Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

48 unit test for grid construction #57

Open
wants to merge 5 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion tests/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -1,7 +1,8 @@
enable_testing()

set(TESTSOURCES comparetest.cpp)
# set(TESTSOURCES comparetest.cpp level_test.cpp test_prolongation.cpp test_restriction.cpp smoother_test.cpp)

set(TESTSOURCES comparetest.cpp test_grid.cpp mockgrid.cpp)
add_executable(
gmgpolar_tests
${TESTSOURCES}
Expand All @@ -12,6 +13,7 @@ target_link_libraries(
GMGPolar
)


target_include_directories(gmgpolar_tests PRIVATE ../include ../include/test_cases)
include(GoogleTest)
gtest_discover_tests(gmgpolar_tests)
53 changes: 53 additions & 0 deletions tests/mockgrid.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
#include "mockgrid.h"

void create_grid(gmgpolar& test_p, int two_lvl)
{
level* new_level = new level(0);
new_level->nr = pow(2, gyro::icntl[Param::nr_exp]);
new_level->r = std::vector<double>(new_level->nr + 1);
for (int i = 0; i < new_level->nr; i++) {
new_level->r[i] = gyro::dcntl[Param::R0] +
i * (gyro::dcntl[Param::R] - gyro::dcntl[Param::R0]) / new_level->nr; //uniform grid
}

new_level->r[new_level->nr] = gyro::dcntl[Param::R];
new_level->nr++;
int ntmp = pow(2, ceil(log2(new_level->nr)));
new_level->ntheta = gyro::icntl[Param::periodic] ? ntmp : ntmp + 1;

new_level->theta = std::vector<double>(new_level->ntheta);

for (int i = 0; i < new_level->ntheta; i++) {
new_level->theta[i] = 2 * PI * i / ntmp; //uniform in theta
}

new_level->ntheta_int = gyro::icntl[Param::periodic] ? new_level->ntheta : new_level->ntheta - 1;
new_level->nr_int = new_level->nr - 1;

new_level->thetaplus = std::vector<double>(new_level->ntheta_int);
for (int k = 0; k < new_level->ntheta_int - 1; k++) {
new_level->thetaplus[k] = new_level->theta[k + 1] - new_level->theta[k];
}
new_level->thetaplus[new_level->ntheta_int - 1] = 2 * PI - new_level->theta[new_level->ntheta_int - 1];

new_level->hplus = std::vector<double>(new_level->nr_int);
for (int k = 0; k < new_level->nr_int; k++) {
new_level->hplus[k] = new_level->r[k + 1] - new_level->r[k];
}
if (two_lvl == 1) {
level* coarser_level = new level(1);
coarser_level->nr = pow(2, gyro::icntl[Param::nr_exp] - 1) + 1;
ntmp = pow(2, ceil(log2(coarser_level->nr)));
coarser_level->ntheta = gyro::icntl[Param::periodic] ? ntmp : ntmp + 1;

coarser_level->ntheta_int = gyro::icntl[Param::periodic] ? coarser_level->ntheta : coarser_level->ntheta - 1;
coarser_level->nr_int = coarser_level->nr - 1;
test_p.v_level.push_back(new_level);
test_p.v_level.push_back(coarser_level);
test_p.levels_orig = 2;
}
else {
test_p.v_level.push_back(new_level);
test_p.levels_orig = 1;
}
}
8 changes: 8 additions & 0 deletions tests/mockgrid.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
#include "gmgpolar.h"

#ifndef MOCKGRID_H
#define MOCKGRID_H

void create_grid(gmgpolar& test_p, int two_lvl = 1);

#endif
252 changes: 252 additions & 0 deletions tests/test_grid.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,252 @@
#include <gtest/gtest.h>
#include "gmgpolar.h"
#include "mockgrid.h"

class test_grid : public ::testing::TestWithParam<int>
{
protected:
test_grid()
: test_level(0)
{
}
void SetUp() override
{
gyro::init_params();
gyro::icntl[Param::verbose] = 0;
gyro::dcntl[Param::R0] = 1e-5;
gyro::icntl[Param::periodic] = 1;
gyro::f_grid_r = "";
gyro::f_grid_theta = "";
gyro::f_sol_in = "";
gyro::f_sol_out = "";
gyro::icntl[Param::fac_ani] = 3;
gyro::select_functions_class(gyro::icntl[Param::alpha_coeff], gyro::icntl[Param::beta_coeff],
gyro::icntl[Param::mod_pk], gyro::icntl[Param::prob]);
}

level test_level;
};

TEST_P(test_grid, Nodes_Build_r)
{
const int& val_size = GetParam();
gyro::icntl[Param::nr_exp] = (int)(val_size / 3) + 3;
gyro::icntl[Param::ntheta_exp] = (val_size % 3) + 3;

if (gyro::icntl[Param::nr_exp] == 3)
gyro::icntl[Param::fac_ani] = 2;

int& nr_exp = gyro::icntl[Param::nr_exp];

gyro::icntl[Param::fac_ani] = 0; //uniform grid
test_level.build_r();
EXPECT_EQ(pow(2, nr_exp) + 1, test_level.r.size());
EXPECT_EQ(pow(2, nr_exp) + 1, test_level.nr);
for (int i = 0; i < test_level.nr; i++) {
EXPECT_NEAR(gyro::dcntl[Param::R0] + i * (gyro::dcntl[Param::R] - gyro::dcntl[Param::R0]) / (test_level.nr - 1),
test_level.r[i], 1e6); //uniform grid
}
gyro::icntl[Param::fac_ani] = 2;
test_level.build_r();
EXPECT_EQ(pow(2, nr_exp + 1) + 1, test_level.r.size());
EXPECT_EQ(pow(2, nr_exp + 1) + 1, test_level.nr);
}

TEST_P(test_grid, Nodes_Build_theta)
{
const int& val_size = GetParam();
gyro::icntl[Param::nr_exp] = (int)(val_size / 3) + 3;
gyro::icntl[Param::ntheta_exp] = (val_size % 3) + 3; //TODO: ntheta_exp has no effect on the grid size

int& per = gyro::icntl[Param::periodic];
per = val_size % 2; //test for periodic and non-periodic grids
gyro::icntl[Param::fac_ani] = 0;
test_level.nr = pow(2, gyro::icntl[Param::nr_exp]) + 1;
test_level.build_theta();
EXPECT_LE(test_level.nr, test_level.ntheta);
if (per == 1) {
EXPECT_EQ(test_level.ntheta % 2, 0) << "periodic boundary conditions imply even number of nodes";
}
else {
EXPECT_EQ(test_level.ntheta % 2, 1);
}
for (int k = 0; k < test_level.ntheta; k++) {
EXPECT_EQ(test_level.theta[k], (2 * PI / (double)(test_level.ntheta + per - 1)) * k)
<< "k: " + std::to_string(k) + " periodic: " + std::to_string(per) +
" divided by :" + std::to_string(test_level.ntheta + per - 1);
}
}

TEST_P(test_gri, Anisotropy_theta)
{
}

TEST_P(test_grid, Anisotropy_r)
{
//testing anisotropy. refinement around 2/3 r
ASSERT_NE(gyro::icntl[Param::alpha_coeff], 1);
int& ani_r = gyro::icntl[Param::fac_ani];
ani_r = 0;
while (ani_r < gyro::icntl[Param::nr_exp]) {
test_level.build_r();
double i_fine = floor(0.66 * test_level.nr);
double h_fine = test_level.r[i_fine + 1] - test_level.r[i_fine];
double h_coarse = test_level.r[1] - test_level.r[0];

EXPECT_NEAR(pow(2, ani_r) * h_fine, h_coarse, 1e-6);
std::cout << "fine mesh size " + std::to_string(h_fine) + " coarse mesh size " + std::to_string(h_coarse)
<< std::endl;
ani_r++;
}
}

TEST_P(test_grid, coarse_grid_one_level)
{

const int& val_size = GetParam();
gyro::icntl[Param::nr_exp] = (int)(val_size / 3) + 3;
gyro::icntl[Param::ntheta_exp] = (val_size % 3) + 3;

if (gyro::icntl[Param::nr_exp] == 3)
gyro::icntl[Param::fac_ani] = 2;

int& nr_exp = gyro::icntl[Param::nr_exp];

gmgpolar coarse_test;
create_grid(coarse_test);

coarse_test.v_level[0]->define_coarse_nodes_onelevel(coarse_test.v_level[1]);

level& fine = *(coarse_test.v_level[0]);
level& coarse = *(coarse_test.v_level[1]);

EXPECT_NE(coarse.nr, fine.nr);
EXPECT_NE(coarse.ntheta, fine.ntheta);
EXPECT_EQ(coarse.nr, coarse.r.size());
EXPECT_EQ(coarse.ntheta, coarse.theta.size());

for (int j = 0; j < fine.nr; j++) {
if (j % 2 == 0) {
EXPECT_EQ(coarse.r[j / 2], fine.r[j]);
}
for (int i = 0; i < fine.ntheta_int; i++) {
if (i % 2 == 0 && j == 0) {
EXPECT_EQ(coarse.theta[i / 2], fine.theta[i]);
}
if (j % 2 == 0 && i % 2 == 0) {
EXPECT_EQ(fine.coarse_nodes_list_r[j * fine.ntheta_int + i], j);
EXPECT_EQ(fine.coarse_nodes_list_theta[j * fine.ntheta_int + i], i);
}
else {
EXPECT_EQ(fine.coarse_nodes_list_r[j * fine.ntheta_int + i], -1);
EXPECT_EQ(fine.coarse_nodes_list_theta[j * fine.ntheta_int + i], -1);
}
}
}
}

TEST_P(test_grid, define_coarse_nodes)
{
gyro::icntl[Param::nr_exp] =
8; //test two (levels=9 or 10) instances where we can not achieve desired number of levels

gmgpolar coarse_test;
create_grid(coarse_test, 0);
coarse_test.levels = GetParam() + 2;
coarse_test.define_coarse_nodes();

if (gyro::icntl[Param::nr_exp] < coarse_test.levels_orig) { //can not reach desired number of levels
EXPECT_EQ(coarse_test.levels, gyro::icntl[Param::nr_exp]);
EXPECT_EQ(coarse_test.v_level.size(), coarse_test.levels_orig); // more memory reserved than we have
}
else {
EXPECT_EQ(coarse_test.v_level.size(), coarse_test.levels);
EXPECT_EQ(coarse_test.levels, coarse_test.levels_orig);
}

for (int k = 0; k < coarse_test.levels; k++) {
EXPECT_EQ(coarse_test.v_level[k]->nr, pow(2, gyro::icntl[Param::nr_exp] - k) + 1);
}
}

TEST_P(test_grid, store_theta_n_co)
{

//TODO: More to test
gyro::icntl[Param::periodic] = 0;

gmgpolar reference;
create_grid(reference, 0);

test_level.nr = reference.v_level[0]->nr;
test_level.r = reference.v_level[0]->r; //deep copy
test_level.ntheta = reference.v_level[0]->ntheta;
test_level.theta = reference.v_level[0]->theta;

test_level.store_theta_n_co();

EXPECT_EQ(test_level.ntheta_int, reference.v_level[0]->ntheta_int);
EXPECT_EQ(test_level.ntheta - 1, test_level.ntheta_int);

std::vector<level*>().swap(reference.v_level);
gyro::icntl[Param::periodic] = 1;
create_grid(reference, 0);

test_level.nr = reference.v_level[0]->nr;
test_level.r = reference.v_level[0]->r; //deep copy
test_level.ntheta = reference.v_level[0]->ntheta;
test_level.theta = reference.v_level[0]->theta;

test_level.store_theta_n_co();
std::cout << reference.v_level[0]->ntheta << std::endl;
EXPECT_EQ(test_level.ntheta_int, reference.v_level[0]->ntheta_int);
EXPECT_EQ(test_level.ntheta, test_level.ntheta_int);
}

TEST_P(test_grid, create_grid_polar_divide)
{

gmgpolar test_case;
gyro::icntl[Param::periodic] = GetParam() % 2;
create_grid(test_case, 0);
int& divide = gyro::icntl[Param::divideBy2];
int prev_nr = test_case.v_level[0]->nr;
int prev_ntheta = test_case.v_level[0]->ntheta;
std::vector<double> r_tmp = test_case.v_level[0]->r;
std::vector<double> theta_tmp = test_case.v_level[0]->theta;
divide = GetParam();
test_case.create_grid_polar_divide();

int compare_theta =
pow(2, GetParam()) * prev_ntheta - (1 - gyro::icntl[Param::periodic]) * (pow(2, GetParam()) - 1);
int compare_r = pow(2, GetParam()) * prev_nr - (pow(2, GetParam()) - 1);
EXPECT_EQ(compare_r, test_case.v_level[0]->nr);
EXPECT_EQ(compare_theta, test_case.v_level[0]->ntheta);

int reference = (int)pow(2, divide);
for (int k = 0; k < prev_nr - 1; k++) {
for (int j = 0; j <= reference; j++) {
double comp = ((double)(reference - j) / (double)reference) * r_tmp[k] +
((double)j / (double)reference) * r_tmp[k + 1];
EXPECT_NEAR(test_case.v_level[0]->r[k * reference + j], comp, 1e-6);
}
}
int& per = gyro::icntl[Param::periodic];
for (int k = 0; k < (per ? prev_ntheta : prev_ntheta - 1); k++) {
for (int j = 0; j <= reference; j++) {
if (k < prev_ntheta - 1) {
double comp = ((double)(reference - j) / (double)reference) * theta_tmp[k] +
((double)j / (double)reference) * theta_tmp[k + 1];
EXPECT_NEAR(test_case.v_level[0]->theta[k * reference + j], comp, 1e-6);
}
else {
if (j < reference) {
double comp = ((double)(reference - j) / (double)reference) * theta_tmp[k] +
((double)j / (double)reference) * 2 * PI;
EXPECT_NEAR(test_case.v_level[0]->theta[k * reference + j], comp, 1e-6);
}
}
}
}
}
INSTANTIATE_TEST_SUITE_P(Problem_size, test_grid, ::testing::Values(0, 1, 2, 3, 4, 5, 6, 7, 8));
Loading