Skip to content

Commit

Permalink
undo changes in MOM_hor_visc.F90 doc
Browse files Browse the repository at this point in the history
  • Loading branch information
navidcy committed Mar 18, 2019
1 parent b42683d commit f9f0327
Showing 1 changed file with 11 additions and 11 deletions.
22 changes: 11 additions & 11 deletions src/parameterizations/lateral/MOM_hor_visc.F90
Original file line number Diff line number Diff line change
Expand Up @@ -1709,7 +1709,7 @@ end subroutine hor_visc_end
!!
!! In general, the horizontal stress tensor can be written as
!! \f[
!! \boldsymbol{\sigma} =
!! {\bf \sigma} =
!! \begin{pmatrix}
!! \frac{1}{2} \left( \sigma_D + \sigma_T \right) & \frac{1}{2} \sigma_S \\\\
!! \frac{1}{2} \sigma_S & \frac{1}{2} \left( \sigma_D - \sigma_T \right)
Expand Down Expand Up @@ -1738,7 +1738,7 @@ end subroutine hor_visc_end
!! calculations of the strain tensor in the code. Therefore the horizontal stress
!! tensor can be considered to be
!! \f[
!! \boldsymbol{\sigma} =
!! {\bf \sigma} =
!! \begin{pmatrix}
!! \frac{1}{2} \sigma_T & \frac{1}{2} \sigma_S \\\\
!! \frac{1}{2} \sigma_S & - \frac{1}{2} \sigma_T
Expand All @@ -1758,7 +1758,7 @@ end subroutine hor_visc_end
!!
!! The accelerations resulting form the divergence of the stress tensor are
!! \f{eqnarray*}{
!! \widehat{\boldsymbol x} \cdotp \left( \boldsymbol{\nabla}\cdotp \boldsymbol{\sigma} \right)
!! \hat{\bf x} \cdot \left( \nabla \cdot {\bf \sigma} \right)
!! & = &
!! \partial_x \left( \frac{1}{2} \sigma_T \right)
!! + \partial_y \left( \frac{1}{2} \sigma_S \right)
Expand All @@ -1767,7 +1767,7 @@ end subroutine hor_visc_end
!! \partial_x \left( \kappa_h \dot{e}_T \right)
!! + \partial_y \left( \kappa_h \dot{e}_S \right)
!! \\\\
!! \widehat{\boldsymbol y} \cdotp \left( \boldsymbol{\nabla}\cdotp \boldsymbol{\sigma} \right)
!! \hat{\bf y} \cdot \left( \nabla \cdot {\bf \sigma} \right)
!! & = &
!! \partial_x \left( \frac{1}{2} \sigma_S \right)
!! + \partial_y \left( \frac{1}{2} \sigma_T \right)
Expand All @@ -1780,12 +1780,12 @@ end subroutine hor_visc_end
!!
!! The form of the Laplacian viscosity in general coordinates is:
!! \f{eqnarray*}{
!! \widehat{\boldsymbol x} \cdotp \left( \boldsymbol{\nabla}\cdotp \sigma \right)
!! \hat{\bf x} \cdot \left( \nabla \cdot \sigma \right)
!! & = &
!! \frac{1}{h} \left[ \partial_x \left( \kappa_h h \dot{e}_T \right)
!! + \partial_y \left( \kappa_h h \dot{e}_S \right) \right]
!! \\\\
!! \widehat{\boldsymbol y} \cdotp \left( \boldsymbol{\nabla}\cdotp \sigma \right)
!! \hat{\bf y} \cdot \left( \nabla \cdot \sigma \right)
!! & = &
!! \frac{1}{h} \left[ \partial_x \left( \kappa_h h \dot{e}_S \right)
!! - \partial_y \left( \kappa_h h \dot{e}_T \right) \right]
Expand All @@ -1805,7 +1805,7 @@ end subroutine hor_visc_end
!! latitude, \f$\kappa_{\phi}(x,y) = \kappa_{\pi/2} |\sin(\phi)|^n\f$.
!! - A dynamic Smagorinsky viscosity, \f$\kappa_{Sm}(x,y,t) = C_{Sm} \Delta^2 \sqrt{\dot{e}_T^2 + \dot{e}_S^2}\f$.
!! - A dynamic Leith viscosity, \f$\kappa_{Lth}(x,y,t) =
!! C_{Lth} \Delta^3 \sqrt{|\boldsymbol{\nabla}\zeta|^2 + |\boldsymbol{\nabla}\dot{e}_D|^2}\f$.
!! C_{Lth} \Delta^3 \sqrt{|\nabla \zeta|^2 + |\nabla \dot{e}_D|^2}\f$.
!!
!! A maximum stable viscosity, \f$\kappa_{max}(x,y)\f$ is calculated based on the
!! grid-spacing and time-step and used to clip calculated viscosities.
Expand Down Expand Up @@ -1887,7 +1887,7 @@ end subroutine hor_visc_end
!! \f$n_2 = 0\f$ and the cross terms vanish. The accelerations in this aligned limit
!! with constant coefficients become
!! \f{eqnarray*}{
!! \widehat{\boldsymbol x} \cdotp \boldsymbol{\nabla}\cdotp \boldsymbol{\sigma}
!! \hat{\bf x} \cdot \nabla \cdot {\bf \sigma}
!! & = &
!! \partial_x \left( \left( \kappa_h + \frac{1}{2} \kappa_a \right) \dot{e}_T \right)
!! + \partial_y \left( \kappa_h \dot{e}_S \right)
Expand All @@ -1897,7 +1897,7 @@ end subroutine hor_visc_end
!! + \kappa_h \partial_{yy} u
!! - \frac{1}{2} \kappa_a \partial_x \left( \partial_x u + \partial_y v \right)
!! \\\\
!! \widehat{\boldsymbol y} \cdotp \boldsymbol{\nabla}\cdotp \boldsymbol{\sigma}
!! \hat{\bf y} \cdot \nabla \cdot {\bf \sigma}
!! & = &
!! \partial_x \left( \kappa_h \dot{e}_S \right)
!! - \partial_y \left( \left( \kappa_h + \frac{1}{2} \kappa_a \right) \dot{e}_T \right)
Expand Down Expand Up @@ -1947,7 +1947,7 @@ end subroutine hor_visc_end
!! The tendency for the x-component of the divergence of stress is stored in
!! variable <code>diffu</code> and discretized as
!! \f[
!! \widehat{\boldsymbol x} \cdotp \left( \boldsymbol{\nabla}\cdotp \boldsymbol{\sigma} \right) =
!! \hat{\bf x} \cdot \left( \nabla \cdot {\bf \sigma} \right) =
!! \frac{1}{A \overline{h}^i} \left(
!! \frac{1}{\Delta y} \delta_i \left( h \Delta y^2 \kappa_h \dot{e}_T \right) +
!! \frac{1}{\Delta x} \delta_j \left( \tilde{h}^{ij} \Delta x^2 \kappa_h \dot{e}_S \right)
Expand All @@ -1958,7 +1958,7 @@ end subroutine hor_visc_end
!! The tendency for the y-component of the divergence of stress is stored in
!! variable <code>diffv</code> and discretized as
!! \f[
!! \widehat{\boldsymbol y} \cdotp \left( \boldsymbol{\nabla}\cdotp \boldsymbol{\sigma} \right) =
!! \hat{\bf y} \cdot \left( \nabla \cdot {\bf \sigma} \right) =
!! \frac{1}{A \overline{h}^j} \left(
!! \frac{1}{\Delta y} \delta_i \left( \tilde{h}^{ij} \Delta y^2 A_M \dot{e}_S \right)
!! - \frac{1}{\Delta x} \delta_j \left( h \Delta x^2 A_M \dot{e}_T \right)
Expand Down

0 comments on commit f9f0327

Please sign in to comment.