 == 1 {
chk ^= gen[i]
}
}
}

// Account for the separator (0) between high and low bits of the HRP.
// x^0 == x, so we eliminate the redundant xor used in the other rounds.
b := chk >> 25
chk = (chk & 0x1ffffff) << 5
for i := 0; i < 5; i++ {
if (b>>uint(i))&1 == 1 {
chk ^= gen[i]
}
}

// Account for the low bits of the HRP.
for i := 0; i < len(hrp); i++ {
b := chk >> 25
loBits := int(hrp[i]) & 31
chk = (chk&0x1ffffff)<<5 ^ loBits
for i := 0; i < 5; i++ {
if (b>>uint(i))&1 == 1 {
chk ^= gen[i]
}
}
}

// Account for the values.
for _, v := range values {
b := chk >> 25
chk = (chk&0x1ffffff)<<5 ^ int(v)
for i := 0; i < 5; i++ {
if (b>>uint(i))&1 == 1 {
chk ^= gen[i]
}
}
}

if checksum == nil {
// A nil checksum is used during encoding, so assume all bytes are zero.
// x^0 == x, so we eliminate the redundant xor used in the other rounds.
for v := 0; v < 6; v++ {
b := chk >> 25
chk = (chk & 0x1ffffff) << 5
for i := 0; i < 5; i++ {
if (b>>uint(i))&1 == 1 {
chk ^= gen[i]
}
}
}
} else {
// Checksum is provided during decoding, so use it.
for _, v := range checksum {
b := chk >> 25
chk = (chk&0x1ffffff)<<5 ^ int(v)
for i := 0; i < 5; i++ {
if (b>>uint(i))&1 == 1 {
chk ^= gen[i]
}
}
}
}

return chk
}

// writeBech32Checksum calculates the checksum data expected for a string that
// will have the given hrp and payload data and writes it to the provided string
// builder.
//
// The payload data MUST be encoded as a base 32 (5 bits per element) byte slice
// and the hrp MUST only use the allowed character set (ascii chars between 33
// and 126), otherwise the results are undefined.
//
// For more details on the checksum calculation, please refer to BIP 173.
func writeBech32Checksum(hrp string, data []byte, bldr *strings.Builder) {
polymod := bech32Polymod(hrp, data, nil) ^ 1
for i := 0; i < 6; i++ {
b := byte((polymod >> uint(5*(5-i))) & 31)

// This can't fail, given we explicitly cap the previous b byte by the
// first 31 bits.
c := charset[b]
bldr.WriteByte(c)
}
}

// bech32VerifyChecksum verifies whether the bech32 string specified by the
// provided hrp and payload data (encoded as 5 bits per element byte slice) has
// the correct checksum suffix.
//
// Data MUST have more than 6 elements, otherwise this function panics.
//
// For more details on the checksum verification, please refer to BIP 173.
func bech32VerifyChecksum(hrp string, data []byte) bool {
checksum := data[len(data)-6:]
values := data[:len(data)-6]
polymod := bech32Polymod(hrp, values, checksum)
return polymod == 1
}

// DecodeNoLimit decodes a bech32 encoded string, returning the human-readable
// part and the data part excluding the checksum. This function does NOT
// validate against the BIP-173 maximum length allowed for bech32 strings and
// is meant for use in custom applications (such as lightning network payment
// requests), NOT on-chain addresses.
//
// Note that the returned data is 5-bit (base32) encoded.
func DecodeNoLimit(bech string) (string, []byte, error) {
// The minimum allowed size of a bech32 string is 8 characters, since it
// needs a non-empty HRP, a separator, and a 6 character checksum.
if len(bech) < 8 {
return "", nil, ErrInvalidLength(len(bech))
}

// Only ASCII characters between 33 and 126 are allowed.
var hasLower, hasUpper bool
for i := 0; i < len(bech); i++ {
if bech[i] < 33 || bech[i] > 126 {
return "", nil, ErrInvalidCharacter(bech[i])
}

// The characters must be either all lowercase or all uppercase. Testing
// directly with ascii codes is safe here, given the previous test.
hasLower = hasLower || (bech[i] >= 97 && bech[i] <= 122)
hasUpper = hasUpper || (bech[i] >= 65 && bech[i] <= 90)
if hasLower && hasUpper {
return "", nil, ErrMixedCase{}
}
}

// Bech32 standard uses only the lowercase for of strings for checksum
// calculation.
if hasUpper {
bech = strings.ToLower(bech)
}

// The string is invalid if the last '1' is non-existent, it is the
// first character of the string (no human-readable part) or one of the
// last 6 characters of the string (since checksum cannot contain '1').
one := strings.LastIndexByte(bech, '1')
if one < 1 || one+7 > len(bech) {
return "", nil, ErrInvalidSeparatorIndex(one)
}

// The human-readable part is everything before the last '1'.
hrp := bech[:one]
data := bech[one+1:]

// Each character corresponds to the byte with value of the index in
// 'charset'.
decoded, err := toBytes(data)
if err != nil {
return "", nil, err
}

// Verify if the checksum (stored inside decoded[:]) is valid, given the
// previously decoded hrp.
if !bech32VerifyChecksum(hrp, decoded) {
// Invalid checksum. Calculate what it should have been, so that the
// error contains this information.

// Extract the payload bytes and actual checksum in the string.
actual := bech[len(bech)-6:]
payload := decoded[:len(decoded)-6]

// Calculate the expected checksum, given the hrp and payload data.
var expectedBldr strings.Builder
expectedBldr.Grow(6)
writeBech32Checksum(hrp, payload, &expectedBldr)
expected := expectedBldr.String()

err = ErrInvalidChecksum{
Expected: expected,
Actual: actual,
}
return "", nil, err
}

// We exclude the last 6 bytes, which is the checksum.
return hrp, decoded[:len(decoded)-6], nil
}

// Decode decodes a bech32 encoded string, returning the human-readable part and
// the data part excluding the checksum.
//
// Note that the returned data is 5-bit (base32) encoded.
func Decode(bech string) (string, []byte, error) {
// The maximum allowed length for a bech32 string is 90.
if len(bech) > 90 {
return "", nil, ErrInvalidLength(len(bech))
}

return DecodeNoLimit(bech)
}

// Encode encodes a byte slice into a bech32 string with the
// human-readable part hrb. Note that the bytes must each encode 5 bits
// (base32).
func Encode(hrp string, data []byte) (string, error) {

// The resulting bech32 string is the concatenation of the hrp, the
// separator 1, data and the 6-byte checksum.
var bldr strings.Builder
bldr.Grow(len(hrp) + 1 + len(data) + 6)
bldr.WriteString(hrp)
bldr.WriteString("1")

// Write the data part, using the bech32 charset.
for _, b := range data {
if int(b) >= len(charset) {
return "", ErrInvalidDataByte(b)
}
bldr.WriteByte(charset[b])
}

// Calculate and write the checksum of the data.
writeBech32Checksum(hrp, data, &bldr)

return bldr.String(), nil
}

// ConvertBits converts a byte slice where each byte is encoding fromBits bits,
// to a byte slice where each byte is encoding toBits bits.
func ConvertBits(data []byte, fromBits, toBits uint8, pad bool) ([]byte, error) {
if fromBits < 1 || fromBits > 8 || toBits < 1 || toBits > 8 {
return nil, ErrInvalidBitGroups{}
}

// Determine the maximum size the resulting array can have after base
// conversion, so that we can size it a single time. This might be off
// by a byte depending on whether padding is used or not and if the input
// data is a multiple of both fromBits and toBits, but we ignore that and
// just size it to the maximum possible.
maxSize := len(data)*int(fromBits)/int(toBits) + 1

// The final bytes, each byte encoding toBits bits.
regrouped := make([]byte, 0, maxSize)

// Keep track of the next byte we create and how many bits we have
// added to it out of the toBits goal.
nextByte := byte(0)
filledBits := uint8(0)

for _, b := range data {

// Discard unused bits.
b = b << (8 - fromBits)

// How many bits remaining to extract from the input data.
remFromBits := fromBits
for remFromBits > 0 {
// How many bits remaining to be added to the next byte.
remToBits := toBits - filledBits

// The number of bytes to next extract is the minimum of
// remFromBits and remToBits.
toExtract := remFromBits
if remToBits < toExtract {
toExtract = remToBits
}

// Add the next bits to nextByte, shifting the already
// added bits to the left.
nextByte = (nextByte << toExtract) | (b >> (8 - toExtract))

// Discard the bits we just extracted and get ready for
// next iteration.
b = b << toExtract
remFromBits -= toExtract
filledBits += toExtract

// If the nextByte is completely filled, we add it to
// our regrouped bytes and start on the next byte.
if filledBits == toBits {
regrouped = append(regrouped, nextByte)
filledBits = 0
nextByte = 0
}
}
}

// We pad any unfinished group if specified.
if pad && filledBits > 0 {
nextByte = nextByte << (toBits - filledBits)
regrouped = append(regrouped, nextByte)
filledBits = 0
nextByte = 0
}

// Any incomplete group must be <= 4 bits, and all zeroes.
if filledBits > 0 && (filledBits > 4 || nextByte != 0) {
return nil, ErrInvalidIncompleteGroup{}
}

return regrouped, nil
}
Loading

0 comments on commit 2713aab

Please sign in to comment.