Skip to content

Latest commit

 

History

History
69 lines (69 loc) · 42.4 KB

20200604.md

File metadata and controls

69 lines (69 loc) · 42.4 KB

ArXiv cs.CV --Thu, 4 Jun 2020

1.DGSAC: Density Guided Sampling and Consensus ⬇️

Robust multiple model fitting plays a crucial role in many computer vision applications. Unlike single model fitting problems, the multi-model fitting has additional challenges. The unknown number of models and the inlier noise scale are the two most important of them, which are in general provided by the user using ground-truth or some other auxiliary information. Mode seeking/ clustering-based approaches crucially depend on the quality of model hypotheses generated. While preference analysis based guided sampling approaches have shown remarkable performance, they operate in a time budget framework, and the user provides the time as a reasonable guess. In this paper, we deviate from the mode seeking and time budget framework. We propose a concept called Kernel Residual Density (KRD) and apply it to various components of a multiple-model fitting pipeline. The Kernel Residual Density act as a key differentiator between inliers and outliers. We use KRD to guide and automatically stop the sampling process. The sampling process stops after generating a set of hypotheses that can explain all the data points. An explanation score is maintained for each data point, which is updated on-the-fly. We propose two model selection algorithms, an optimal quadratic program based, and a greedy. Unlike mode seeking approaches, our model selection algorithms seek to find one representative hypothesis for each genuine structure present in the data. We evaluate our method (dubbed as DGSAC) on a wide variety of tasks like planar segmentation, motion segmentation, vanishing point estimation, plane fitting to 3D point cloud, line, and circle fitting, which shows the effectiveness of our method and its unified nature.

2.Self-supervised Training of Graph Convolutional Networks ⬇️

Graph Convolutional Networks (GCNs) have been successfully applied to analyze non-grid data, where the classical convolutional neural networks (CNNs) cannot be directly used. One similarity shared by GCNs and CNNs is the requirement of massive amount of labeled data for network training. In addition, GCNs need the adjacency matrix as input to define the relationship between those non-grid data, which leads to all of data including training, validation and test data typically forms only one graph structures data for training. Furthermore, the adjacency matrix is usually pre-defined and stationary, which makes the data augmentation strategies cannot be employed on the constructed graph structures data to augment the amount of training data. To further improve the learning capacity and model performance under the limited training data, in this paper, we propose two types of self-supervised learning strategies to exploit available information from the input graph structure data itself. Our proposed self-supervised learning strategies are examined on two representative GCN models with three public citation network datasets - Citeseer, Cora and Pubmed. The experimental results demonstrate the generalization ability as well as the portability of our proposed strategies, which can significantly improve the performance of GCNs with the power of self-supervised learning in improving feature learning.

3.CNN Denoisers As Non-Local Filters: The Neural Tangent Denoiser ⬇️

Convolutional Neural Networks (CNNs) are now a well-established tool for solving computational imaging problems. Modern CNN-based algorithms obtain state-of-the-art performance in diverse image restoration problems. Furthermore, it has been recently shown that, despite being highly overparametrized, networks trained with a single corrupted image can still perform as well as fully trained networks, a phenomenon encapsulated in the deep image prior. We introduce a novel interpretation of denoising networks with no clean training data in the context of the neural tangent kernel (NTK), elucidating the strong links with well-known non-local filtering techniques, such as non-local means or BM3D. The filtering function associated with a given network architecture can be obtained in closed form without need to train the network, being fully characterized by the random initialization of the network weights. While the NTK theory accurately predicts the filter associated with networks trained using standard gradient descent, our analysis shows that it falls short to explain the behaviour of networks trained using the popular Adam optimizer. The latter achieves a larger change of weights in hidden layers, adapting the non-local filtering function during training. We evaluate our findings via extensive image denoising experiments.

4.Flexible Bayesian Modelling for Nonlinear Image Registration ⬇️

We describe a diffeomorphic registration algorithm that allows groups of images to be accurately aligned to a common space, which we intend to incorporate into the SPM software. The idea is to perform inference in a probabilistic graphical model that accounts for variability in both shape and appearance. The resulting framework is general and entirely unsupervised. The model is evaluated at inter-subject registration of 3D human brain scans. Here, the main modeling assumption is that individual anatomies can be generated by deforming a latent 'average' brain. The method is agnostic to imaging modality and can be applied with no prior processing. We evaluate the algorithm using freely available, manually labelled datasets. In this validation we achieve state-of-the-art results, within reasonable runtimes, against previous state-of-the-art widely used, inter-subject registration algorithms. On the unprocessed dataset, the increase in overlap score is over 17%. These results demonstrate the benefits of using informative computational anatomy frameworks for nonlinear registration.

5.DetectoRS: Detecting Objects with Recursive Feature Pyramid and Switchable Atrous Convolution ⬇️

Many modern object detectors demonstrate outstanding performances by using the mechanism of looking and thinking twice. In this paper, we explore this mechanism in the backbone design for object detection. At the macro level, we propose Recursive Feature Pyramid, which incorporates extra feedback connections from Feature Pyramid Networks into the bottom-up backbone layers. At the micro level, we propose Switchable Atrous Convolution, which convolves the features with different atrous rates and gathers the results using switch functions. Combining them results in DetectoRS, which significantly improves the performances of object detection. On COCO test-dev, DetectoRS achieves state-of-the-art 54.7% box AP for object detection, 47.1% mask AP for instance segmentation, and 49.6% PQ for panoptic segmentation. The code is made publicly available.

6.Scene relighting with illumination estimation in the latent space on an encoder-decoder scheme ⬇️

The image relighting task of transferring illumination conditions between two images offers an interesting and difficult challenge with potential applications in photography, cinematography and computer graphics. In this report we present methods that we tried to achieve that goal. Our models are trained on a rendered dataset of artificial locations with varied scene content, light source location and color temperature. With this dataset, we used a network with illumination estimation component aiming to infer and replace light conditions in the latent space representation of the concerned scenes.

7.Efficient refinements on YOLOv3 for real-time detection and assessment of diabetic foot Wagner grades ⬇️

Currently, the screening of Wagner grades of diabetic feet (DF) still relies on professional podiatrists. However, in less-developed countries, podiatrists are scarce, which led to the majority of undiagnosed patients. In this study, we proposed the real-time detection and location method for Wagner grades of DF based on refinements on YOLOv3. We collected 2,688 data samples and implemented several methods, such as a visual coherent image mixup, label smoothing, and training scheduler revamping, based on the ablation study. The experimental results suggested that the refinements on YOLOv3 achieved an accuracy of 91.95% and the inference speed of a single picture reaches 31ms with the NVIDIA Tesla V100. To test the performance of the model on a smartphone, we deployed the refinements on YOLOv3 models on an Android 9 system smartphone. This work has the potential to lead to a paradigm shift for clinical treatment of the DF in the future, to provide an effective healthcare solution for DF tissue analysis and healing status.

8.Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion ⬇️

Classifying multi-temporal scene land-use categories and detecting their semantic scene-level changes for imagery covering urban regions could straightly reflect the land-use transitions. Existing methods for scene change detection rarely focus on the temporal correlation of bi-temporal features, and are mainly evaluated on small scale scene change detection datasets. In this work, we proposed a CorrFusion module that fuses the highly correlated components in bi-temporal feature embeddings. We firstly extracts the deep representations of the bi-temporal inputs with deep convolutional networks. Then the extracted features will be projected into a lower dimension space to computed the instance-level correlation. The cross-temporal fusion will be performed based on the computed correlation in CorrFusion module. The final scene classification are obtained with softmax activation layers. In the objective function, we introduced a new formulation for calculating the temporal correlation. The detailed derivation of backpropagation gradients for the proposed module is also given in this paper. Besides, we presented a much larger scale scene change detection dataset and conducted experiments on this dataset. The experimental results demonstrated that our proposed CorrFusion module could remarkably improve the multi-temporal scene classification and scene change detection results.

9.Interpolation-based semi-supervised learning for object detection ⬇️

Despite the data labeling cost for the object detection tasks being substantially more than that of the classification tasks, semi-supervised learning methods for object detection have not been studied much. In this paper, we propose an Interpolation-based Semi-supervised learning method for object Detection (ISD), which considers and solves the problems caused by applying conventional Interpolation Regularization (IR) directly to object detection. We divide the output of the model into two types according to the objectness scores of both original patches that are mixed in IR. Then, we apply semi-supervised learning methods suitable for each type. This method dramatically improves the performance of semi-supervised learning as well as supervised learning. In the semi-supervised learning setting, our algorithm improves the current state-of-the-art performance on benchmark dataset (PASCAL VOC07 as labeled data and PASCAL VOC12 as unlabeled data) and benchmark architectures (SSD300 and SSD512). In the supervised learning setting, our method, trained with VOC07 as labeled data, improves the baseline methods by a significant margin, as well as shows better performance than the model that is trained using the previous state-of-the-art semi-supervised learning method using VOC07 as the labeled data and VOC12 + MSCOCO as the unlabeled data. Code is available at: this https URL .

10.From Real to Synthetic and Back: Synthesizing Training Data for Multi-Person Scene Understanding ⬇️

We present a method for synthesizing naturally looking images of multiple people interacting in a specific scenario. These images benefit from the advantages of synthetic data: being fully controllable and fully annotated with any type of standard or custom-defined ground truth. To reduce the synthetic-to-real domain gap, we introduce a pipeline consisting of the following steps: 1) we render scenes in a context modeled after the real world, 2) we train a human parsing model on the synthetic images, 3) we use the model to estimate segmentation maps for real images, 4) we train a conditional generative adversarial network (cGAN) to learn the inverse mapping -- from a segmentation map to a real image, and 5) given new synthetic segmentation maps, we use the cGAN to generate realistic images. An illustration of our pipeline is presented in Figure 2. We use the generated data to train a multi-task model on the challenging tasks of UV mapping and dense depth estimation. We demonstrate the value of the data generation and the trained model, both quantitatively and qualitatively on the CMU Panoptic Dataset.

11.GFPNet: A Deep Network for Learning Shape Completion in Generic Fitted Primitives ⬇️

In this paper, we propose an object reconstruction apparatus that uses the so-called Generic Primitives (GP) to complete shapes. A GP is a 3D point cloud depicting a generalized shape of a class of objects. To reconstruct the objects in a scene we first fit a GP onto each occluded object to obtain an initial raw structure. Secondly, we use a model-based deformation technique to fold the surface of the GP over the occluded object. The deformation model is encoded within the layers of a Deep Neural Network (DNN), coined GFPNet. The objective of the network is to transfer the particularities of the object from the scene to the raw volume represented by the GP. We show that GFPNet competes with state of the art shape completion methods by providing performance results on the ModelNet and KITTI benchmarking datasets.

12.PLG-IN: Pluggable Geometric Consistency Loss with Wasserstein Distance in Monocular Depth Estimation ⬇️

We propose a novel objective to penalize geometric inconsistencies, to improve the performance of depth estimation from monocular camera images. Our objective is designed with the Wasserstein distance between two point clouds estimated from images with different camera poses. The Wasserstein distance can impose a soft and symmetric coupling between two point clouds, which suitably keeps geometric constraints and leads differentiable objective. By adding our objective to the original ones of other state-of-the-art methods, we can effectively penalize a geometric inconsistency and obtain a highly accurate depth estimation. Our proposed method is evaluated on the Eigen split of the KITTI raw dataset.

13.Reference Guided Face Component Editing ⬇️

Face portrait editing has achieved great progress in recent years. However, previous methods either 1) operate on pre-defined face attributes, lacking the flexibility of controlling shapes of high-level semantic facial components (e.g., eyes, nose, mouth), or 2) take manually edited mask or sketch as an intermediate representation for observable changes, but such additional input usually requires extra efforts to obtain. To break the limitations (e.g. shape, mask or sketch) of the existing methods, we propose a novel framework termed r-FACE (Reference Guided FAce Component Editing) for diverse and controllable face component editing with geometric changes. Specifically, r-FACE takes an image inpainting model as the backbone, utilizing reference images as conditions for controlling the shape of face components. In order to encourage the framework to concentrate on the target face components, an example-guided attention module is designed to fuse attention features and the target face component features extracted from the reference image. Both qualitative and quantitative results demonstrate that our model is superior to existing literature.

14.FBNetV3: Joint Architecture-Recipe Search using Neural Acquisition Function ⬇️

Neural Architecture Search (NAS) yields state-of-the-art neural networks that outperform their best manually-designed counterparts. However, previous NAS methods search for architectures under one training recipe (i.e., training hyperparameters), ignoring the significance of training recipes and overlooking superior architectures under other training recipes. Thus, they fail to find higher-accuracy architecture-recipe combinations. To address this oversight, we present JointNAS to search both (a) architectures and (b) their corresponding training recipes. To accomplish this, we introduce a neural acquisition function that scores architectures and training recipes jointly. Following pre-training on a proxy dataset, this acquisition function guides both coarse-grained and fine-grained searches to produce FBNetV3. FBNetV3 is a family of state-of-the-art compact ImageNet models, outperforming both automatically and manually-designed architectures. For example, FBNetV3 matches both EfficientNet and ResNeSt accuracy with 1.4x and 5.0x fewer FLOPs, respectively. Furthermore, the JointNAS-searched training recipe yields significant performance gains across different networks and tasks.

15.Nested Scale Editing for Conditional Image Synthesis ⬇️

We propose an image synthesis approach that provides stratified navigation in the latent code space. With a tiny amount of partial or very low-resolution image, our approach can consistently out-perform state-of-the-art counterparts in terms of generating the closest sampled image to the ground truth. We achieve this through scale-independent editing while expanding scale-specific diversity. Scale-independence is achieved with a nested scale disentanglement loss. Scale-specific diversity is created by incorporating a progressive diversification constraint. We introduce semantic persistency across the scales by sharing common latent codes. Together they provide better control of the image synthesis process. We evaluate the effectiveness of our proposed approach through various tasks, including image outpainting, image superresolution, and cross-domain image translation.

16.MultiNet: Multiclass Multistage Multimodal Motion Prediction ⬇️

One of the critical pieces of the self-driving puzzle is understanding the surroundings of the self-driving vehicle (SDV) and predicting how these surroundings will change in the near future. To address this task we propose MultiNet, an end-to-end approach for detection and motion prediction based directly on lidar sensor data. This approach builds on prior work by handling multiple classes of traffic actors, adding a jointly trained second-stage trajectory refinement step, and producing a multimodal probability distribution over future actor motion that includes both multiple discrete traffic behaviors and calibrated continuous uncertainties. The method was evaluated on a large-scale, real-world data set collected by a fleet of SDVs in several cities, with the results indicating that it outperforms existing state-of-the-art approaches.

17.Grafted network for person re-identification ⬇️

Convolutional neural networks have shown outstanding effectiveness in person re-identification (re-ID). However, the models always have large number of parameters and much computation for mobile application. In order to relieve this problem, we propose a novel grafted network (GraftedNet), which is designed by grafting a high-accuracy rootstock and a light-weighted scion. The rootstock is based on the former parts of ResNet-50 to provide a strong baseline, while the scion is a new designed module, composed of the latter parts of SqueezeNet, to compress the parameters. To extract more discriminative feature representation, a joint multi-level and part-based feature is proposed. In addition, to train GraftedNet efficiently, we propose an accompanying learning method, by adding an accompanying branch to train the model in training and removing it in testing for saving parameters and computation. On three public person re-ID benchmarks (Market1501, DukeMTMC-reID and CUHK03), the effectiveness of GraftedNet are evaluated and its components are analyzed. Experimental results show that the proposed GraftedNet achieves 93.02%, 85.3% and 76.2% in Rank-1 and 81.6%, 74.7% and 71.6% in mAP, with only 4.6M parameters.

18.From two rolling shutters to one global shutter ⬇️

Most consumer cameras are equipped with electronic rolling shutter, leading to image distortions when the camera moves during image capture. We explore a surprisingly simple camera configuration that makes it possible to undo the rolling shutter distortion: two cameras mounted to have different rolling shutter directions. Such a setup is easy and cheap to build and it possesses the geometric constraints needed to correct rolling shutter distortion using only a sparse set of point correspondences between the two images. We derive equations that describe the underlying geometry for general and special motions and present an efficient method for finding their solutions. Our synthetic and real experiments demonstrate that our approach is able to remove large rolling shutter distortions of all types without relying on any specific scene structure.

19.Continual Learning of Predictive Models in Video Sequences via Variational Autoencoders ⬇️

This paper proposes a method for performing continual learning of predictive models that facilitate the inference of future frames in video sequences. For a first given experience, an initial Variational Autoencoder, together with a set of fully connected neural networks are utilized to respectively learn the appearance of video frames and their dynamics at the latent space level. By employing an adapted Markov Jump Particle Filter, the proposed method recognizes new situations and integrates them as predictive models avoiding catastrophic forgetting of previously learned tasks. For evaluating the proposed method, this article uses video sequences from a vehicle that performs different tasks in a controlled environment.

20.Ear2Face: Deep Biometric Modality Mapping ⬇️

In this paper, we explore the correlation between different visual biometric modalities. For this purpose, we present an end-to-end deep neural network model that learns a mapping between the biometric modalities. Namely, our goal is to generate a frontal face image of a subject given his/her ear image as the input. We formulated the problem as a paired image-to-image translation task and collected datasets of ear and face image pairs from the Multi-PIE and FERET datasets to train our GAN-based models. We employed feature reconstruction and style reconstruction losses in addition to adversarial and pixel losses. We evaluated the proposed method both in terms of reconstruction quality and in terms of person identification accuracy. To assess the generalization capability of the learned mapping models, we also run cross-dataset experiments. That is, we trained the model on the FERET dataset and tested it on the Multi-PIE dataset and vice versa. We have achieved very promising results, especially on the FERET dataset, generating visually appealing face images from ear image inputs. Moreover, we attained a very high cross-modality person identification performance, for example, reaching 90.9% Rank-10 identification accuracy on the FERET dataset.

21.Learning Multi-Modal Nonlinear Embeddings: Performance Bounds and an Algorithm ⬇️

While many approaches exist in the literature to learn representations for data collections in multiple modalities, the generalizability of the learnt representations to previously unseen data is a largely overlooked subject. In this work, we first present a theoretical analysis of learning multi-modal nonlinear embeddings in a supervised setting. Our performance bounds indicate that for successful generalization in multi-modal classification and retrieval problems, the regularity of the interpolation functions extending the embedding to the whole data space is as important as the between-class separation and cross-modal alignment criteria. We then propose a multi-modal nonlinear representation learning algorithm that is motivated by these theoretical findings, where the embeddings of the training samples are optimized jointly with the Lipschitz regularity of the interpolators. Experimental comparison to recent multi-modal and single-modal learning algorithms suggests that the proposed method yields promising performance in multi-modal image classification and cross-modal image-text retrieval applications.

22.Perceiving Unknown in Dark from Perspective of Cell Vibration ⬇️

Low light very likely leads to the degradation of image quality and even causes visual tasks' failure. Existing image enhancement technologies are prone to over-enhancement or color distortion, and their adaptability is fairly limited. In order to deal with these problems, we utilise the mechanism of biological cell vibration to interpret the formation of color images. In particular, we here propose a simple yet effective cell vibration energy (CVE) mapping method for image enhancement. Based on a hypothetical color-formation mechanism, our proposed method first uses cell vibration and photoreceptor correction to determine the photon flow energy for each color channel, and then reconstructs the color image with the maximum energy constraint of the visual system. Photoreceptor cells can adaptively adjust the feedback from the light intensity of the perceived environment. Based on this understanding, we here propose a new Gamma auto-adjustment method to modify Gamma values according to individual images. Finally, a fusion method, combining CVE and Gamma auto-adjustment (CVE-G), is proposed to reconstruct the color image under the constraint of lightness. Experimental results show that the proposed algorithm is superior to six state of the art methods in avoiding over-enhancement and color distortion, restoring the textures of dark areas and reproducing natural colors. The source code will be released at this https URL.

23.A Multi-modal Neural Embeddings Approach for Detecting Mobile Counterfeit Apps: A Case Study on Google Play Store ⬇️

Counterfeit apps impersonate existing popular apps in attempts to misguide users to install them for various reasons such as collecting personal information or spreading malware. Many counterfeits can be identified once installed, however even a tech-savvy user may struggle to detect them before installation. To this end, this paper proposes to leverage the recent advances in deep learning methods to create image and text embeddings so that counterfeit apps can be efficiently identified when they are submitted for publication. We show that a novel approach of combining content embeddings and style embeddings outperforms the baseline methods for image similarity such as SIFT, SURF, and various image hashing methods. We first evaluate the performance of the proposed method on two well-known datasets for evaluating image similarity methods and show that content, style, and combined embeddings increase precision@k and recall@k by 10%-15% and 12%-25%, respectively when retrieving five nearest neighbours. Second, specifically for the app counterfeit detection problem, combined content and style embeddings achieve 12% and 14% increase in precision@k and recall@k, respectively compared to the baseline methods. Third, we present an analysis of approximately 1.2 million apps from Google Play Store and identify a set of potential counterfeits for top-10,000 popular apps. Under a conservative assumption, we were able to find 2,040 potential counterfeits that contain malware in a set of 49,608 apps that showed high similarity to one of the top-10,000 popular apps in Google Play Store. We also find 1,565 potential counterfeits asking for at least five additional dangerous permissions than the original app and 1,407 potential counterfeits having at least five extra third party advertisement libraries.

24.Self-Supervised Localisation between Range Sensors and Overhead Imagery ⬇️

Publicly available satellite imagery can be an ubiquitous, cheap, and powerful tool for vehicle localisation when a prior sensor map is unavailable. However, satellite images are not directly comparable to data from ground range sensors because of their starkly different modalities. We present a learned metric localisation method that not only handles the modality difference, but is cheap to train, learning in a self-supervised fashion without metrically accurate ground truth. By evaluating across multiple real-world datasets, we demonstrate the robustness and versatility of our method for various sensor configurations. We pay particular attention to the use of millimetre wave radar, which, owing to its complex interaction with the scene and its immunity to weather and lighting, makes for a compelling and valuable use case.

25.Automatic Setting of DNN Hyper-Parameters by Mixing Bayesian Optimization and Tuning Rules ⬇️

Deep learning techniques play an increasingly important role in industrial and research environments due to their outstanding results. However, the large number of hyper-parameters to be set may lead to errors if they are set manually. The state-of-the-art hyper-parameters tuning methods are grid search, random search, and Bayesian Optimization. The first two methods are expensive because they try, respectively, all possible combinations and random combinations of hyper-parameters. Bayesian Optimization, instead, builds a surrogate model of the objective function, quantifies the uncertainty in the surrogate using Gaussian Process Regression and uses an acquisition function to decide where to sample the new set of hyper-parameters. This work faces the field of Hyper-Parameters Optimization (HPO). The aim is to improve Bayesian Optimization applied to Deep Neural Networks. For this goal, we build a new algorithm for evaluating and analyzing the results of the network on the training and validation sets and use a set of tuning rules to add new hyper-parameters and/or to reduce the hyper-parameter search space to select a better combination.

26.Image Classification in the Dark using Quanta Image Sensors ⬇️

State-of-the-art image classifiers are trained and tested using well-illuminated images. These images are typically captured by CMOS image sensors with at least tens of photons per pixel. However, in dark environments when the photon flux is low, image classification becomes difficult because the measured signal is suppressed by noise. In this paper, we present a new low-light image classification solution using Quanta Image Sensors (QIS). QIS are a new type of image sensors that possess photon counting ability without compromising on pixel size and spatial resolution. Numerous studies over the past decade have demonstrated the feasibility of QIS for low-light imaging, but their usage for image classification has not been studied. This paper fills the gap by presenting a student-teacher learning scheme which allows us to classify the noisy QIS raw data. We show that with student-teacher learning, we are able to achieve image classification at a photon level of one photon per pixel or lower. Experimental results verify the effectiveness of the proposed method compared to existing solutions.

27.Open-Set Recognition with Gaussian Mixture Variational Autoencoders ⬇️

In inference, open-set classification is to either classify a sample into a known class from training or reject it as an unknown class. Existing deep open-set classifiers train explicit closed-set classifiers, in some cases disjointly utilizing reconstruction, which we find dilutes the latent representation's ability to distinguish unknown classes. In contrast, we train our model to cooperatively learn reconstruction and perform class-based clustering in the latent space. With this, our Gaussian mixture variational autoencoder (GMVAE) achieves more accurate and robust open-set classification results, with an average F1 improvement of 29.5%, through extensive experiments aided by analytical results.

28.PILArNet: Public Dataset for Particle Imaging Liquid Argon Detectors in High Energy Physics ⬇️

Rapid advancement of machine learning solutions has often coincided with the production of a test public data set. Such datasets reduce the largest barrier to entry for tackling a problem -- procuring data -- while also providing a benchmark to compare different solutions. Furthermore, large datasets have been used to train high-performing feature finders which are then used in new approaches to problems beyond that initially defined. In order to encourage the rapid development in the analysis of data collected using liquid argon time projection chambers, a class of particle detectors used in high energy physics experiments, we have produced the PILArNet, first 2D and 3D open dataset to be used for a couple of key analysis tasks. The initial dataset presented in this paper contains 300,000 samples simulated and recorded in three different volume sizes. The dataset is stored efficiently in sparse 2D and 3D matrix format with auxiliary information about simulated particles in the volume, and is made available for public research use. In this paper we describe the dataset, tasks, and the method used to procure the sample.

29.Quantifying the Uncertainty in Model Parameters Using Gaussian Process-Based Markov Chain Monte Carlo: An Application to Cardiac Electrophysiological Models ⬇️

Estimation of patient-specific model parameters is important for personalized modeling, although sparse and noisy clinical data can introduce significant uncertainty in the estimated parameter values. This importance source of uncertainty, if left unquantified, will lead to unknown variability in model outputs that hinder their reliable adoptions. Probabilistic estimation model parameters, however, remains an unresolved challenge because standard Markov Chain Monte Carlo sampling requires repeated model simulations that are computationally infeasible. A common solution is to replace the simulation model with a computationally-efficient surrogate for a faster sampling. However, by sampling from an approximation of the exact posterior probability density function (pdf) of the parameters, the efficiency is gained at the expense of sampling accuracy. In this paper, we address this issue by integrating surrogate modeling into Metropolis Hasting (MH) sampling of the exact posterior pdfs to improve its acceptance rate. It is done by first quickly constructing a Gaussian process (GP) surrogate of the exact posterior pdfs using deterministic optimization. This efficient surrogate is then used to modify commonly-used proposal distributions in MH sampling such that only proposals accepted by the surrogate will be tested by the exact posterior pdf for acceptance/rejection, reducing unnecessary model simulations at unlikely candidates. Synthetic and real-data experiments using the presented method show a significant gain in computational efficiency without compromising the accuracy. In addition, insights into the non-identifiability and heterogeneity of tissue properties can be gained from the obtained posterior distributions.

30.NewtonianVAE: Proportional Control and Goal Identification from Pixels via Physical Latent Spaces ⬇️

Learning low-dimensional latent state space dynamics models has been a powerful paradigm for enabling vision-based planning and learning for control. We introduce a latent dynamics learning framework that is uniquely designed to induce proportional controlability in the latent space, thus enabling the use of much simpler controllers than prior work. We show that our learned dynamics model enables proportional control from pixels, dramatically simplifies and accelerates behavioural cloning of vision-based controllers, and provides interpretable goal discovery when applied to imitation learning of switching controllers from demonstration.

31.The Convolution Exponential and Generalized Sylvester Flows ⬇️

This paper introduces a new method to build linear flows, by taking the exponential of a linear transformation. This linear transformation does not need to be invertible itself, and the exponential has the following desirable properties: it is guaranteed to be invertible, its inverse is straightforward to compute and the log Jacobian determinant is equal to the trace of the linear transformation. An important insight is that the exponential can be computed implicitly, which allows the use of convolutional layers. Using this insight, we develop new invertible transformations named convolution exponentials and graph convolution exponentials, which retain the equivariance of their underlying transformations. In addition, we generalize Sylvester Flows and propose Convolutional Sylvester Flows which are based on the generalization and the convolution exponential as basis change. Empirically, we show that the convolution exponential outperforms other linear transformations in generative flows on CIFAR10 and the graph convolution exponential improves the performance of graph normalizing flows. In addition, we show that Convolutional Sylvester Flows improve performance over residual flows as a generative flow model measured in log-likelihood.

32.Automatic Differentiation for All Photons Imaging to See Inside Volumetric Scattering Media ⬇️

Imaging through dense scattering media - such as biological tissue, fog, and smoke - has applications in the medical and robotics fields. We propose a new framework using automatic differentiation for All Photons Imaging through homogeneous scattering media with unknown optical properties for non-invasive sensing and diagnostics. We overcome the need for the imaging target to be visible to the illumination source in All Photons Imaging, enabling practical and non-invasive imaging through turbid media with a simple optical setup. Our method does not require calibration to acquire the sensor position or optical properties of the media.

33.Learning to Branch for Multi-Task Learning ⬇️

Training multiple tasks jointly in one deep network yields reduced latency during inference and better performance over the single-task counterpart by sharing certain layers of a network. However, over-sharing a network could erroneously enforce over-generalization, causing negative knowledge transfer across tasks. Prior works rely on human intuition or pre-computed task relatedness scores for ad hoc branching structures. They provide sub-optimal end results and often require huge efforts for the trial-and-error process. In this work, we present an automated multi-task learning algorithm that learns where to share or branch within a network, designing an effective network topology that is directly optimized for multiple objectives across tasks. Specifically, we propose a novel tree-structured design space that casts a tree branching operation as a gumbel-softmax sampling procedure. This enables differentiable network splitting that is end-to-end trainable. We validate the proposed method on controlled synthetic data, CelebA, and Taskonomy.

34.Adversarial Item Promotion: Vulnerabilities at the Core of Top-N Recommenders that Use Images to Address Cold Start ⬇️

E-commerce platforms provide their customers with ranked lists of recommended items matching the customers' preferences. Merchants on e-commerce platforms would like their items to appear as high as possible in the top-N of these ranked lists. In this paper, we demonstrate how unscrupulous merchants can create item images that artificially promote their products, improving their rankings. Recommender systems that use images to address the cold start problem are vulnerable to this security risk. We describe a new type of attack, Adversarial Item Promotion (AIP), that strikes directly at the core of Top-N recommenders: the ranking mechanism itself. Existing work on adversarial images in recommender systems investigates the implications of conventional attacks, which target deep learning classifiers. In contrast, our AIP attacks are embedding attacks that seek to push features representations in a way that fools the ranker (not a classifier) and directly lead to item promotion. We introduce three AIP attacks insider attack, expert attack, and semantic attack, which are defined with respect to three successively more realistic attack models. Our experiments evaluate the danger of these attacks when mounted against three representative visually-aware recommender algorithms in a framework that uses images to address cold start. We also evaluate two common defenses against adversarial images in the classification scenario and show that these simple defenses do not eliminate the danger of AIP attacks. In sum, we show that using images to address cold start opens recommender systems to potential threats with clear practical implications. To facilitate future research, we release an implementation of our attacks and defenses, which allows reproduction and extension.