Skip to content

Latest commit

 

History

History
362 lines (303 loc) · 13.9 KB

PTQ.md

File metadata and controls

362 lines (303 loc) · 13.9 KB

PTQ

Design

Post-training static quantization (PTQ) involves not just converting the weights from float to int, but also first feeding batches of data through the network and computing the resulting distributions of the different activations. Sspecifically, this is done by inserting observer modules at different points that record this data. These distributions are then used to determine specifically how the different activations should be quantized at inference time. A simple technique would be to simply divide the entire range of activations into 256 levels, but we support more sophisticated methods as well. This additional step allows us to pass quantized values between operations instead of converting these values to floats - and then back to ints - between every operation, resulting in a significant speed-up.

PyTorch Usage

MobileNetV2 Model Architecture

Define the pre-trained MobileNetV2 model architecture. The following shows several notable modifications that can be used to enable quantization:

  • Replace addition with nn.quantized.FloatFunctional.
  • Insert QuantStub and DeQuantStub at the beginning and end of the network.
  • Replace ReLU6 with ReLU.
from torch.quantization import QuantStub, DeQuantStub

def _make_divisible(v, divisor, min_value=None):
    """
    This function is taken from the original tf repo.
    It ensures that all layers have a channel number that is divisible by 8
    It can be seen here:
    https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
    :param v:
    :param divisor:
    :param min_value:
    :return:
    """
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v


class ConvBNReLU(nn.Sequential):
    def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
        padding = (kernel_size - 1) // 2
        super(ConvBNReLU, self).__init__(
            nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False),
            nn.BatchNorm2d(out_planes, momentum=0.1),
            # Replace with ReLU
            nn.ReLU(inplace=False)
        )


class InvertedResidual(nn.Module):
    def __init__(self, inp, oup, stride, expand_ratio):
        super(InvertedResidual, self).__init__()
        self.stride = stride
        assert stride in [1, 2]

        hidden_dim = int(round(inp * expand_ratio))
        self.use_res_connect = self.stride == 1 and inp == oup

        layers = []
        if expand_ratio != 1:
            # pw
            layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
        layers.extend([
            # dw
            ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
            # pw-linear
            nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
            nn.BatchNorm2d(oup, momentum=0.1),
        ])
        self.conv = nn.Sequential(*layers)
        # Replace torch.add with floatfunctional
        self.skip_add = nn.quantized.FloatFunctional()

    def forward(self, x):
        if self.use_res_connect:
            return self.skip_add.add(x, self.conv(x))
        else:
            return self.conv(x)


class MobileNetV2(nn.Module):
    def __init__(self, num_classes=1000, width_mult=1.0, inverted_residual_setting=None, round_nearest=8):
        """
        MobileNet V2 main class

        Args:
            num_classes (int): Number of classes
            width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
            inverted_residual_setting: Network structure
            round_nearest (int): Round the number of channels in each layer to be a multiple of this number
            Set to 1 to turn off rounding
        """
        super(MobileNetV2, self).__init__()
        block = InvertedResidual
        input_channel = 32
        last_channel = 1280

        if inverted_residual_setting is None:
            inverted_residual_setting = [
                # t, c, n, s
                [1, 16, 1, 1],
                [6, 24, 2, 2],
                [6, 32, 3, 2],
                [6, 64, 4, 2],
                [6, 96, 3, 1],
                [6, 160, 3, 2],
                [6, 320, 1, 1],
            ]

        # only check the first element, assuming user knows t,c,n,s are required
        if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
            raise ValueError("inverted_residual_setting should be non-empty "
                             "or a 4-element list, got {}".format(inverted_residual_setting))

        # building first layer
        input_channel = _make_divisible(input_channel * width_mult, round_nearest)
        self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
        features = [ConvBNReLU(3, input_channel, stride=2)]
        # building inverted residual blocks
        for t, c, n, s in inverted_residual_setting:
            output_channel = _make_divisible(c * width_mult, round_nearest)
            for i in range(n):
                stride = s if i == 0 else 1
                features.append(block(input_channel, output_channel, stride, expand_ratio=t))
                input_channel = output_channel
        # building last several layers
        features.append(ConvBNReLU(input_channel, self.last_channel, kernel_size=1))
        # make it nn.Sequential
        self.features = nn.Sequential(*features)
        self.quant = QuantStub()
        self.dequant = DeQuantStub()
        # building classifier
        self.classifier = nn.Sequential(
            nn.Dropout(0.2),
            nn.Linear(self.last_channel, num_classes),
        )

        # weight initialization
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    nn.init.zeros_(m.bias)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.ones_(m.weight)
                nn.init.zeros_(m.bias)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.zeros_(m.bias)

    def forward(self, x):

        x = self.quant(x)

        x = self.features(x)
        x = x.mean([2, 3])
        x = self.classifier(x)
        x = self.dequant(x)
        return x

    # Fuse Conv+BN and Conv+BN+Relu modules prior to quantization
    # This operation does not change the numerics
    def fuse_model(self):
        for m in self.modules():
            if type(m) == ConvBNReLU:
                torch.quantization.fuse_modules(m, ['0', '1', '2'], inplace=True)
            if type(m) == InvertedResidual:
                for idx in range(len(m.conv)):
                    if type(m.conv[idx]) == nn.Conv2d:
                        torch.quantization.fuse_modules(m.conv, [str(idx), str(idx + 1)], inplace=True)

Helper Functions

Define several helper functions to help with the model evaluation:

class AverageMeter(object):
    """Computes and stores the average and current value"""
    def __init__(self, name, fmt=':f'):
        self.name = name
        self.fmt = fmt
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count

    def __str__(self):
        fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
        return fmtstr.format(**self.__dict__)


def accuracy(output, target, topk=(1,)):
    """Computes the accuracy over the k top predictions for the specified values of k"""
    with torch.no_grad():
        maxk = max(topk)
        batch_size = target.size(0)

        _, pred = output.topk(maxk, 1, True, True)
        pred = pred.t()
        correct = pred.eq(target.view(1, -1).expand_as(pred))

        res = []
        for k in topk:
            correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
            res.append(correct_k.mul_(100.0 / batch_size))
        return res


def evaluate(model, criterion, data_loader, neval_batches):
    model.eval()
    top1 = AverageMeter('Acc@1', ':6.2f')
    top5 = AverageMeter('Acc@5', ':6.2f')
    cnt = 0
    with torch.no_grad():
        for image, target in data_loader:
            output = model(image)
            loss = criterion(output, target)
            cnt += 1
            acc1, acc5 = accuracy(output, target, topk=(1, 5))
            print('.', end = '')
            top1.update(acc1[0], image.size(0))
            top5.update(acc5[0], image.size(0))
            if cnt >= neval_batches:
                 return top1, top5

    return top1, top5


def load_model(model_file):
    model = MobileNetV2()
    state_dict = torch.load(model_file)
    model.load_state_dict(state_dict)
    model.to('cpu')
    return model


def print_size_of_model(model):
    torch.save(model.state_dict(), "temp.p")
    print('Size (MB):', os.path.getsize("temp.p")/1e6)
    os.remove('temp.p')

PTQ

num_calibration_batches = 10

myModel = load_model(saved_model_dir + float_model_file).to('cpu')
myModel.eval()

# Fuse Conv, bn and relu
myModel.fuse_model()

# Specify quantization configuration
# Start with simple min/max range estimation and per-tensor quantization of weights
myModel.qconfig = torch.quantization.default_qconfig
print(myModel.qconfig)
torch.quantization.prepare(myModel, inplace=True)

# Calibrate first
print('Post Training Quantization Prepare: Inserting Observers')
print('\n Inverted Residual Block:After observer insertion \n\n', myModel.features[1].conv)

# Calibrate with the training set
evaluate(myModel, criterion, data_loader, neval_batches=num_calibration_batches)
print('Post Training Quantization: Calibration done')

# Convert to quantized model
torch.quantization.convert(myModel, inplace=True)
print('Post Training Quantization: Convert done')
print('\n Inverted Residual Block: After fusion and quantization, note fused modules: \n\n',myModel.features[1].conv)

print("Size of model after quantization")
print_size_of_model(myModel)

top1, top5 = evaluate(myModel, criterion, data_loader_test, neval_batches=num_eval_batches)
print('Evaluation accuracy on %d images, %2.2f'%(num_eval_batches * eval_batch_size, top1.avg))

Output:

QConfig(activation=functools.partial(<class 'torch.quantization.observer.MinMaxObserver'>, reduce_range=True), weight=functools.partial(<class 'torch.quantization.observer.MinMaxObserver'>, dtype=torch.qint8, qscheme=torch.per_tensor_symmetric))
Post Training Quantization Prepare: Inserting Observers

 Inverted Residual Block:After observer insertion

 Sequential(
  (0): ConvBNReLU(
    (0): ConvReLU2d(
      (0): Conv2d(
        32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32
        (activation_post_process): MinMaxObserver(min_val=tensor([]), max_val=tensor([]))
      )
      (1): ReLU(
        (activation_post_process): MinMaxObserver(min_val=tensor([]), max_val=tensor([]))
      )
    )
    (1): Identity()
    (2): Identity()
  )
  (1): Conv2d(
    32, 16, kernel_size=(1, 1), stride=(1, 1)
    (activation_post_process): MinMaxObserver(min_val=tensor([]), max_val=tensor([]))
  )
  (2): Identity()
)
..........Post Training Quantization: Calibration done
Post Training Quantization: Convert done

Inverted Residual Block: After fusion and quantization, note fused modules:
Sequential(
 (0): ConvBNReLU(
   (0): QuantizedConvReLU2d(32, 32, kernel_size=(3, 3), stride=(1, 1), scale=0.15583468973636627, zero_point=0, padding=(1, 1), groups=32)
    (1): Identity()
    (2): Identity()
  )
  (1): QuantizedConv2d(32, 16, kernel_size=(1, 1), stride=(1, 1), scale=0.19358506798744202, zero_point=74)
  (2): Identity()
)
Size of model after quantization
Size (MB): 3.631847
..........Evaluation accuracy on 300 images, 67.67

For this quantized model, we see a significantly lower accuracy of just ~62% on these same 300 images. Nevertheless, we did reduce the size of our model down to just under 3.6 MB, almost a 4x decrease.

In addition, we can significantly improve on the accuracy simply by using a different quantization configuration. We repeat the same exercise with the recommended configuration for quantizing for x86 architectures. This configuration does the following:

  • Quantizes weights on a per-channel basis
  • Uses a histogram observer that collects a histogram of activations and then picks quantization parameters in an optimal manner.
per_channel_quantized_model = load_model(saved_model_dir + float_model_file)
per_channel_quantized_model.eval()
per_channel_quantized_model.fuse_model()
per_channel_quantized_model.qconfig = torch.quantization.get_default_qconfig('fbgemm')
print(per_channel_quantized_model.qconfig)

torch.quantization.prepare(per_channel_quantized_model, inplace=True)
evaluate(per_channel_quantized_model,criterion, data_loader, num_calibration_batches)
torch.quantization.convert(per_channel_quantized_model, inplace=True)
top1, top5 = evaluate(per_channel_quantized_model, criterion, data_loader_test, neval_batches=num_eval_batches)
print('Evaluation accuracy on %d images, %2.2f'%(num_eval_batches * eval_batch_size, top1.avg))
torch.jit.save(torch.jit.script(per_channel_quantized_model), saved_model_dir + scripted_quantized_model_file)

Output:

QConfig(activation=functools.partial(<class 'torch.quantization.observer.HistogramObserver'>, reduce_range=True), weight=functools.partial(<class 'torch.quantization.observer.PerChannelMinMaxObserver'>, dtype=torch.qint8, qscheme=torch.per_channel_symmetric))
....................Evaluation accuracy on 300 images, 76.67

Changing just this quantization configuration method resulted in an increase of the accuracy to over 76%!

Example

View a PTQ example of PyTorch resnet50.