Skip to content

Latest commit

 

History

History
125 lines (125 loc) · 75.6 KB

20181130.md

File metadata and controls

125 lines (125 loc) · 75.6 KB

ArXiv cs.CV --Fri, 30 Nov 2018

1.Diverse Image Synthesis from Semantic Layouts via Conditional IMLE pdf

Most existing methods for conditional image synthesis are only able to generate a single plausible image for any given input, or at best a fixed number of plausible images. In this paper, we focus on the problem of generating images from semantic segmentation maps and present a simple new method that can generate an arbitrary number of images with diverse appearance for the same semantic layout. Unlike most existing approaches which adopt the GAN framework, our method is based on the recently introduced Implicit Maximum Likelihood Estimation framework. Compared to the leading approach, our method is able to generate more diverse images while producing fewer artifacts despite using the same architecture. The learned latent space also has sensible structure despite the lack of supervision that encourages such behaviour.

2.Image Translation to Mixed-Domain using Sym-Parameterized Generative Network pdf

Recent advances in image-to-image translation have led to some ways to generate multiple domain images through a single network. However, there is still a limit in creating an image of a target domain without a dataset on it. We propose a method to expand the concept of `multi-domain' from data to the loss area, and to combine the characteristics of each domain to create an image. First, we introduce a sym-parameter and its learning method that can mix various losses and can synchronize them with input conditions. Then, we propose Sym-parameterized Generative Network (SGN) using it. Through experiments, we confirmed that SGN could mix the characteristics of various data and loss, and it is possible to translate images to any mixed-domain without ground truths, such as 30% Van Gogh and 20% Monet.

3.Touchdown: Natural Language Navigation and Spatial Reasoning in Visual Street Environments pdf

We study the problem of jointly reasoning about language and vision through a navigation and spatial reasoning task. We introduce the Touchdown task and dataset, where an agent must first follow navigation instructions in a real-life visual urban environment to a goal position, and then identify in the observed image a location described in natural language to find a hidden object. The data contains 9,326 examples of English instructions and spatial descriptions paired with demonstrations. We perform qualitative linguistic analysis, and show that the data displays richer use of spatial reasoning compared to related resources. Empirical analysis shows the data presents an open challenge to existing methods.

4.InverseRenderNet: Learning single image inverse rendering pdf

We show how to train a fully convolutional neural network to perform inverse rendering from a single, uncontrolled image. The network takes an RGB image as input, regresses albedo and normal maps from which we compute lighting coefficients. Our network is trained using large uncontrolled image collections without ground truth. By incorporating a differentiable renderer, our network can learn from self-supervision. Since the problem is ill-posed we introduce additional supervision: 1. We learn a statistical natural illumination prior, 2. Our key insight is to perform offline multiview stereo (MVS) on images containing rich illumination variation. From the MVS pose and depth maps, we can cross project between overlapping views such that Siamese training can be used to ensure consistent estimation of photometric invariants. MVS depth also provides direct coarse supervision for normal map estimation. We believe this is the first attempt to use MVS supervision for learning inverse rendering.

5.Iterative Projection and Matching: Finding Structure-preserving Representatives and Its Application to Computer Vision pdf

The goal of data selection is to capture the most structural information from a set of data. This paper presents a fast and accurate data selection method, in which the selected samples are optimized to span the subspace of all data. We propose a new selection algorithm, referred to as iterative projection and matching (IPM), with linear complexity w.r.t. the number of data, and without any parameter to be tuned. In our algorithm, at each iteration, the maximum information from the structure of the data is captured by one selected sample, and the captured information is neglected in the next iterations by projection on the null-space of previously selected samples. The computational efficiency and the selection accuracy of our proposed algorithm outperform those of the conventional methods. Furthermore, the superiority of the proposed algorithm is shown on active learning for video action recognition dataset on UCF-101; learning using representatives on ImageNet; training a generative adversarial network (GAN) to generate multi-view images from a single-view input on CMU Multi-PIE dataset; and video summarization on UTE Egocentric dataset.

6.Incremental Scene Synthesis pdf

We present a method to incrementally generate complete 2D or 3D scenes with the following properties: (a) it is globally consistent at each step according to a learned scene prior, (b) real observations of an actual scene can be incorporated while observing global consistency, (c) unobserved parts of the scene can be hallucinated locally in consistence with previous observations, hallucinations and global priors, and (d) the hallucinations are statistical in nature, i.e., different consistent scenes can be generated from the same observations. To achieve this, we model the motion of an active agent through a virtual scene, where the agent at each step can either perceive a true (i.e. observed) part of the scene or generate a local hallucination. The latter can be interpreted as the expectation of the agent at this step through the scene and can already be useful, e.g., in autonomous navigation. In the limit of observing real data at each point, our method converges to solving the SLAM problem. In the limit of never observing real data, it samples entirely imagined scenes from the prior distribution. Besides autonomous agents, applications include problems where large data is required for training and testing robust real-world applications, but few data is available, necessitating data generation. We demonstrate efficacy on various 2D as well as preliminary 3D data.

7.Face Detection in the Operating Room: Comparison of State-of-the-art Methods and a Self-supervised Approach pdf

Purpose: Face detection is a needed component for the automatic analysis and assistance of human activities during surgical procedures. Efficient face detection algorithms can indeed help to detect and identify the persons present in the room, and also be used to automatically anonymize the data. However, current algorithms trained on natural images do not generalize well to the operating room (OR) images. In this work, we provide a comparison of state-of-the-art face detectors on OR data and also present an approach to train a face detector for the OR by exploiting non-annotated OR images. Methods: We propose a comparison of 6 state-of-the-art face detectors on clinical data using Multi-View Operating Room Faces (MVOR-Faces), a dataset of operating room images capturing real surgical activities. We then propose to use self-supervision, a domain adaptation method, for the task of face detection in the OR. The approach makes use of non-annotated images to fine-tune a state-of-the-art detector for the OR without using any human supervision. Results: The results show that the best model, namely the tiny face detector, yields an average precision of 0.536 at Intersection over Union (IoU) of 0.5. Our self-supervised model using non-annotated clinical data outperforms this result by 9.2%. Conclusion: We present the first comparison of state-of-the-art face detectors on operating room images and show that results can be significantly improved by using self-supervision on non-annotated data.

8.Discovering Spatio-Temporal Action Tubes pdf

In this paper, we address the challenging problem of spatial and temporal action detection in videos. We first develop an effective approach to localize frame-level action regions through integrating static and kinematic information by the early- and late-fusion detection scheme. With the intention of exploring important temporal connections among the detected action regions, we propose a tracking-by-point-matching algorithm to stitch the discrete action regions into a continuous spatio-temporal action tube. Recurrent 3D convolutional neural network is used to predict action categories and determine temporal boundaries of the generated tubes. We then introduce an action footprint map to refine the candidate tubes based on the action-specific spatial characteristics preserved in the convolutional layers of R3DCNN. In the extensive experiments, our method achieves superior detection results on the three public benchmark datasets: UCFSports, J-HMDB and UCF101.

9.ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness pdf

Convolutional Neural Networks (CNNs) are commonly thought to recognise objects by learning increasingly complex representations of object shapes. Some recent studies hint to a more important role of image textures. We here put these conflicting hypotheses to a quantitative test by evaluating CNNs and human observers on images with a texture-shape cue conflict. We show that ImageNet-trained CNNs are strongly biased towards recognising textures rather than shapes, which is in stark contrast to human behavioural evidence and reveals fundamentally different classification strategies. We then demonstrate that the same standard architecture (ResNet-50) that learns a texture-based representation on ImageNet is able to learn a shape-based representation instead when trained on "Stylized-ImageNet", a stylized version of ImageNet. This provides a much better fit for human behavioural performance in our well-controlled psychophysical lab setting (nine experiments totalling 48,560 psychophysical trials across 97 observers) and comes with a number of unexpected emergent benefits such as improved object detection performance and previously unseen robustness towards a wide range of image distortions, highlighting advantages of a shape-based representation.

10.ApolloCar3D: A Large 3D Car Instance Understanding Benchmark for Autonomous Driving pdf

Autonomous driving has attracted remarkable attention from both industry and academia. An important task is to estimate 3D properties(e.g.translation, rotation and shape) of a moving or parked vehicle on the road. This task, while critical, is still under-researched in the computer vision community - partially owing to the lack of large scale and fully-annotated 3D car database suitable for autonomous driving research. In this paper, we contribute the first large-scale database suitable for 3D car instance understanding - ApolloCar3D. The dataset contains 5,277 driving images and over 60K car instances, where each car is fitted with an industry-grade 3D CAD model with absolute model size and semantically labelled keypoints. This dataset is above 20 times larger than PASCAL3D+ and KITTI, the current state-of-the-art. To enable efficient labelling in 3D, we build a pipeline by considering 2D-3D keypoint correspondences for a single instance and 3D relationship among multiple instances. Equipped with such dataset, we build various baseline algorithms with the state-of-the-art deep convolutional neural networks. Specifically, we first segment each car with a pre-trained Mask R-CNN, and then regress towards its 3D pose and shape based on a deformable 3D car model with or without using semantic keypoints. We show that using keypoints significantly improves fitting performance. Finally, we develop a new 3D metric jointly considering 3D pose and 3D shape, allowing for comprehensive evaluation and ablation study. By comparing with human performance we suggest several future directions for further improvements.

11.Iterative Residual CNNs for Burst Photography Applications pdf

Modern inexpensive imaging sensors suffer from inherent hardware constraints which often result in captured images of poor quality. Among the most common ways to deal with such limitations is to rely on burst photography, which nowadays acts as the backbone of all modern smartphone imaging applications. In this work, we focus on the fact that every frame of a burst sequence can be accurately described by a forward (physical) model. This in turn allows us to restore a single image of higher quality from a sequence of low quality images as the solution of an optimization problem. Inspired by an extension of the gradient descent method that can handle non-smooth functions, namely the proximal gradient descent, and modern deep learning techniques, we propose a convolutional iterative network with a transparent architecture. Our network, uses a burst of low quality image frames and is able to produce an output of higher image quality recovering fine details which are not distinguishable in any of the original burst frames. We focus both on the burst photography pipeline as a whole, i.e. burst demosaicking and denoising, as well as on the traditional Gaussian denoising task. The developed method demonstrates consistent state-of-the art performance across the two tasks and as opposed to other recent deep learning approaches does not have any inherent restrictions either to the number of frames or their ordering.

12.Efficient Coarse-to-Fine Non-Local Module for the Detection of Small Objects pdf

An image is not just a collection of objects, but rather a graph where each object is related to other objects through spatial and semantic relations. Using relational reasoning modules, allowing message passing between objects, can therefore improve object detection. Current schemes apply such dedicated modules either on a specific layer of the bottom-up stream, or between already-detected objects. We show that the relational process can be better modeled in a coarse to fine manner and present a novel framework, applying a non-local module sequentially to increasing resolution feature-maps along the top-down stream. In this way, the inner relational process can naturally pass information from larger objects to smaller related ones. Applying the modules to fine feature-maps also allows message passing between the small objects themselves, exploiting repetitions of instances from of the same class. In practice, due to the expensive memory utilization of the non-local module, it is unfeasible to apply the module as currently used to high-resolution feature-maps. We efficiently redesigned the non local module, improved it in terms of memory and number of operations, allowing it to be placed anywhere along the network. We also incorporated relative spatial information into the module, in a manner that can be incorporated into our efficient implementation. We show the effectiveness of our scheme by improving the results of detecting small objects on COCO by 1.5 AP over Faster RCNN and by 1 AP over using non-local module on the bottom-up stream.

13.Parameter-Free Spatial Attention Network for Person Re-Identification pdf

Global average pooling (GAP) allows to localize discriminative information for recognition [40]. While GAP helps the convolution neural network to attend to the most discriminative features of an object, it may suffer if that information is missing e.g. due to camera viewpoint changes. To circumvent this issue, we argue that it is advantageous to attend to the global configuration of the object by modeling spatial relations among high-level features. We propose a novel architecture for Person Re-Identification, based on a novel parameter-free spatial attention layer introducing spatial relations among the feature map activations back to the model. Our spatial attention layer consistently improves the performance over the model without it. Results on four benchmarks demonstrate a superiority of our model over the state-of-the-art achieving rank-1 accuracy of 94.7% on Market-1501, 89.0% on DukeMTMC-ReID, 74.9% on CUHK03-labeled and 69.7% on CUHK03-detected.

14.Two-level Attention with Two-stage Multi-task Learning for Facial Emotion Recognition pdf

Compared with facial emotion recognition on categorical model, the dimensional emotion recognition can describe numerous emotions of the real world more accurately. Most prior works of dimensional emotion estimation only considered laboratory data and used video, speech or other multi-modal features. The effect of these methods applied on static images in the real world is unknown. In this paper, a two-level attention with two-stage multi-task learning (2Att-2Mt) framework is proposed for facial emotion estimation on only static images. Firstly, the features of corresponding region(position-level features) are extracted and enhanced automatically by first-level attention mechanism. In the following, we utilize Bi-directional Recurrent Neural Network(Bi-RNN) with self-attention(second-level attention) to make full use of the relationship features of different layers(layer-level features) adaptively. Owing to the inherent complexity of dimensional emotion recognition, we propose a two-stage multi-task learning structure to exploited categorical representations to ameliorate the dimensional representations and estimate valence and arousal simultaneously in view of the correlation of the two targets. The quantitative results conducted on AffectNet dataset show significant advancement on Concordance Correlation Coefficient(CCC) and Root Mean Square Error(RMSE), illustrating the superiority of the proposed framework. Besides, extensive comparative experiments have also fully demonstrated the effectiveness of different components.

15.Bootstrapping Deep Neural Networks from Image Processing and Computer Vision Pipelines pdf

Complex image processing and computer vision systems often consist of a "pipeline" of "black boxes" that each solve part of the problem. We intend to replace parts or all of a target pipeline with deep neural networks to achieve benefits such as increased accuracy or reduced computational requirement. To acquire a large amounts of labeled data necessary to train the deep neural network, we propose a workflow that leverages the target pipeline to create a significantly larger labeled training set automatically, without prior domain knowledge of the target pipeline. We show experimentally that despite the noise introduced by automated labeling and only using a very small initially labeled data set, the trained deep neural networks can achieve similar or even better performance than the components they replace, while in some cases also reducing computational requirements.

16.Towards Human-Friendly Referring Expression Generation pdf

This paper addresses the generation of referring expressions that not only refer to objects correctly but also ease human comprehension. As the composition of an image becomes more complicated and a target becomes relatively less salient, identifying referred objects comes more difficult. However, the existing studies regarded all sentences that refer to objects correctly as equally good, ignoring whether they are easily understood by humans. If the target is not salient, humans utilize relationships with the salient contexts around it to help listeners to comprehend it better. To derive these information from human annotations, our model is designed to extract information from the inside and outside of the target. Moreover, we regard that sentences that are easily understood are those that are comprehended correctly and quickly by humans. We optimized it by using the time required to locate the referred objects by humans and their accuracies. To evaluate our system, we created a new referring expression dataset whose images were acquired from Grand Theft Auto V (GTA V), limiting targets to persons. Our proposed method outperformed previous methods both on machine evaluation and on crowd-sourced human evaluation. The source code and dataset will be available soon.

17.Networks for Nonlinear Diffusion Problems in Imaging pdf

A multitude of imaging and vision tasks have seen recently a major transformation by deep learning methods and in particular by the application of convolutional neural networks. These methods achieve impressive results, even for applications where it is not apparent that convolutions are suited to capture the underlying physics.
In this work we develop a network architecture based on nonlinear diffusion processes, named DiffNet. By design, we obtain a nonlinear network architecture that is well suited for diffusion related problems in imaging. Furthermore, the performed updates are explicit, by which we obtain better interpretability and generalisability compared to classical convolutional neural network architectures. The performance of DiffNet tested on the inverse problem of nonlinear diffusion with the Perona-Malik filter on the STL-10 image dataset. We obtain competitive results to the established U-Net architecture, with a fraction of parameters and necessary training data.

18.Progressive Recurrent Learning for Visual Recognition pdf

Computer vision is difficult, partly because the mathematical function connecting input and output data is often complex, fuzzy and thus hard to learn. A currently popular solution is to design a deep neural network and optimize it on a large-scale dataset. However, as the number of parameters increases, the generalization ability is often not guaranteed, e.g., the model can over-fit due to the limited amount of training data, or fail to converge because the desired function is too difficult to learn. This paper presents an effective framework named progressive recurrent learning (PRL). The core idea is similar to curriculum learning which gradually increases the difficulty of training data. We generalize it to a wide range of vision problems that were previously considered less proper to apply curriculum learning. PRL starts with inserting a recurrent prediction scheme, based on the motivation of feeding the prediction of a vision model to the same model iteratively, so that the auxiliary cues contained in it can be exploited to improve the quality of itself. In order to better optimize this framework, we start with providing perfect prediction, i.e., ground-truth, to the second stage, but gradually replace it with the prediction of the first stage. In the final status, the ground-truth information is not needed any more, so that the entire model works on the real data distribution as in the testing process. We apply PRL to two challenging visual recognition tasks, namely, object localization and semantic segmentation, and demonstrate consistent accuracy gain compared to the baseline training strategy, especially in the scenarios of more difficult vision tasks.

19.RAM: Residual Attention Module for Single Image Super-Resolution pdf

Attention mechanisms are a design trend of deep neural networks that stands out in various computer vision tasks. Recently, some works have attempted to apply attention mechanisms to single image super-resolution (SR) tasks. However, they apply the mechanisms to SR in the same or similar ways used for high-level computer vision problems without much consideration of the different nature between SR and other problems. In this paper, we propose a new attention method, which is composed of new channel-wise and spatial attention mechanisms optimized for SR and a new fused attention to combine them. Based on this, we propose a new residual attention module (RAM) and a SR network using RAM (SRRAM). We provide in-depth experimental analysis of different attention mechanisms in SR. It is shown that the proposed method can construct both deep and lightweight SR networks showing improved performance in comparison to existing state-of-the-art methods.

20.EV-SegNet: Semantic Segmentation for Event-based Cameras pdf

Event cameras, or Dynamic Vision Sensor (DVS), are very promising sensors which have shown several advantages over frame based cameras. However, most recent work on real applications of these cameras is focused on 3D reconstruction and 6-DOF camera tracking. Deep learning based approaches, which are leading the state-of-the-art in visual recognition tasks, could potentially take advantage of the benefits of DVS, but some adaptations are needed still needed in order to effectively work on these cameras. This work introduces a first baseline for semantic segmentation with this kind of data. We build a semantic segmentation CNN based on state-of-the-art techniques which takes event information as the only input. Besides, we propose a novel representation for DVS data that outperforms previously used event representations for related tasks. Since there is no existing labeled dataset for this task, we propose how to automatically generate approximated semantic segmentation labels for some sequences of the DDD17 dataset, which we publish together with the model, and demonstrate they are valid to train a model for DVS data only. We compare our results on semantic segmentation from DVS data with results using corresponding grayscale images, demonstrating how they are complementary and worth combining.

21.Utilizing Complex-valued Network for Learning to Compare Image Patches pdf

At present, the great achievements of convolutional neural network(CNN) in feature and metric learning have attracted many researchers. However, the vast majority of deep network architectures have been used to represent based on real values. The research of complex-valued networks is seldom concerned due to the absence of effective models and suitable distance of complex-valued vector.
Motived by recent works, complex vectors have been shown to have a richer representational capacity and efficient complex blocks have been reported, we propose a new approach for learning image descriptors with complex numbers to compare image patches. We also propose a new architecture to learn image similarity function directly based on complex-valued network. We show that our models can significantly outperform the state-of-the art on benchmark datasets. We make the source code of our models publicly available.

22.Grid R-CNN pdf

This paper proposes a novel object detection framework named Grid R-CNN, which adopts a grid guided localization mechanism for accurate object detection. Different from the traditional regression based methods, the Grid R-CNN captures the spatial information explicitly and enjoys the position sensitive property of fully convolutional architecture. Instead of using only two independent points, we design a multi-point supervision formulation to encode more clues in order to reduce the impact of inaccurate prediction of specific points. To take the full advantage of the correlation of points in a grid, we propose a two-stage information fusion strategy to fuse feature maps of neighbor grid points. The grid guided localization approach is easy to be extended to different state-of-the-art detection frameworks. Grid R-CNN leads to high quality object localization, and experiments demonstrate that it achieves a 4.1% AP gain at IoU=0.8 and a 10.0% AP gain at IoU=0.9 on COCO benchmark compared to Faster R-CNN with Res50 backbone and FPN architecture.

23.Attacks on State-of-the-Art Face Recognition using Attentional Adversarial Attack Generative Network pdf

With the broad use of face recognition, its weakness gradually emerges that it is able to be attacked. So, it is important to study how face recognition networks are subject to attacks. In this paper, we focus on a novel way to do attacks against face recognition network that misleads the network to identify someone as the target person not misclassify inconspicuously. Simultaneously, for this purpose, we introduce a specific attentional adversarial attack generative network to generate fake face images. For capturing the semantic information of the target person, this work adds a conditional variational autoencoder and attention modules to learn the instance-level correspondences between faces. Unlike traditional two-player GAN, this work introduces face recognition networks as the third player to participate in the competition between generator and discriminator which allows the attacker to impersonate the target person better. The generated faces which are hard to arouse the notice of onlookers can evade recognition by state-of-the-art networks and most of them are recognized as the target person.

24.3D Shape Reconstruction from a Single 2D Image via 2D-3D Self-Consistency pdf

Aiming at inferring 3D shapes from 2D images, 3D shape reconstruction has drawn huge attention from researchers in computer vision and deep learning communities. However, it is not practical to assume that 2D input images and their associated ground truth 3D shapes are always available during training. In this paper, we propose a framework for semi-supervised 3D reconstruction. This is realized by our introduced 2D-3D self-consistency, which aligns the predicted 3D models and the projected 2D foreground segmentation masks. Moreover, our model not only enables recovering 3D shapes with the corresponding 2D masks, camera pose information can be jointly disentangled and predicted, even such supervision is never available during training. In the experiments, we qualitatively and quantitatively demonstrate the effectiveness of our model, which performs favorably against state-of-the-art approaches in either supervised or semi-supervised settings.

25.Generalized Graph Convolutional Networks for Skeleton-based Action Recognition pdf

With the prevalence of accessible depth sensors, dynamic human body skeletons have attracted much attention as a robust modality for action recognition. Previous methods model skeletons based on RNN or CNN, which has limited expressive power for irregular joints. In this paper, we represent skeletons naturally on graphs and propose a generalized graph convolutional neural networks (GGCN) for skeleton-based action recognition, aiming to capture space-time variation via spectral graph theory. In particular, we construct a generalized graph over consecutive frames, where each joint is not only connected to its neighboring joints in the same frame strongly or weakly, but also linked with relevant joints in the previous and subsequent frames. The generalized graphs are then fed into GGCN along with the coordinate matrix of the skeleton sequence for feature learning, where we deploy high-order and fast Chebyshev approximation of spectral graph convolution in the network. Experiments show that we achieve the state-of-the-art performance on the widely used NTU RGB+D, UT-Kinect and SYSU 3D datasets.

26.Efficient Semantic Segmentation for Visual Bird's-eye View Interpretation pdf

The ability to perform semantic segmentation in real-time capable applications with limited hardware is of great importance. One such application is the interpretation of the visual bird's-eye view, which requires the semantic segmentation of the four omnidirectional camera images. In this paper, we present an efficient semantic segmentation that sets new standards in terms of runtime and hardware requirements. Our two main contributions are the decrease of the runtime by parallelizing the ArgMax layer and the reduction of hardware requirements by applying the channel pruning method to the ENet model.

27.Global Second-order Pooling Neural Networks pdf

Deep Convolutional Networks (ConvNets) are fundamental to, besides large-scale visual recognition, a lot of vision tasks. As the primary goal of the ConvNets is to characterize complex boundaries of thousands of classes in a high-dimensional space, it is critical to learn higher-order representations for enhancing non-linear modeling capability. Recently, Global Second-order Pooling (GSoP), plugged at the end of networks, has attracted increasing attentions, achieving much better performance than classical, first-order networks in a variety of vision tasks. However, how to effectively introduce higher-order representation in earlier layers for improving non-linear capability of ConvNets is still an open problem. In this paper, we propose a novel network model introducing GSoP across from lower to higher layers for exploiting holistic image information throughout a network. Given an input 3D tensor outputted by some previous convolutional layer, we perform GSoP to obtain a covariance matrix which, after nonlinear transformation, is used for tensor scaling along channel dimension. Similarly, we can perform GSoP along spatial dimension for tensor scaling as well. In this way, we can make full use of the second-order statistics of the holistic image throughout a network. The proposed networks are thoroughly evaluated on large-scale ImageNet-1K, and experiments have shown that they outperformed non-trivially the counterparts while achieving state-of-the-art results.

28.Real-time 2D Multi-Person Pose Estimation on CPU: Lightweight OpenPose pdf

In this work we adapt multi-person pose estimation architecture to use it on edge devices. We follow the bottom-up approach from OpenPose, the winner of COCO 2016 Keypoints Challenge, because of its decent quality and robustness to number of people inside the frame. With proposed network design and optimized post-processing code the full solution runs at 28 frames per second (fps) on Intel$\unicode{xAE}$ NUC 6i7KYB mini PC and 26 fps on Core$^{TM}$ i7-6850K CPU. The network model has 4.1M parameters and 9 billions floating-point operations (GFLOPs) complexity, which is just ~15% of the baseline 2-stage OpenPose with almost the same quality. The code and model are available as a part of Intel$\unicode{xAE}$ OpenVINO$^{TM}$ Toolkit.

29.Hand Gesture Detection and Conversion to Speech and Text pdf

The hand gestures are one of the typical methods used in sign language. It is very difficult for the hearing-impaired people to communicate with the world. This project presents a solution that will not only automatically recognize the hand gestures but will also convert it into speech and text output so that impaired person can easily communicate with normal people. A camera attached to computer will capture images of hand and the contour feature extraction is used to recognize the hand gestures of the person. Based on the recognized gestures, the recorded soundtrack will be played.

30.Effective, Fast, and Memory-Efficient Compressed Multi-function Convolutional Neural Networks for More Accurate Medical Image Classification pdf

Convolutional Neural Networks (CNNs) usually use the same activation function, such as RELU, for all convolutional layers. There are performance limitations of just using RELU. In order to achieve better classification performance, reduce training and testing times, and reduce power consumption and memory usage, a new "Compressed Multi-function CNN" is developed. Google's Inception-V4, for example, is a very deep CNN that consists of 4 Inception-A blocks, 7 Inception-B blocks, and 3 Inception-C blocks. RELU is used for all convolutional layers. A new "Compressed Multi-function Inception-V4" (CMI) that can use different activation functions is created with k Inception-A blocks, m Inception-B blocks, and n Inception-C blocks where k in {1, 2, 3, 4}, m in {1, 2, 3, 4, 5, 6, 7}, n in {1, 2, 3}, and (k+m+n)<14. For performance analysis, a dataset for classifying brain MRI images into one of the four stages of Alzheimer's disease is used to compare three CMI architectures with Inception-V4 in terms of F1-score, training and testing times (related to power consumption), and memory usage (model size). Overall, simulations show that the new CMI models can outperform both the commonly used Inception-V4 and Inception-V4 using different activation functions. In the future, other "Compressed Multi-function CNNs", such as "Compressed Multi-function ResNets and DenseNets" that have a reduced number of convolutional blocks using different activation functions, will be developed to further increase classification accuracy, reduce training and testing times, reduce computational power, and reduce memory usage (model size) for building more effective healthcare systems, such as implementing accurate and convenient disease diagnosis systems on mobile devices that have limited battery power and memory.

31.Shape-conditioned Image Generation by Learning Latent Appearance Representation from Unpaired Data pdf

Conditional image generation is effective for diverse tasks including training data synthesis for learning-based computer vision. However, despite the recent advances in generative adversarial networks (GANs), it is still a challenging task to generate images with detailed conditioning on object shapes. Existing methods for conditional image generation use category labels and/or keypoints and are only give limited control over object categories. In this work, we present SCGAN, an architecture to generate images with a desired shape specified by an input normal map. The shape-conditioned image generation task is achieved by explicitly modeling the image appearance via a latent appearance vector. The network is trained using unpaired training samples of real images and rendered normal maps. This approach enables us to generate images of arbitrary object categories with the target shape and diverse image appearances. We show the effectiveness of our method through both qualitative and quantitative evaluation on training data generation tasks.

32.Weakly Supervised Silhouette-based Semantic Change Detection pdf

This paper presents a novel semantic change detection scheme with only weak supervision. A straightforward approach for this task is to train a semantic change detection network directly from a large-scale dataset in an end-to-end manner. However, a specific dataset for this new task, which is usually labor-intensive and time-consuming, becomes indispensable. To avoid this problem, we propose to train this kind of network from existing datasets by dividing this task into change detection and semantic extraction. On the other hand, the difference in camera viewpoints, for example images of the same scene captured from a vehicle-mounted camera at different time points, usually brings a challenge to the change detection task. To address this challenge, we propose a new siamese network structure with the introduction of correlation layer. In addition, we create a publicly available dataset for semantic change detection to evaluate the proposed method. Both the robustness to viewpoint difference in change detection task and the effectiveness for semantic change detection of the proposed networks are verified by the experimental results.

33.Unsupervised Image-to-Image Translation Using Domain-Specific Variational Information Bound pdf

Unsupervised image-to-image translation is a class of computer vision problems which aims at modeling conditional distribution of images in the target domain, given a set of unpaired images in the source and target domains. An image in the source domain might have multiple representations in the target domain. Therefore, ambiguity in modeling of the conditional distribution arises, specially when the images in the source and target domains come from different modalities. Current approaches mostly rely on simplifying assumptions to map both domains into a shared-latent space. Consequently, they are only able to model the domain-invariant information between the two modalities. These approaches usually fail to model domain-specific information which has no representation in the target domain. In this work, we propose an unsupervised image-to-image translation framework which maximizes a domain-specific variational information bound and learns the target domain-invariant representation of the two domain. The proposed framework makes it possible to map a single source image into multiple images in the target domain, utilizing several target domain-specific codes sampled randomly from the prior distribution, or extracted from reference images.

34.DuLa-Net: A Dual-Projection Network for Estimating Room Layouts from a Single RGB Panorama pdf

We present a deep learning framework, called DuLa-Net, to predict Manhattan-world 3D room layouts from a single RGB panorama. To achieve better prediction accuracy, our method leverages two projections of the panorama at once, namely the equirectangular panorama-view and the perspective ceiling-view, that each contains different clues about the room layouts. Our network architecture consists of two encoder-decoder branches for analyzing each of the two views. In addition, a novel feature fusion structure is proposed to connect the two branches, which are then jointly trained to predict the 2D floor plans and layout heights. To learn more complex room layouts, we introduce the Realtor360 dataset that contains panoramas of Manhattan-world room layouts with different numbers of corners. Experimental results show that our work outperforms recent state-of-the-art in prediction accuracy and performance, especially in the rooms with non-cuboid layouts.

35.Efficient Online Multi-Person 2D Pose Tracking with Recurrent Spatio-Temporal Affinity Fields pdf

We present an online approach to efficiently and simultaneously detect and track the 2D pose of multiple people in a video sequence. We build upon Part Affinity Field (PAF) representation designed for static images, and propose an architecture that can encode and predict Spatio-Temporal Affinity Fields (STAF) across a video sequence. In particular, we propose a novel temporal topology cross-linked across limbs which can consistently handle body motions of a wide range of magnitudes. Additionally, we make the overall approach recurrent in nature, where the network ingests STAF heatmaps from previous frames and estimates those for the current frame. Our approach uses only online inference and tracking, and is currently the fastest and the most accurate bottom-up approach that is runtime invariant to the number of people in the scene and accuracy invariant to input frame rate of camera. Running at $\sim$30 fps on a single GPU at single scale, it achieves highly competitive results on the PoseTrack benchmarks.

36.Simple stopping criteria for information theoretic feature selection pdf

Information theoretic feature selection aims to select a smallest feature subset such that the mutual information between the selected features and the class labels is maximized. Despite the simplicity of this objective, there still remains several open problems to optimize it. These include, for example, the automatic determination of the optimal subset size (i.e., the number of features) or a stopping criterion if the greedy searching strategy is adopted. In this letter, we suggest two stopping criteria by just monitoring the conditional mutual information (CMI) among groups of variables. Using the recently developed multivariate matrix-based Renyi's α-entropy functional, we show that the CMI among groups of variables can be easily estimated without any decomposition or approximation, hence making our criteria easily implemented and seamlessly integrated into any existing information theoretic feature selection methods with greedy search strategy.

37.Traffic Danger Recognition With Surveillance Cameras Without Training Data pdf

We propose a traffic danger recognition model that works with arbitrary traffic surveillance cameras to identify and predict car crashes. There are too many cameras to monitor manually. Therefore, we developed a model to predict and identify car crashes from surveillance cameras based on a 3D reconstruction of the road plane and prediction of trajectories. For normal traffic, it supports real-time proactive safety checks of speeds and distances between vehicles to provide insights about possible high-risk areas. We achieve good prediction and recognition of car crashes without using any labeled training data of crashes. Experiments on the BrnoCompSpeed dataset show that our model can accurately monitor the road, with mean errors of 1.80% for distance measurement, 2.77 km/h for speed measurement, 0.24 m for car position prediction, and 2.53 km/h for speed prediction.

38.ADCrowdNet: An Attention-injective Deformable Convolutional Network for Crowd Understanding pdf

We propose an attention-injective deformable convolutional network called ADCrowdNet for crowd understanding that can address the accuracy degradation problem of highly congested noisy scenes. ADCrowdNet contains two concatenated networks. An attention-aware network called Attention Map Generator (AMG) first detects crowd regions in images and computes the congestion degree of these regions. Based on detected crowd regions and congestion priors, a multi-scale deformable network called Density Map Estimator (DME) then generates high-quality density maps. With the attention-aware training scheme and multi-scale deformable convolutional scheme, the proposed ADCrowdNet achieves the capability of being more effective to capture the crowd features and more resistant to various noises. We have evaluated our method on four popular crowd counting datasets (ShanghaiTech, UCF_CC_50, WorldEXPO'10, and UCSD) and an extra vehicle counting dataset TRANCOS, our approach overwhelmingly beats existing approaches on all of these datasets.

39.Visual SLAM with Network Uncertainty Informed Feature Selection pdf

In order to facilitate long-term localization using a visual simultaneous localization and mapping (SLAM) algorithm, careful feature selection is required such that reference points persist over long durations and the runtime and storage complexity of the algorithm remain consistent. We present SIVO (Semantically Informed Visual Odometry and Mapping), a novel information-theoretic feature selection method for visual SLAM which incorporates machine learning and neural network uncertainty into the feature selection pipeline. Our algorithm selects points which provide the highest reduction in Shannon entropy between the entropy of the current state, and the joint entropy of the state given the addition of the new feature with the classification entropy of the feature from a Bayesian neural network. This feature selection strategy generates a sparse map suitable for long-term localization, as each selected feature significantly reduces the uncertainty of the vehicle state and has been detected to be a static object (building, traffic sign, etc.) repeatedly with a high confidence. The KITTI odometry dataset is used to evaluate our method, and we also compare our results against ORB_SLAM2. Overall, SIVO performs comparably to ORB_SLAM2 (average of 0.17% translation error difference, 6.2 x 10^(-5) deg/m rotation error difference) while reducing the map size by 69%.

40.Automatic Rendering of Building Floor Plan Images from Textual Descriptions in English pdf

Human beings understand natural language description and could able to imagine a corresponding visual for the same. For example, given a description of the interior of a house, we could imagine its structure and arrangements of furniture. Automatic synthesis of real-world images from text descriptions has been explored in the computer vision community. However, there is no such attempt in the area of document images, like floor plans. Floor plan synthesis from sketches, as well as data-driven models, were proposed earlier. Ours is the first attempt to render building floor plan images from textual description automatically. Here, the input is a natural language description of the internal structure and furniture arrangements within a house, and the output is the 2D floor plan image of the same. We have experimented on publicly available benchmark floor plan datasets. We were able to render realistic synthesized floor plan images from the description written in English.

41.Optimizable Object Reconstruction from a Single View pdf

3D shape reconstruction from a single image is a highly ill-posed problem. A number of current deep learning based systems aim to solve the shape reconstruction and shape pose problems by learning an end-to-end network to perform feed-forward inference. More traditional (non-deep learning) methods cast the problem in an iterative optimization framework. In this paper, inspired by these more traditional shape-prior-based approaches, which separate the 2D recognition and 3D reconstruction, we develop a system that leverages the power of both feed-forward and iterative approaches. Our framework uses the power of deep learning to capture 3D shape information from training data and provide high-quality initialization, while allowing both image evidence and shape priors to influence iterative refinement at inference time. Specifically, we employ an auto-encoder to learn a latent space of object shapes, a CNN that maps an image to the latent space, another CNN to predict 2D keypoints to recover object pose using PnP, and a segmentation network to predict an object's silhouette from an RGB image. At inference time these components provide high-quality initial estimates of the shape and pose, which are then further optimized based on the silhouette-shape constraint and a probabilistic shape prior learned on the latent space. Our experiments show that this optimizable inference framework achieves state-of-the-art results on a large benchmarking dataset with real images.

42.Visual Question Answering as Reading Comprehension pdf

Visual question answering (VQA) demands simultaneous comprehension of both the image visual content and natural language questions. In some cases, the reasoning needs the help of common sense or general knowledge which usually appear in the form of text. Current methods jointly embed both the visual information and the textual feature into the same space. However, how to model the complex interactions between the two different modalities is not an easy task. In contrast to struggling on multimodal feature fusion, in this paper, we propose to unify all the input information by natural language so as to convert VQA into a machine reading comprehension problem. With this transformation, our method not only can tackle VQA datasets that focus on observation based questions, but can also be naturally extended to handle knowledge-based VQA which requires to explore large-scale external knowledge base. It is a step towards being able to exploit large volumes of text and natural language processing techniques to address VQA problem. Two types of models are proposed to deal with open-ended VQA and multiple-choice VQA respectively. We evaluate our models on three VQA benchmarks. The comparable performance with the state-of-the-art demonstrates the effectiveness of the proposed method.

43.Adversarial Attacks for Optical Flow-Based Action Recognition Classifiers pdf

The success of deep learning research has catapulted deep models into production systems that our society is becoming increasingly dependent on, especially in the image and video domains. However, recent work has shown that these largely uninterpretable models exhibit glaring security vulnerabilities in the presence of an adversary. In this work, we develop a powerful untargeted adversarial attack for action recognition systems in both white-box and black-box settings. Action recognition models differ from image-classification models in that their inputs contain a temporal dimension, which we explicitly target in the attack. Drawing inspiration from image classifier attacks, we create new attacks which achieve state-of-the-art success rates on a two-stream classifier trained on the UCF-101 dataset. We find that our attacks can significantly degrade a model's performance with sparsely and imperceptibly perturbed examples. We also demonstrate the transferability of our attacks to black-box action recognition systems.

44.Guided patch-wise nonlocal SAR despeckling pdf

We propose a new method for SAR image despeckling which leverages information drawn from co-registered optical imagery. Filtering is performed by plain patch-wise nonlocal means, operating exclusively on SAR data. However, the filtering weights are computed by taking into account also the optical guide, which is much cleaner than the SAR data, and hence more discriminative. To avoid injecting optical-domain information into the filtered image, a SAR-domain statistical test is preliminarily performed to reject right away any risky predictor. Experiments on two SAR-optical datasets prove the proposed method to suppress very effectively the speckle, preserving structural details, and without introducing visible filtering artifacts. Overall, the proposed method compares favourably with all state-of-the-art despeckling filters, and also with our own previous optical-guided filter.

45.Joint Correction of Attenuation and Scatter Using Deep Convolutional Neural Networks (DCNN) for Time-of-Flight PET pdf

Deep convolutional neural networks (DCNN) have demonstrated its capability to convert MR image to pseudo CT for PET attenuation correction in PET/MRI. Conventionally, attenuated events are corrected in sinogram space using attenuation maps derived from CT or MR-derived pseudo CT. Separately, scattered events are iteratively estimated by a 3D model-based simulation using down-sampled attenuation and emission sinograms. However, no studies have investigated joint correction of attenuation and scatter using DCNN in image space. Therefore, we aim to develop and optimize a DCNN model for attenuation and scatter correction (ASC) simultaneously in PET image space without additional anatomical imaging or time-consuming iterative scatter simulation. For the first time, we demonstrated the feasibility of directly producing PET images corrected for attenuation and scatter using DCNN (PET-DCNN) from noncorrected PET (PET-NC) images.

46.Non-Volume Preserving-based Feature Fusion Approach to Group-Level Expression Recognition on Crowd Videos pdf

Group-level emotion recognition (ER) is a growing research area as the demands for assessing crowds of all sizes is becoming an interest in both the security arena and social media. This work investigates group-level expression recognition on crowd videos where information is not only aggregated across a variable length sequence of frames but also over the set of faces within each frame to produce aggregated recognition results. In this paper, we propose an effective deep feature level fusion mechanism to model the spatial-temporal information in the crowd videos. Furthermore, we extend our proposed NVP fusion mechanism to temporal NVP fussion appoarch to learn the temporal information between frames. In order to demonstrate the robustness and effectiveness of each component in the proposed approach, three experiments were conducted: (i) evaluation on the AffectNet database to benchmark the proposed emoNet for recognizing facial expression; (ii) evaluation on EmotiW2018 to benchmark the proposed deep feature level fusion mechanism NVPF; and, (iii) examine the proposed TNVPF on an innovative Group-level Emotion on Crowd Videos (GECV) dataset composed of 627 videos collected from social media. GECV dataset is a collection of videos ranging in duration from 10 to 20 seconds of crowds of twenty (20) or more subjects and each video is labeled as positive, negative, or neutral.

47.Deep learning based automatic segmentation of lumbosacral nerves on non-contrast CT for radiographic evaluation: a pilot study pdf

Background and objective: Combined evaluation of lumbosacral structures (e.g. nerves, bone) on multimodal radiographic images is routinely conducted prior to spinal surgery and interventional procedures. Generally, magnetic resonance imaging is conducted to differentiate nerves, while computed tomography (CT) is used to observe bony structures. The aim of this study is to investigate the feasibility of automatically segmenting lumbosacral structures (e.g. nerves & bone) on non-contrast CT with deep learning. Methods: a total of 50 cases with spinal CT were manually labeled for lumbosacral nerves and bone with Slicer 4.8. The ratio of training: validation: testing is 32:8:10. A 3D-Unet is adopted to build the model SPINECT for automatically segmenting lumbosacral structures. Pixel accuracy, IoU, and Dice score are used to assess the segmentation performance of lumbosacral structures. Results: the testing results reveals successful segmentation of lumbosacral bone and nerve on CT. The average pixel accuracy is 0.940 for bone and 0.918 for nerve. The average IoU is 0.897 for bone and 0.827 for nerve. The dice score is 0.945 for bone and 0.905 for nerve. Conclusions: this pilot study indicated that automatic segmenting lumbosacral structures (nerves and bone) on non-contrast CT is feasible and may have utility for planning and navigating spinal interventions and surgery.

48.Semantic Part Detection via Matching: Learning to Generalize to Novel Viewpoints from Limited Training Data pdf

Detecting semantic parts of an object is a challenging task in computer vision, particularly because it is hard to construct large annotated datasets due to the difficulty of annotating semantic parts. In this paper we present an approach which learns from a small training dataset of annotated semantic parts, where the object is seen from a limited range of viewpoints, but generalizes to detect semantic parts from a much larger range of viewpoints. Our approach is based on a matching algorithm for finding accurate spatial correspondence between two images, which enables semantic parts annotated on one image to be transplanted to another. In particular, this enables images in the training dataset to be matched to a virtual 3D model of the object (for simplicity, we assume that the object viewpoint can be estimated by standard techniques). Then a clustering algorithm is used to annotate the semantic parts of the 3D virtual model. This virtual 3D model can be used to synthesize annotated images from a large range of viewpoint. These can be matched to images in the test set, using the same matching algorithm, to detect semantic parts in novel viewpoints of the object. Our algorithm is very simple, intuitive, and contains very few parameters. We evaluate our approach in the car subclass of the VehicleSemanticPart dataset. We show it outperforms standard deep network approaches and, in particular, performs much better on novel viewpoints.

49.Unsupervised Meta-Learning For Few-Shot Image and Video Classification pdf

Few-shot or one-shot learning of classifiers for images or videos is an important next frontier in computer vision. The extreme paucity of training data means that the learning must start with a significant inductive bias towards the type of task to be learned. One way to acquire this is by meta-learning on tasks similar to the target task. However, if the meta-learning phase requires labeled data for a large number of tasks closely related to the target task, it not only increases the difficulty and cost, but also conceptually limits the approach to variations of well-understood domains.
In this paper, we propose UMTRA, an algorithm that performs meta-learning on an unlabeled dataset in an unsupervised fashion, without putting any constraint on the classifier network architecture. The only requirements towards the dataset are: sufficient size, diversity and number of classes, and relevance of the domain to the one in the target task. Exploiting this information, UMTRA generates synthetic training tasks for the meta-learning phase.
We evaluate UMTRA on few-shot and one-shot learning on both image and video domains. To the best of our knowledge, we are the first to evaluate meta-learning approaches on UCF-101. On the Omniglot and Mini-Imagenet few-shot learning benchmarks, UMTRA outperforms every tested approach based on unsupervised learning of representations, while alternating for the best performance with the recent CACTUs algorithm. Compared to supervised model-agnostic meta-learning approaches, UMTRA trades off some classification accuracy for a vast decrease in the number of labeled data needed. For instance, on the five-way one-shot classification on the Omniglot, we retain 85% of the accuracy of MAML, a recently proposed supervised meta-learning algorithm, while reducing the number of required labels from 24005 to 5.

50.2D/3D Megavoltage Image Registration Using Convolutional Neural Networks pdf

We presented a 2D/3D MV image registration method based on a Convolutional Neural Network. Most of the traditional image registration method intensity-based, which use optimization algorithms to maximize the similarity between to images. Although these methods can achieve good results for kilovoltage images, the same does not occur for megavoltage images due to the lower image quality. Also, these methods most of the times do not present a good capture range. To deal with this problem, we propose the use of Convolutional Neural Network. The experiments were performed using a dataset of 50 brain images. The results showed to be promising compared to traditional image registration methods.

51.Phase Collaborative Network for Multi-Phase Medical Imaging Segmentation pdf

Integrating multi-phase information is an effective way of boosting visual recognition. In this paper, we investigate this problem from the perspective of medical imaging analysis, in which two phases in CT scans known as arterial and venous are combined towards higher segmentation accuracy. To this end, we propose Phase Collaborative Network (PCN), an end-to-end network which contains both generative and discriminative modules to formulate phase-to-phase relations and data-to-label relations, respectively. Experiments are performed on several CT image segmentation datasets. PCN achieves superior performance with either two phases or only one phase available. Moreover, we empirically verify that the accuracy gain comes from the collaboration between phases.

52.Cartoon-to-real: An Approach to Translate Cartoon to Realistic Images using GAN pdf

We propose a method to translate cartoon images to real world images using Generative Aderserial Network (GAN). Existing GAN-based image-to-image translation methods which are trained on paired datasets are impractical as the data is difficult to accumulate. Therefore, in this paper we exploit the Cycle-Consistent Adversarial Networks (CycleGAN) method for images translation which needs an unpaired dataset. By applying CycleGAN we show that our model is able to generate meaningful real world images from cartoon images. However, we implement another state of the art technique $-$ Deep Analogy $-$ to compare the performance of our approach.

53.Meta-Learning for Few-shot Camera-Adaptive Color Constancy pdf

Digital camera pipelines employ color constancy methods to estimate an unknown scene illuminant, enabling the generation of canonical images under an achromatic light source. By taking advantage of large amounts of labelled images, learning-based color constancy methods provide state-of-the-art estimation accuracy. However, for a new sensor, data collection is typically arduous, as it requires both imaging physical calibration objects across different settings (such as indoor and outdoor scenes), as well as manual image annotation to produce ground truth labels. In this work, we address sensor generalisation by framing color constancy as a meta-learning problem. Using an unsupervised strategy driven by color temperature grouping, we define many related, yet distinct, illuminant estimation tasks, aggregating data from four public datasets with different camera sensors and diverse scene content. Experimental results demonstrate it is possible to produce a few-shot color constancy method competitive with the fully-supervised, camera-specific state-of-the-art.

54.Learning to Synthesize Motion Blur pdf

We present a technique for synthesizing a motion blurred image from a pair of unblurred images captured in succession. To build this system we motivate and design a differentiable "line prediction" layer to be used as part of a neural network architecture, with which we can learn a system to regress from image pairs to motion blurred images that span the capture time of the input image pair. Training this model requires an abundance of data, and so we design and execute a strategy for using frame interpolation techniques to generate a large-scale synthetic dataset of motion blurred images and their respective inputs. We additionally capture a high quality test set of real motion blurred images, synthesized from slow motion videos, with which we evaluate our model against several baseline techniques that can be used to synthesize motion blur. Our model produces higher accuracy output than our baselines, and is several orders of magnitude faster than those baselines with competitive accuracy.

55.On the Implicit Assumptions of GANs pdf

Generative adversarial nets (GANs) have generated a lot of excitement. Despite their popularity, they exhibit a number of well-documented issues in practice, which apparently contradict theoretical guarantees. A number of enlightening papers have pointed out that these issues arise from unjustified assumptions that are commonly made, but the message seems to have been lost amid the optimism of recent years. We believe the identified problems deserve more attention, and highlight the implications on both the properties of GANs and the trajectory of research on probabilistic models. We recently proposed an alternative method that sidesteps these problems.

56.Perceiving Physical Equation by Observing Visual Scenarios pdf

Inferring universal laws of the environment is an important ability of human intelligence as well as a symbol of general AI. In this paper, we take a step toward this goal such that we introduce a new challenging problem of inferring invariant physical equation from visual scenarios. For instance, teaching a machine to automatically derive the gravitational acceleration formula by watching a free-falling object. To tackle this challenge, we present a novel pipeline comprised of an Observer Engine and a Physicist Engine by respectively imitating the actions of an observer and a physicist in the real world. Generally, the Observer Engine watches the visual scenarios and then extracting the physical properties of objects. The Physicist Engine analyses these data and then summarizing the inherent laws of object dynamics. Specifically, the learned laws are expressed by mathematical equations such that they are more interpretable than the results given by common probabilistic models. Experiments on synthetic videos have shown that our pipeline is able to discover physical equations on various physical worlds with different visual appearances.

57.Second-order Optimization Method for Large Mini-batch: Training ResNet-50 on ImageNet in 35 Epochs pdf

Large-scale distributed training of deep neural networks suffer from the generalization gap caused by the increase in the effective mini-batch size. Previous approaches try to solve this problem by varying the learning rate and batch size over epochs and layers, or some ad hoc modification of the batch normalization. We propose an alternative approach using a second-order optimization method that shows similar generalization capability to first-order methods, but converges faster and can handle larger mini-batches. To test our method on a benchmark where highly optimized first-order methods are available as references, we train ResNet-50 on ImageNet. We converged to 75% Top-1 validation accuracy in 35 epochs for mini-batch sizes under 16,384, and achieved 75% even with a mini-batch size of 131,072, which took 100 epochs.

58.Deep learning for pedestrians: backpropagation in CNNs pdf

The goal of this document is to provide a pedagogical introduction to the main concepts underpinning the training of deep neural networks using gradient descent; a process known as backpropagation. Although we focus on a very influential class of architectures called "convolutional neural networks" (CNNs) the approach is generic and useful to the machine learning community as a whole. Motivated by the observation that derivations of backpropagation are often obscured by clumsy index-heavy narratives that appear somewhat mathemagical, we aim to offer a conceptually clear, vectorized description that articulates well the higher level logic. Following the principle of "writing is nature's way of letting you know how sloppy your thinking is", we try to make the calculations meticulous, self-contained and yet as intuitive as possible. Taking nothing for granted, ample illustrations serve as visual guides and an extensive bibliography is provided for further explorations.
(For the sake of clarity, long mathematical derivations and visualizations have been broken up into short "summarized views" and longer "detailed views" encoded into the PDF as optional content groups. Some figures contain animations designed to illustrate important concepts in a more engaging style. For these reasons, we advise to download the document locally and open it using Adobe Acrobat Reader. Other viewers were not tested and may not render the detailed views, animations correctly.)

59.Variational Autoencoding the Lagrangian Trajectories of Particles in a Combustion System pdf

We introduce a deep learning method to simulate the motion of particles trapped in a chaotic recirculating flame. The Lagrangian trajectories of particles, captured using a high-speed camera and subsequently reconstructed in 3-dimensional space, were used to train a variational autoencoder (VAE) which comprises multiple layers of convolutional neural networks. We show that the trajectories, which are statistically representative of those determined in experiments, can be generated using the VAE network. The performance of our model is evaluated with respect to the accuracy and generalization of the outputs.

60.RetinaMatch: Efficient Template Matching of Retina Images for Teleophthalmology pdf

Retinal template matching and registration is an important challenge in teleophthalmology with low-cost imaging devices. However, the images from such devices generally have a small field of view (FOV) and image quality degradations, making matching difficult. In this work, we develop an efficient and accurate retinal matching technique that combines dimension reduction and mutual information (MI), called RetinaMatch. The dimension reduction initializes the MI optimization as a coarse localization process, which narrows the optimization domain and avoids local optima. The effectiveness of RetinaMatch is demonstrated on the open fundus image database STARE with simulated reduced FOV and anticipated degradations, and on retinal images acquired by adapter-based optics attached to a smartphone. RetinaMatch achieves a success rate over 94% on human retinal images with the matched target registration errors below 2 pixels on average, excluding the observer variability. It outperforms the standard template matching solutions. In the application of measuring vessel diameter repeatedly, single pixel errors are expected. In addition, our method can be used in the process of image mosaicking with area-based registration, providing a robust approach when the feature based methods fail. To the best of our knowledge, this is the first template matching algorithm for retina images with small template images from unconstrained retinal areas. In the context of the emerging mixed reality market, we envision automated retinal image matching and registration methods as transformative for advanced teleophthalmology and long-term retinal monitoring.

61.Towards Task Understanding in Visual Settings pdf

We consider the problem of understanding real world tasks depicted in visual images. While most existing image captioning methods excel in producing natural language descriptions of visual scenes involving human tasks, there is often the need for an understanding of the exact task being undertaken rather than a literal description of the scene. We leverage insights from real world task understanding systems, and propose a framework composed of convolutional neural networks, and an external hierarchical task ontology to produce task descriptions from input images. Detailed experiments highlight the efficacy of the extracted descriptions, which could potentially find their way in many applications, including image alt text generation.

62.Unrepresentative video data: A review and evaluation pdf

It is well known that the quality and quantity of training data are significant factors which affect the development and performance of machine intelligence algorithms. Without representative data, neither scientists nor algorithms would be able to accurately capture the visual details of objects, actions or scenes. An evaluation methodology which filters data quality does not yet exist, and currently, the validation of the data depends solely on human factor. This study reviews several public datasets and discusses their limitations and issues regarding quality, feasibility, adaptation and availability of training data. A simple approach to evaluate (i.e. automatically "clean" samples) training data is proposed with the use of real events recorded on the YouTube platform. This study focuses on action recognition data and particularly on human fall detection datasets. However, the limitations described in this paper apply in virtually all datasets.