Skip to content

Latest commit

 

History

History
95 lines (95 loc) · 63.8 KB

20200821.md

File metadata and controls

95 lines (95 loc) · 63.8 KB

ArXiv cs.CV --Fri, 21 Aug 2020

1.Weakly-supervised 3D Shape Completion in the Wild ⬇️

3D shape completion for real data is important but challenging, since partial point clouds acquired by real-world sensors are usually sparse, noisy and unaligned. Different from previous methods, we address the problem of learning 3D complete shape from unaligned and real-world partial point clouds. To this end, we propose a weakly-supervised method to estimate both 3D canonical shape and 6-DoF pose for alignment, given multiple partial observations associated with the same instance. The network jointly optimizes canonical shapes and poses with multi-view geometry constraints during training, and can infer the complete shape given a single partial point cloud. Moreover, learned pose estimation can facilitate partial point cloud registration. Experiments on both synthetic and real data show that it is feasible and promising to learn 3D shape completion through large-scale data without shape and pose supervision.

2.Generative View Synthesis: From Single-view Semantics to Novel-view Images ⬇️

Content creation, central to applications such as virtual reality, can be a tedious and time-consuming. Recent image synthesis methods simplify this task by offering tools to generate new views from as little as a single input image, or by converting a semantic map into a photorealistic image. We propose to push the envelope further, and introduce \emph{Generative View Synthesis} (GVS), which can synthesize multiple photorealistic views of a scene given a single semantic map. We show that the sequential application of existing techniques, e.g., semantics-to-image translation followed by monocular view synthesis, fail at capturing the scene's structure. In contrast, we solve the semantics-to-image translation in concert with the estimation of the 3D layout of the scene, thus producing geometrically consistent novel views that preserve semantic structures. We first lift the input 2D semantic map onto a 3D layered representation of the scene in feature space, thereby preserving the semantic labels of 3D geometric structures. We then project the layered features onto the target views to generate the final novel-view images. We verify the strengths of our method and compare it with several advanced baselines on three different datasets. Our approach also allows for style manipulation and image editing operations, such as the addition or removal of objects, with simple manipulations of the input style images and semantic maps respectively. Visit the project page at this https URL.

3.Location-aware Graph Convolutional Networks for Video Question Answering ⬇️

We addressed the challenging task of video question answering, which requires machines to answer questions about videos in a natural language form. Previous state-of-the-art methods attempt to apply spatio-temporal attention mechanism on video frame features without explicitly modeling the location and relations among object interaction occurred in videos. However, the relations between object interaction and their location information are very critical for both action recognition and question reasoning. In this work, we propose to represent the contents in the video as a location-aware graph by incorporating the location information of an object into the graph construction. Here, each node is associated with an object represented by its appearance and location features. Based on the constructed graph, we propose to use graph convolution to infer both the category and temporal locations of an action. As the graph is built on objects, our method is able to focus on the foreground action contents for better video question answering. Lastly, we leverage an attention mechanism to combine the output of graph convolution and encoded question features for final answer reasoning. Extensive experiments demonstrate the effectiveness of the proposed methods. Specifically, our method significantly outperforms state-of-the-art methods on TGIF-QA, Youtube2Text-QA, and MSVD-QA datasets. Code and pre-trained models are publicly available at: this https URL

4.A review of deep learning in medical imaging: Image traits, technology trends, case studies with progress highlights, and future promises ⬇️

Since its renaissance, deep learning has been widely used in various medical imaging tasks and has achieved remarkable success in many medical imaging applications, thereby propelling us into the so-called artificial intelligence (AI) era. It is known that the success of AI is mostly attributed to the availability of big data with annotations for a single task and the advances in high performance computing. However, medical imaging presents unique challenges that confront deep learning approaches. In this survey paper, we first highlight both clinical needs and technical challenges in medical imaging and describe how emerging trends in deep learning are addressing these issues. We cover the topics of network architecture, sparse and noisy labels, federating learning, interpretability, uncertainty quantification, etc. Then, we present several case studies that are commonly found in clinical practice, including digital pathology and chest, brain, cardiovascular, and abdominal imaging. Rather than presenting an exhaustive literature survey, we instead describe some prominent research highlights related to these case study applications. We conclude with a discussion and presentation of promising future directions.

5.A Plug-and-play Scheme to Adapt Image Saliency Deep Model for Video Data ⬇️

With the rapid development of deep learning techniques, image saliency deep models trained solely by spatial information have occasionally achieved detection performance for video data comparable to that of the models trained by both spatial and temporal information. However, due to the lesser consideration of temporal information, the image saliency deep models may become fragile in the video sequences dominated by temporal information. Thus, the most recent video saliency detection approaches have adopted the network architecture starting with a spatial deep model that is followed by an elaborately designed temporal deep model. However, such methods easily encounter the performance bottleneck arising from the single stream learning methodology, so the overall detection performance is largely determined by the spatial deep model. In sharp contrast to the current mainstream methods, this paper proposes a novel plug-and-play scheme to weakly retrain a pretrained image saliency deep model for video data by using the newly sensed and coded temporal information. Thus, the retrained image saliency deep model will be able to maintain temporal saliency awareness, achieving much improved detection performance. Moreover, our method is simple yet effective for adapting any off-the-shelf pre-trained image saliency deep model to obtain high-quality video saliency detection. Additionally, both the data and source code of our method are publicly available.

6.Meta-Sim2: Unsupervised Learning of Scene Structure for Synthetic Data Generation ⬇️

Procedural models are being widely used to synthesize scenes for graphics, gaming, and to create (labeled) synthetic datasets for ML. In order to produce realistic and diverse scenes, a number of parameters governing the procedural models have to be carefully tuned by experts. These parameters control both the structure of scenes being generated (e.g. how many cars in the scene), as well as parameters which place objects in valid configurations. Meta-Sim aimed at automatically tuning parameters given a target collection of real images in an unsupervised way. In Meta-Sim2, we aim to learn the scene structure in addition to parameters, which is a challenging problem due to its discrete nature. Meta-Sim2 proceeds by learning to sequentially sample rule expansions from a given probabilistic scene grammar. Due to the discrete nature of the problem, we use Reinforcement Learning to train our model, and design a feature space divergence between our synthesized and target images that is key to successful training. Experiments on a real driving dataset show that, without any supervision, we can successfully learn to generate data that captures discrete structural statistics of objects, such as their frequency, in real images. We also show that this leads to downstream improvement in the performance of an object detector trained on our generated dataset as opposed to other baseline simulation methods. Project page: this https URL.

7.DeepGMR: Learning Latent Gaussian Mixture Models for Registration ⬇️

Point cloud registration is a fundamental problem in 3D computer vision, graphics and robotics. For the last few decades, existing registration algorithms have struggled in situations with large transformations, noise, and time constraints. In this paper, we introduce Deep Gaussian Mixture Registration (DeepGMR), the first learning-based registration method that explicitly leverages a probabilistic registration paradigm by formulating registration as the minimization of KL-divergence between two probability distributions modeled as mixtures of Gaussians. We design a neural network that extracts pose-invariant correspondences between raw point clouds and Gaussian Mixture Model (GMM) parameters and two differentiable compute blocks that recover the optimal transformation from matched GMM parameters. This construction allows the network learn an SE(3)-invariant feature space, producing a global registration method that is real-time, generalizable, and robust to noise. Across synthetic and real-world data, our proposed method shows favorable performance when compared with state-of-the-art geometry-based and learning-based registration methods.

8.Utilizing Explainable AI for Quantization and Pruning of Deep Neural Networks ⬇️

For many applications, utilizing DNNs (Deep Neural Networks) requires their implementation on a target architecture in an optimized manner concerning energy consumption, memory requirement, throughput, etc. DNN compression is used to reduce the memory footprint and complexity of a DNN before its deployment on hardware. Recent efforts to understand and explain AI (Artificial Intelligence) methods have led to a new research area, termed as explainable AI. Explainable AI methods allow us to understand better the inner working of DNNs, such as the importance of different neurons and features. The concepts from explainable AI provide an opportunity to improve DNN compression methods such as quantization and pruning in several ways that have not been sufficiently explored so far. In this paper, we utilize explainable AI methods: mainly DeepLIFT method. We use these methods for (1) pruning of DNNs; this includes structured and unstructured pruning of \ac{CNN} filters pruning as well as pruning weights of fully connected layers, (2) non-uniform quantization of DNN weights using clustering algorithm; this is also referred to as Weight Sharing, and (3) integer-based mixed-precision quantization; this is where each layer of a DNN may use a different number of integer bits. We use typical image classification datasets with common deep learning image classification models for evaluation. In all these three cases, we demonstrate significant improvements as well as new insights and opportunities from the use of explainable AI in DNN compression.

9.Monocular Expressive Body Regression through Body-Driven Attention ⬇️

To understand how people look, interact, or perform tasks, we need to quickly and accurately capture their 3D body, face, and hands together from an RGB image. Most existing methods focus only on parts of the body. A few recent approaches reconstruct full expressive 3D humans from images using 3D body models that include the face and hands. These methods are optimization-based and thus slow, prone to local optima, and require 2D keypoints as input. We address these limitations by introducing ExPose (EXpressive POse and Shape rEgression), which directly regresses the body, face, and hands, in SMPL-X format, from an RGB image. This is a hard problem due to the high dimensionality of the body and the lack of expressive training data. Additionally, hands and faces are much smaller than the body, occupying very few image pixels. This makes hand and face estimation hard when body images are downscaled for neural networks. We make three main contributions. First, we account for the lack of training data by curating a dataset of SMPL-X fits on in-the-wild images. Second, we observe that body estimation localizes the face and hands reasonably well. We introduce body-driven attention for face and hand regions in the original image to extract higher-resolution crops that are fed to dedicated refinement modules. Third, these modules exploit part-specific knowledge from existing face- and hand-only datasets. ExPose estimates expressive 3D humans more accurately than existing optimization methods at a small fraction of the computational cost. Our data, model and code are available for research at this https URL .

10.Pose2Mesh: Graph Convolutional Network for 3D Human Pose and Mesh Recovery from a 2D Human Pose ⬇️

Most of the recent deep learning-based 3D human pose and mesh estimation methods regress the pose and shape parameters of human mesh models, such as SMPL and MANO, from an input image. The first weakness of these methods is an appearance domain gap problem, due to different image appearance between train data from controlled environments, such as a laboratory, and test data from in-the-wild environments. The second weakness is that the estimation of the pose parameters is quite challenging owing to the representation issues of 3D rotations. To overcome the above weaknesses, we propose Pose2Mesh, a novel graph convolutional neural network (GraphCNN)-based system that estimates the 3D coordinates of human mesh vertices directly from the 2D human pose. The 2D human pose as input provides essential human body articulation information, while having a relatively homogeneous geometric property between the two domains. Also, the proposed system avoids the representation issues, while fully exploiting the mesh topology using a GraphCNN in a coarse-to-fine manner. We show that our Pose2Mesh outperforms the previous 3D human pose and mesh estimation methods on various benchmark datasets. The codes are publicly available this https URL.

11.Accuracy and Performance Comparison of Video Action Recognition Approaches ⬇️

Over the past few years, there has been significant interest in video action recognition systems and models. However, direct comparison of accuracy and computational performance results remain clouded by differing training environments, hardware specifications, hyperparameters, pipelines, and inference methods. This article provides a direct comparison between fourteen off-the-shelf and state-of-the-art models by ensuring consistency in these training characteristics in order to provide readers with a meaningful comparison across different types of video action recognition algorithms. Accuracy of the models is evaluated using standard Top-1 and Top-5 accuracy metrics in addition to a proposed new accuracy metric. Additionally, we compare computational performance of distributed training from two to sixty-four GPUs on a state-of-the-art HPC system.

12.Object Properties Inferring from and Transfer for Human Interaction Motions ⬇️

Humans regularly interact with their surrounding objects. Such interactions often result in strongly correlated motion between humans and the interacting objects. We thus ask: "Is it possible to infer object properties from skeletal motion alone, even without seeing the interacting object itself?" In this paper, we present a fine-grained action recognition method that learns to infer such latent object properties from human interaction motion alone. This inference allows us to disentangle the motion from the object property and transfer object properties to a given motion. We collected a large number of videos and 3D skeletal motions of the performing actors using an inertial motion capture device. We analyze similar actions and learn subtle differences among them to reveal latent properties of the interacting objects. In particular, we learn to identify the interacting object, by estimating its weight, or its fragility or delicacy. Our results clearly demonstrate that the interaction motions and interacting objects are highly correlated and indeed relative object latent properties can be inferred from the 3D skeleton sequences alone, leading to new synthesis possibilities for human interaction motions. Dataset will be available at this http URL.

13.Generating Adjacency Matrix for Video-Query based Video Moment Retrieval ⬇️

In this paper, we continue our work on Video-Query based Video Moment retrieval task. Based on using graph convolution to extract intra-video and inter-video frame features, we improve the method by using similarity-metric based graph convolution, whose weighted adjacency matrix is achieved by calculating similarity metric between features of any two different timesteps in the graph. Experiments on ActivityNet v1.2 and Thumos14 dataset shows the effectiveness of this improvement, and it outperforms the state-of-the-art methods.

14.Improving Text to Image Generation using Mode-seeking Function ⬇️

Generative Adversarial Networks (GANs) have long been used to understand the semantic relationship between the text and image. However, there are problems with mode collapsing in the image generation that causes some preferred output modes. Our aim is to improve the training of the network by using a specialized mode-seeking loss function to avoid this issue. In the text to image synthesis, our loss function differentiates two points in latent space for the generation of distinct images. We validate our model on the Caltech Birds (CUB) dataset and the Microsoft COCO dataset by changing the intensity of the loss function during the training. Experimental results demonstrate that our model works very well compared to some state-of-the-art approaches.

15.ISSAFE: Improving Semantic Segmentation in Accidents by Fusing Event-based Data ⬇️

To bring autonomous vehicles closer to real-world applications, a major task is to ensure the safety of all traffic participants. In addition to the high accuracy under controlled conditions, the assistance system is still supposed to obtain robust perception against extreme situations, especially in accident scenarios, which involve object collisions, deformations, overturns, etc. However, models trained on common datasets may suffer from a large performance degradation when applied in these challenging scenes. To tackle this issue, we present a rarely addressed task regarding semantic segmentation in accident scenarios, along with an associated large-scale dataset DADA-seg. Our dataset contains 313 sequences with 40 frames each, of which the time windows are located before and during a traffic accident. For benchmarking the segmentation performance, every 11th frame is manually annotated with reference to Cityscapes. Furthermore, we propose a novel event-based multi-modal segmentation architecture ISSAFE. Our experiments indicate that event-based data can provide complementary information to stabilize semantic segmentation under adverse conditions by preserving fine-grain motion of fast-moving foreground (crash objects) in accidents. Compared with state-of-the-art models, our approach achieves 30.0% mIoU with 9.9% performance gain on the proposed evaluation set.

16.Investigating the Effect of Intraclass Variability in Temporal Ensembling ⬇️

Temporal Ensembling is a semi-supervised approach that allows training deep neural network models with a small number of labeled images. In this paper, we present our preliminary study on the effect of intraclass variability on temporal ensembling, with a focus on seed size and seed type, respectively. Through our experiments we find that (a) there is a significant drop in accuracy with datasets that offer high intraclass variability, (b) more seed images offer consistently higher accuracy across the datasets, and (c) seed type indeed has an impact on the overall efficiency, where it produces a spectrum of accuracy lower and higher. Besides, based on all of our experiments, we also find that KMNIST is a strong baseline for temporal ensembling.

17.Cross-Modality Multi-Atlas Segmentation Using Deep Neural Networks ⬇️

Both image registration and label fusion in the multi-atlas segmentation (MAS) rely on the intensity similarity between target and atlas images. However, such similarity can be problematic when target and atlas images are acquired using different imaging protocols. High-level structure information can provide reliable similarity measurement for cross-modality images when cooperating with deep neural networks (DNNs). This work presents a new MAS framework for cross-modality images, where both image registration and label fusion are achieved by DNNs. For image registration, we propose a consistent registration network, which can jointly estimate forward and backward dense displacement fields (DDFs). Additionally, an invertible constraint is employed in the network to reduce the correspondence ambiguity of the estimated DDFs. For label fusion, we adapt a few-shot learning network to measure the similarity of atlas and target patches. Moreover, the network can be seamlessly integrated into the patch-based label fusion. The proposed framework is evaluated on the MM-WHS dataset of MICCAI 2017. Results show that the framework is effective in both cross-modality registration and segmentation.

18.Localizing Anomalies from Weakly-Labeled Videos ⬇️

Video anomaly detection under video-level labels is currently a challenging task. Previous works have made progresses on discriminating whether a video sequencecontains anomalies. However, most of them fail to accurately localize the anomalous events within videos in the temporal domain. In this paper, we propose a Weakly Supervised Anomaly Localization (WSAL) method focusing on temporally localizing anomalous segments within anomalous videos. Inspired by the appearance difference in anomalous videos, the evolution of adjacent temporal segments is evaluated for the localization of anomalous segments. To this end, a high-order context encoding model is proposed to not only extract semantic representations but also measure the dynamic variations so that the temporal context could be effectively utilized. In addition, in order to fully utilize the spatial context information, the immediate semantics are directly derived from the segment representations. The dynamic variations as well as the immediate semantics, are efficiently aggregated to obtain the final anomaly scores. An enhancement strategy is further proposed to deal with noise interference and the absence of localization guidance in anomaly detection. Moreover, to facilitate the diversity requirement for anomaly detection benchmarks, we also collect a new traffic anomaly (TAD) dataset which specifies in the traffic conditions, differing greatly from the current popular anomaly detection evaluation benchmarks.Extensive experiments are conducted to verify the effectiveness of different components, and our proposed method achieves new state-of-the-art performance on the UCF-Crime and TAD datasets.

19.Co-Saliency Detection with Co-Attention Fully Convolutional Network ⬇️

Co-saliency detection aims to detect common salient objects from a group of relevant images. Some attempts have been made with the Fully Convolutional Network (FCN) framework and achieve satisfactory detection results. However, due to stacking convolution layers and pooling operation, the boundary details tend to be lost. In addition, existing models often utilize the extracted features without discrimination, leading to redundancy in representation since actually not all features are helpful to the final prediction and some even bring distraction. In this paper, we propose a co-attention module embedded FCN framework, called as Co-Attention FCN (CA-FCN). Specifically, the co-attention module is plugged into the high-level convolution layers of FCN, which can assign larger attention weights on the common salient objects and smaller ones on the background and uncommon distractors to boost final detection performance. Extensive experiments on three popular co-saliency benchmark datasets demonstrate the superiority of the proposed CA-FCN, which outperforms state-of-the-arts in most cases. Besides, the effectiveness of our new co-attention module is also validated with ablation studies.

20.Document Visual Question Answering Challenge 2020 ⬇️

This paper presents results of Document Visual Question Answering Challenge organized as part of "Text and Documents in the Deep Learning Era" workshop, in CVPR 2020. The challenge introduces a new problem - Visual Question Answering on document images. The challenge comprised two tasks. The first task concerns with asking questions on a single document image. On the other hand, the second task is set as a retrieval task where the question is posed over a collection of images. For the task 1 a new dataset is introduced comprising 50,000 questions-answer(s) pairs defined over 12,767 document images. For task 2 another dataset has been created comprising 20 questions over 14,362 document images which share the same document template.

21.Line detection via a lightweight CNN with a Hough Layer ⬇️

Line detection is an important computer vision task traditionally solved by Hough Transform. With the advance of deep learning, however, trainable approaches to line detection became popular. In this paper we propose a lightweight CNN for line detection with an embedded parameter-free Hough layer, which allows the network neurons to have global strip-like receptive fields. We argue that traditional convolutional networks have two inherent problems when applied to the task of line detection and show how insertion of a Hough layer into the network solves them. Additionally, we point out some major inconsistencies in the current datasets used for line detection.

22.PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time ⬇️

Marker-less 3D human motion capture from a single colour camera has seen significant progress. However, it is a very challenging and severely ill-posed problem. In consequence, even the most accurate state-of-the-art approaches have significant limitations. Purely kinematic formulations on the basis of individual joints or skeletons, and the frequent frame-wise reconstruction in state-of-the-art methods greatly limit 3D accuracy and temporal stability compared to multi-view or marker-based motion capture. Further, captured 3D poses are often physically incorrect and biomechanically implausible, or exhibit implausible environment interactions (floor penetration, foot skating, unnatural body leaning and strong shifting in depth), which is problematic for any use case in computer graphics. We, therefore, present PhysCap, the first algorithm for physically plausible, real-time and marker-less human 3D motion capture with a single colour camera at 25 fps. Our algorithm first captures 3D human poses purely kinematically. To this end, a CNN infers 2D and 3D joint positions, and subsequently, an inverse kinematics step finds space-time coherent joint angles and global 3D pose. Next, these kinematic reconstructions are used as constraints in a real-time physics-based pose optimiser that accounts for environment constraints (e.g., collision handling and floor placement), gravity, and biophysical plausibility of human postures. Our approach employs a combination of ground reaction force and residual force for plausible root control, and uses a trained neural network to detect foot contact events in images. Our method captures physically plausible and temporally stable global 3D human motion, without physically implausible postures, floor penetrations or foot skating, from video in real time and in general scenes. The video is available at this http URL

23.Unsupervised Learning Facial Parameter Regressor for Action Unit Intensity Estimation via Differentiable Renderer ⬇️

Facial action unit (AU) intensity is an index to describe all visually discernible facial movements. Most existing methods learn intensity estimator with limited AU data, while they lack generalization ability out of the dataset. In this paper, we present a framework to predict the facial parameters (including identity parameters and AU parameters) based on a bone-driven face model (BDFM) under different views. The proposed framework consists of a feature extractor, a generator, and a facial parameter regressor. The regressor can fit the physical meaning parameters of the BDFM from a single face image with the help of the generator, which maps the facial parameters to the game-face images as a differentiable renderer. Besides, identity loss, loopback loss, and adversarial loss can improve the regressive results. Quantitative evaluations are performed on two public databases BP4D and DISFA, which demonstrates that the proposed method can achieve comparable or better performance than the state-of-the-art methods. What's more, the qualitative results also demonstrate the validity of our method in the wild.

24.Yet Another Intermediate-Level Attack ⬇️

The transferability of adversarial examples across deep neural network (DNN) models is the crux of a spectrum of black-box attacks. In this paper, we propose a novel method to enhance the black-box transferability of baseline adversarial examples. By establishing a linear mapping of the intermediate-level discrepancies (between a set of adversarial inputs and their benign counterparts) for predicting the evoked adversarial loss, we aim to take full advantage of the optimization procedure of multi-step baseline attacks. We conducted extensive experiments to verify the effectiveness of our method on CIFAR-100 and ImageNet. Experimental results demonstrate that it outperforms previous state-of-the-arts considerably. Our code is at this https URL.

25.Simultaneous Detection and Tracking with Motion Modelling for Multiple Object Tracking ⬇️

Deep learning-based Multiple Object Tracking (MOT) currently relies on off-the-shelf detectors for tracking-by-detection.This results in deep models that are detector biased and evaluations that are detector influenced. To resolve this issue, we introduce Deep Motion Modeling Network (DMM-Net) that can estimate multiple objects' motion parameters to perform joint detection and association in an end-to-end manner. DMM-Net models object features over multiple frames and simultaneously infers object classes, visibility, and their motion parameters. These outputs are readily used to update the tracklets for efficient MOT. DMM-Net achieves PR-MOTA score of 12.80 @ 120+ fps for the popular UA-DETRAC challenge, which is better performance and orders of magnitude faster. We also contribute a synthetic large-scale public dataset Omni-MOT for vehicle tracking that provides precise ground-truth annotations to eliminate the detector influence in MOT evaluation. This 14M+ frames dataset is extendable with our public script (Code at Dataset <this https URL>, Dataset Recorder <this https URL>, Omni-MOT Source <this https URL>). We demonstrate the suitability of Omni-MOT for deep learning with DMMNet and also make the source code of our network public.

26.DronePose: Photorealistic UAV-Assistant Dataset Synthesis for 3D Pose Estimation via a Smooth Silhouette Loss ⬇️

In this work we consider UAVs as cooperative agents supporting human users in their operations. In this context, the 3D localisation of the UAV assistant is an important task that can facilitate the exchange of spatial information between the user and the UAV. To address this in a data-driven manner, we design a data synthesis pipeline to create a realistic multimodal dataset that includes both the exocentric user view, and the egocentric UAV view. We then exploit the joint availability of photorealistic and synthesized inputs to train a single-shot monocular pose estimation model. During training we leverage differentiable rendering to supplement a state-of-the-art direct regression objective with a novel smooth silhouette loss. Our results demonstrate its qualitative and quantitative performance gains over traditional silhouette objectives. Our data and code are available at this https URL

27.Grasping Detection Network with Uncertainty Estimation for Confidence-Driven Semi-Supervised Domain Adaptation ⬇️

Data-efficient domain adaptation with only a few labelled data is desired for many robotic applications, e.g., in grasping detection, the inference skill learned from a grasping dataset is not universal enough to directly apply on various other daily/industrial applications. This paper presents an approach enabling the easy domain adaptation through a novel grasping detection network with confidence-driven semi-supervised learning, where these two components deeply interact with each other. The proposed grasping detection network specially provides a prediction uncertainty estimation mechanism by leveraging on Feature Pyramid Network (FPN), and the mean-teacher semi-supervised learning utilizes such uncertainty information to emphasizing the consistency loss only for those unlabelled data with high confidence, which we referred it as the confidence-driven mean teacher. This approach largely prevents the student model to learn the incorrect/harmful information from the consistency loss, which speeds up the learning progress and improves the model accuracy. Our results show that the proposed network can achieve high success rate on the Cornell grasping dataset, and for domain adaptation with very limited data, the confidence-driven mean teacher outperforms the original mean teacher and direct training by more than 10% in evaluation loss especially for avoiding the overfitting and model diverging.

28.Spatial--spectral FFPNet: Attention-Based Pyramid Network for Segmentation and Classification of Remote Sensing Images ⬇️

We consider the problem of segmentation and classification of high-resolution and hyperspectral remote sensing images. Unlike conventional natural (RGB) images, the inherent large scale and complex structures of remote sensing images pose major challenges such as spatial object distribution diversity and spectral information extraction when existing models are directly applied for image classification. In this study, we develop an attention-based pyramid network for segmentation and classification of remote sensing datasets. Attention mechanisms are used to develop the following modules: i) a novel and robust attention-based multi-scale fusion method effectively fuses useful spatial or spectral information at different and same scales; ii) a region pyramid attention mechanism using region-based attention addresses the target geometric size diversity in large-scale remote sensing images; and iii cross-scale attention} in our adaptive atrous spatial pyramid pooling network adapts to varied contents in a feature-embedded space. Different forms of feature fusion pyramid frameworks are established by combining these attention-based modules. First, a novel segmentation framework, called the heavy-weight spatial feature fusion pyramid network (FFPNet), is proposed to address the spatial problem of high-resolution remote sensing images. Second, an end-to-end spatial--spectral FFPNet is presented for classifying hyperspectral images. Experiments conducted on ISPRS Vaihingen and ISPRS Potsdam high-resolution datasets demonstrate the competitive segmentation accuracy achieved by the proposed heavy-weight spatial FFPNet. Furthermore, experiments on the Indian Pines and the University of Pavia hyperspectral datasets indicate that the proposed spatial--spectral FFPNet outperforms the current state-of-the-art methods in hyperspectral image classification.

29.Deformable PV-RCNN: Improving 3D Object Detection with Learned Deformations ⬇️

We present Deformable PV-RCNN, a high-performing point-cloud based 3D object detector. Currently, the proposal refinement methods used by the state-of-the-art two-stage detectors cannot adequately accommodate differing object scales, varying point-cloud density, part-deformation and clutter. We present a proposal refinement module inspired by 2D deformable convolution networks that can adaptively gather instance-specific features from locations where informative content exists. We also propose a simple context gating mechanism which allows the keypoints to select relevant context information for the refinement stage. We show state-of-the-art results on the KITTI dataset.

30.iCaps: An Interpretable Classifier via Disentangled Capsule Networks ⬇️

We propose an interpretable Capsule Network, iCaps, for image classification. A capsule is a group of neurons nested inside each layer, and the one in the last layer is called a class capsule, which is a vector whose norm indicates a predicted probability for the class. Using the class capsule, existing Capsule Networks already provide some level of interpretability. However, there are two limitations which degrade its interpretability: 1) the class capsule also includes classification-irrelevant information, and 2) entities represented by the class capsule overlap. In this work, we address these two limitations using a novel class-supervised disentanglement algorithm and an additional regularizer, respectively. Through quantitative and qualitative evaluations on three datasets, we demonstrate that the resulting classifier, iCaps, provides a prediction along with clear rationales behind it with no performance degradation.

31.Simultaneously-Collected Multimodal Lying Pose Dataset: Towards In-Bed Human Pose Monitoring under Adverse Vision Conditions ⬇️

Computer vision (CV) has achieved great success in interpreting semantic meanings from images, yet CV algorithms can be brittle for tasks with adverse vision conditions and the ones suffering from data/label pair limitation. One of this tasks is in-bed human pose estimation, which has significant values in many healthcare applications. In-bed pose monitoring in natural settings could involve complete darkness or full occlusion. Furthermore, the lack of publicly available in-bed pose datasets hinders the use of many successful pose estimation algorithms for this task. In this paper, we introduce our Simultaneously-collected multimodal Lying Pose (SLP) dataset, which includes in-bed pose images from 109 participants captured using multiple imaging modalities including RGB, long wave infrared, depth, and pressure map. We also present a physical hyper parameter tuning strategy for ground truth pose label generation under extreme conditions such as lights off and being fully covered by a sheet/blanket. SLP design is compatible with the mainstream human pose datasets, therefore, the state-of-the-art 2D pose estimation models can be trained effectively with SLP data with promising performance as high as 95% at PCKh@0.5 on a single modality. The pose estimation performance can be further improved by including additional modalities through collaboration.

32.Text-based Localization of Moments in a Video Corpus ⬇️

Prior works on text-based video moment localization focus on temporally grounding the textual query in an untrimmed video. These works assume that the relevant video is already known and attempt to localize the moment on that relevant video only. Different from such works, we relax this assumption and address the task of localizing moments in a corpus of videos for a given sentence query. This task poses a unique challenge as the system is required to perform: (i) retrieval of the relevant video where only a segment of the video corresponds with the queried sentence, and (ii) temporal localization of moment in the relevant video based on sentence query. Towards overcoming this challenge, we propose Hierarchical Moment Alignment Network (HMAN) which learns an effective joint embedding space for moments and sentences. In addition to learning subtle differences between intra-video moments, HMAN focuses on distinguishing inter-video global semantic concepts based on sentence queries. Qualitative and quantitative results on three benchmark text-based video moment retrieval datasets - Charades-STA, DiDeMo, and ActivityNet Captions - demonstrate that our method achieves promising performance on the proposed task of temporal localization of moments in a corpus of videos.

33.Hidden Footprints: Learning Contextual Walkability from 3D Human Trails ⬇️

Predicting where people can walk in a scene is important for many tasks, including autonomous driving systems and human behavior analysis. Yet learning a computational model for this purpose is challenging due to semantic ambiguity and a lack of labeled data: current datasets only tell you where people are, not where they could be. We tackle this problem by leveraging information from existing datasets, without additional labeling. We first augment the set of valid, labeled walkable regions by propagating person observations between images, utilizing 3D information to create what we call hidden footprints. However, this augmented data is still sparse. We devise a training strategy designed for such sparse labels, combining a class-balanced classification loss with a contextual adversarial loss. Using this strategy, we demonstrate a model that learns to predict a walkability map from a single image. We evaluate our model on the Waymo and Cityscapes datasets, demonstrating superior performance compared to baselines and state-of-the-art models.

34.Image Segmentation of Zona-Ablated Human Blastocysts ⬇️

Automating human preimplantation embryo grading offers the potential for higher success rates with in vitro fertilization (IVF) by providing new quantitative and objective measures of embryo quality. Current IVF procedures typically use only qualitative manual grading, which is limited in the identification of genetically abnormal embryos. The automatic quantitative assessment of blastocyst expansion can potentially improve sustained pregnancy rates and reduce health risks from abnormal pregnancies through a more accurate identification of genetic abnormality. The expansion rate of a blastocyst is an important morphological feature to determine the quality of a developing embryo. In this work, a deep learning based human blastocyst image segmentation method is presented, with the goal of facilitating the challenging task of segmenting irregularly shaped blastocysts. The type of blastocysts evaluated here has undergone laser ablation of the zona pellucida, which is required prior to trophectoderm biopsy. This complicates the manual measurements of the expanded blastocyst's size, which shows a correlation with genetic abnormalities. The experimental results on the test set demonstrate segmentation greatly improves the accuracy of expansion measurements, resulting in up to 99.4% accuracy, 98.1% precision, 98.8% recall, a 98.4% Dice Coefficient, and a 96.9% Jaccard Index.

35.RFNet: Riemannian Fusion Network for EEG-based Brain-Computer Interfaces ⬇️

This paper presents the novel Riemannian Fusion Network (RFNet), a deep neural architecture for learning spatial and temporal information from Electroencephalogram (EEG) for a number of different EEG-based Brain Computer Interface (BCI) tasks and applications. The spatial information relies on Spatial Covariance Matrices (SCM) of multi-channel EEG, whose space form a Riemannian Manifold due to the Symmetric and Positive Definite structure. We exploit a Riemannian approach to map spatial information onto feature vectors in Euclidean space. The temporal information characterized by features based on differential entropy and logarithm power spectrum density is extracted from different windows through time. Our network then learns the temporal information by employing a deep long short-term memory network with a soft attention mechanism. The output of the attention mechanism is used as the temporal feature vector. To effectively fuse spatial and temporal information, we use an effective fusion strategy, which learns attention weights applied to embedding-specific features for decision making. We evaluate our proposed framework on four public datasets from three popular fields of BCI, notably emotion recognition, vigilance estimation, and motor imagery classification, containing various types of tasks such as binary classification, multi-class classification, and regression. RFNet approaches the state-of-the-art on one dataset (SEED) and outperforms other methods on the other three datasets (SEED-VIG, BCI-IV 2A, and BCI-IV 2B), setting new state-of-the-art values and showing the robustness of our framework in EEG representation learning.

36.On Qualitative Shape Inferences: a journey from geometry to topology ⬇️

Shape inference is classically ill-posed, because it involves a map from the (2D) image domain to the (3D) world. Standard approaches regularize this problem by either assuming a prior on lighting and rendering or restricting the domain, and develop differential equations or optimization solutions. While elegant, the solutions that emerge in these situations are remarkably fragile. We exploit the observation that people infer shape qualitatively; that there are quantitative differences between individuals. The consequence is a topological approach based on critical contours and the Morse-Smale complex. This paper provides a developmental review of that theory, emphasizing the motivation at different stages of the research.

37.Direct Adversarial Training for GANs ⬇️

There is an interesting discovery that several neural networks are vulnerable to adversarial examples. That is, many machines learning models misclassify the samples with only a little change which will not be noticed by human eyes. Generative adversarial networks (GANs) are the most popular models for image generation by jointly optimizing discriminator and generator. With stability train, some regularization and normalization have been used to let the discriminator satisfy Lipschitz consistency. In this paper, we have analyzed that the generator may produce adversarial examples for discriminator during the training process, which may cause the unstable training of GANs. For this reason, we propose a direct adversarial training method for GANs. At the same time, we prove that this direct adversarial training can limit the lipschitz constant of the discriminator and accelerate the convergence of the generator. We have verified the advanced performs of the method on multiple baseline networks, such as DCGAN, WGAN, WGAN-GP, and WGAN-LP.

38.$β$-Variational Classifiers Under Attack ⬇️

Deep Neural networks have gained lots of attention in recent years thanks to the breakthroughs obtained in the field of Computer Vision. However, despite their popularity, it has been shown that they provide limited robustness in their predictions. In particular, it is possible to synthesise small adversarial perturbations that imperceptibly modify a correctly classified input data, making the network confidently misclassify it. This has led to a plethora of different methods to try to improve robustness or detect the presence of these perturbations. In this paper, we perform an analysis of $\beta$-Variational Classifiers, a particular class of methods that not only solve a specific classification task, but also provide a generative component that is able to generate new samples from the input distribution. More in details, we study their robustness and detection capabilities, together with some novel insights on the generative part of the model.

39.Regularization And Normalization For Generative Adversarial Networks: A Review ⬇️

Generative adversarial networks(GANs) is a popular generative model. With the development of the deep network, its application is more and more widely. By now, people think that the training of GANs is a two-person zero-sum game(discriminator and generator). The lack of strong supervision information makes the training very difficult, such as non-convergence, mode collapses, gradient disappearance, and the sensitivity of hyperparameters. As we all know, regularization and normalization are commonly used for stability training. This paper reviews and summarizes the research in the regularization and normalization for GAN. All the methods are classified into six groups: Gradient penalty, Norm normalization and regularization, Jacobian regularization, Layer normalization, Consistency regularization, and Self-supervision.

40.Does MAML really want feature reuse only? ⬇️

Meta-learning, the effort to solve new tasks with only a few samples, has attracted great attention in recent years. Model Agnostic Meta-Learning (MAML) is one of the most representative gradient-based meta-learning algorithms. MAML learns new tasks with a few data samples with inner updates from a meta-initialization point and learns the meta-initialization parameters with outer updates. Recently, it has been hypothesized that feature reuse, which makes little change in efficient representations, is the dominant factor in the performance of meta-initialized model through MAML rather than rapid learning, which makes a big change in representations. In this work, we propose a novel meta-learning algorithm, coined as BOIL (Body Only update in Inner Loop), that updates only the body (extractor) of the model and freezes the head (classifier) of the model during inner loop updates. The BOIL algorithm thus heavily relies on rapid learning. Note that BOIL is the opposite direction to the hypothesis that feature reuse is more efficient than rapid learning. We validate the BOIL algorithm on various data sets and show significant performance improvement over MAML. The results imply that rapid learning in gradient-based meta-learning approaches is necessary.

41.Deep learning-based transformation of the H&E stain into special stains improves kidney disease diagnosis ⬇️

Pathology is practiced by visual inspection of histochemically stained slides. Most commonly, the hematoxylin and eosin (H&E) stain is used in the diagnostic workflow and it is the gold standard for cancer diagnosis. However, in many cases, especially for non-neoplastic diseases, additional "special stains" are used to provide different levels of contrast and color to tissue components and allow pathologists to get a clearer diagnostic picture. In this study, we demonstrate the utility of supervised learning-based computational stain transformation from H&E to different special stains (Masson's Trichrome, periodic acid-Schiff and Jones silver stain) using tissue sections from kidney needle core biopsies. Based on evaluation by three renal pathologists, followed by adjudication by a fourth renal pathologist, we show that the generation of virtual special stains from existing H&E images improves the diagnosis in several non-neoplastic kidney diseases, sampled from 16 unique subjects. Adjudication of N=48 diagnoses from the three pathologists revealed that the virtually generated special stains yielded 22 improvements (45.8%), 23 concordances (47.9%) and 3 discordances (6.3%), when compared against the use of H&E stained tissue only. As the virtual transformation of H&E images into special stains can be achieved in less than 1 min per patient core specimen slide, this stain-to-stain transformation framework can improve the quality of the preliminary diagnosis when additional special stains are needed, along with significant savings in time and cost, reducing the burden on healthcare system and patients.

42.Uncertainty Estimation in Medical Image Denoising with Bayesian Deep Image Prior ⬇️

Uncertainty quantification in inverse medical imaging tasks with deep learning has received little attention. However, deep models trained on large data sets tend to hallucinate and create artifacts in the reconstructed output that are not anatomically present. We use a randomly initialized convolutional network as parameterization of the reconstructed image and perform gradient descent to match the observation, which is known as deep image prior. In this case, the reconstruction does not suffer from hallucinations as no prior training is performed. We extend this to a Bayesian approach with Monte Carlo dropout to quantify both aleatoric and epistemic uncertainty. The presented method is evaluated on the task of denoising different medical imaging modalities. The experimental results show that our approach yields well-calibrated uncertainty. That is, the predictive uncertainty correlates with the predictive error. This allows for reliable uncertainty estimates and can tackle the problem of hallucinations and artifacts in inverse medical imaging tasks.

43.Facial movement synergies and Action Unit detection from distal wearable Electromyography and Computer Vision ⬇️

Distal facial Electromyography (EMG) can be used to detect smiles and frowns with reasonable accuracy. It capitalizes on volume conduction to detect relevant muscle activity, even when the electrodes are not placed directly on the source muscle. The main advantage of this method is to prevent occlusion and obstruction of the facial expression production, whilst allowing EMG measurements. However, measuring EMG distally entails that the exact source of the facial movement is unknown. We propose a novel method to estimate specific Facial Action Units (AUs) from distal facial EMG and Computer Vision (CV). This method is based on Independent Component Analysis (ICA), Non-Negative Matrix Factorization (NNMF), and sorting of the resulting components to determine which is the most likely to correspond to each CV-labeled action unit (AU). Performance on the detection of AU06 (Orbicularis Oculi) and AU12 (Zygomaticus Major) was estimated by calculating the agreement with Human Coders. The results of our proposed algorithm showed an accuracy of 81% and a Cohen's Kappa of 0.49 for AU6; and accuracy of 82% and a Cohen's Kappa of 0.53 for AU12. This demonstrates the potential of distal EMG to detect individual facial movements. Using this multimodal method, several AU synergies were identified. We quantified the co-occurrence and timing of AU6 and AU12 in posed and spontaneous smiles using the human-coded labels, and for comparison, using the continuous CV-labels. The co-occurrence analysis was also performed on the EMG-based labels to uncover the relationship between muscle synergies and the kinematics of visible facial movement.

44.Single Image Super-Resolution via a Holistic Attention Network ⬇️

Informative features play a crucial role in the single image super-resolution task. Channel attention has been demonstrated to be effective for preserving information-rich features in each layer. However, channel attention treats each convolution layer as a separate process that misses the correlation among different layers. To address this problem, we propose a new holistic attention network (HAN), which consists of a layer attention module (LAM) and a channel-spatial attention module (CSAM), to model the holistic interdependencies among layers, channels, and positions. Specifically, the proposed LAM adaptively emphasizes hierarchical features by considering correlations among layers. Meanwhile, CSAM learns the confidence at all the positions of each channel to selectively capture more informative features. Extensive experiments demonstrate that the proposed HAN performs favorably against the state-of-the-art single image super-resolution approaches.

45.iPhantom: a framework for automated creation of individualized computational phantoms and its application to CT organ dosimetry ⬇️

Objective: This study aims to develop and validate a novel framework, iPhantom, for automated creation of patient-specific phantoms or digital-twins (DT) using patient medical images. The framework is applied to assess radiation dose to radiosensitive organs in CT imaging of individual patients. Method: From patient CT images, iPhantom segments selected anchor organs (e.g. liver, bones, pancreas) using a learning-based model developed for multi-organ CT segmentation. Organs challenging to segment (e.g. intestines) are incorporated from a matched phantom template, using a diffeomorphic registration model developed for multi-organ phantom-voxels. The resulting full-patient phantoms are used to assess organ doses during routine CT exams. Result: iPhantom was validated on both the XCAT (n=50) and an independent clinical (n=10) dataset with similar accuracy. iPhantom precisely predicted all organ locations with good accuracy of Dice Similarity Coefficients (DSC) >0.6 for anchor organs and DSC of 0.3-0.9 for all other organs. iPhantom showed less than 10% dose errors for the majority of organs, which was notably superior to the state-of-the-art baseline method (20-35% dose errors). Conclusion: iPhantom enables automated and accurate creation of patient-specific phantoms and, for the first time, provides sufficient and automated patient-specific dose estimates for CT dosimetry. Significance: The new framework brings the creation and application of CHPs to the level of individual CHPs through automation, achieving a wider and precise organ localization, paving the way for clinical monitoring, and personalized optimization, and large-scale research.

46.Self-Supervised Ultrasound to MRI Fetal Brain Image Synthesis ⬇️

Fetal brain magnetic resonance imaging (MRI) offers exquisite images of the developing brain but is not suitable for second-trimester anomaly screening, for which ultrasound (US) is employed. Although expert sonographers are adept at reading US images, MR images which closely resemble anatomical images are much easier for non-experts to interpret. Thus in this paper we propose to generate MR-like images directly from clinical US images. In medical image analysis such a capability is potentially useful as well, for instance for automatic US-MRI registration and fusion. The proposed model is end-to-end trainable and self-supervised without any external annotations. Specifically, based on an assumption that the US and MRI data share a similar anatomical latent space, we first utilise a network to extract the shared latent features, which are then used for MRI synthesis. Since paired data is unavailable for our study (and rare in practice), pixel-level constraints are infeasible to apply. We instead propose to enforce the distributions to be statistically indistinguishable, by adversarial learning in both the image domain and feature space. To regularise the anatomical structures between US and MRI during synthesis, we further propose an adversarial structural constraint. A new cross-modal attention technique is proposed to utilise non-local spatial information, by encouraging multi-modal knowledge fusion and propagation. We extend the approach to consider the case where 3D auxiliary information (e.g., 3D neighbours and a 3D location index) from volumetric data is also available, and show that this improves image synthesis. The proposed approach is evaluated quantitatively and qualitatively with comparison to real fetal MR images and other approaches to synthesis, demonstrating its feasibility of synthesising realistic MR images.

47.Inner Cell Mass and Trophectoderm Segmentation in Human Blastocyst Images using Deep Neural Network ⬇️

Embryo quality assessment based on morphological attributes is important for achieving higher pregnancy rates from in vitro fertilization (IVF). The accurate segmentation of the embryo's inner cell mass (ICM) and trophectoderm epithelium (TE) is important, as these parameters can help to predict the embryo viability and live birth potential. However, segmentation of the ICM and TE is difficult due to variations in their shape and similarities in their textures, both with each other and with their surroundings. To tackle this problem, a deep neural network (DNN) based segmentation approach was implemented. The DNN can identify the ICM region with 99.1% accuracy, 94.9% precision, 93.8% recall, a 94.3% Dice Coefficient, and a 89.3% Jaccard Index. It can extract the TE region with 98.3% accuracy, 91.8% precision, 93.2% recall, a 92.5% Dice Coefficient, and a 85.3% Jaccard Index.