
CLIC recap
• Several breaking changes since the paper 

• Old target → new target: new target is better aligned with PF, more physical and harder to 
reconstruct


• TF → pytorch: generally, we saw comparable performance between the two 
implementations on the old target, but small differences can exist.


• GNNLSH → Transformer: Transformer significantly outperforms GNNLSH in terms of final 
loss and convergence speed in our tests, regardless of the target.


• Transformer implementation has several degrees of freedom that have not been studied 
so far


• Changes to model structure have resulted in limited improvements to loss or final physics 
performance, but results only clear after several days of training with multiple GPUs on 
large samples.


• We need to provide a new CLIC model that outperforms PF with the new setup
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• Reconstructing or not reconstructing a particle matters more 
than the specific PID: classification split to binary (ptcl/no ptcl 
with cross-entropy) and PID multiclass (focal)


• Transform targets as: Etgt’=log[Etgt/Eelem], approx. Gaussian for 
energy and pt, more stable loss


• Momentum regression predicts pt, eta, sphi/cphi, energy 
separately, particles can be off shell, restrict to positive 
mass^2


• Final MHA layer queries can be one of three options: previous 
MHA output, initial embeddings, or trainable queries (a la 
ParticleTransformer)


• MultiheadAttention uses key_padding_mask with math 
backend (CLIC-size events)


• Initial embeddings and final FFNs can be split according to 
element type, different weights for tracks & clusters
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Momentum regression of separate E, pT, eta 
components can result in negative mass^2, which 
silently screws up fastjet.

Hack in model output to constrain E^2 > pT^2 + pz^2. Doing 
this with a loss term was not effective. Any better way?


pT and energy highly correlated, can we reparametrize?



Log-transform pT and energy with element pt/energy.



Attention backend
• Math: default in pytorch, simple N^2 evaluation of attention. 

Works for CLIC (N<300), does not work for CMS due to 
memory and speed constraints. Supports 
key_padding_mask. Supports old GPU architectures.


• Flash: available since pytorch 2.2, numerically equivalent to 
math, but much faster for large events (N>500 ptcls) and 
does not require N^2 memory. Required for CMS training. 
Does not support key_padding_mask. Requires recent 
GPU architecture: A100, H100, MI250X or similar.


• Training on CLIC: use math and whatever GPU you have


• Training on CMS: use flash and a recent GPU



Datasets
• Pythia, CLICdet Geant4 model, Marlin, Pandora, 380 GeV, Key4HEP, ~4M 

events in each sample. No PU-like overlay, simple ee.


• Samples used in training so far: ttbar, qq


• New, not used so far: WW → full hadronic, ZH→𝜏𝜏, Z→𝜏𝜏

1.1T    /local/joosep/clic_edm4hep/2024_07/p8_ee_qq_ecm380 
1.5T    /local/joosep/clic_edm4hep/2024_07/p8_ee_tt_ecm380 
1.5T    /local/joosep/clic_edm4hep/2024_07/p8_ee_WW_fullhad_ecm380 
790G    /local/joosep/clic_edm4hep/2024_07/p8_ee_ZH_Htautau_ecm380 
443G    /local/joosep/clic_edm4hep/2024_07/p8_ee_Z_Ztautau_ecm380

32G     /local/joosep/mlpf/clic_edm4hep/p8_ee_qq_ecm380 
63G     /local/joosep/mlpf/clic_edm4hep/p8_ee_tt_ecm380 
51G     /local/joosep/mlpf/clic_edm4hep/p8_ee_WW_fullhad_ecm380 
24G     /local/joosep/mlpf/clic_edm4hep/p8_ee_ZH_Htautau_ecm380 
5.7G    /local/joosep/mlpf/clic_edm4hep/p8_ee_Z_Ztautau_ecm380

EDMHEP + HEPMC MLPF features and targets

23G	/eos/user/j/jpata/mlpf/tensorflow_datasets/clic/clic_edm_qq_pf 
36G	/eos/user/j/jpata/mlpf/tensorflow_datasets/clic/clic_edm_ttbar_pf 
37G	/eos/user/j/jpata/mlpf/tensorflow_datasets/clic/clic_edm_ww_fullhad_pf 
18G	/eos/user/j/jpata/mlpf/tensorflow_datasets/clic/clic_edm_zh_tautau_pf 
4.3G	/eos/user/j/jpata/mlpf/tensorflow_datasets/clic/clic_edm_z_tautau_pf

TFDS, available on EOS



valid
train

30 epochs (~1h/epoch) on 8x MI250X (LUMI HPC). Stable 
convergence and no numerical issues.

Stepwise loss is decreasing stably.



valid
train

MET and SWD losses are for monitoring, no gradient propagation. 
No significant improvement in MET after initial convergence.

 Energy & pt regression start to overtrain.



Learned attention matrix is nontrivial in all layers. ID / reg 
attention matrices visually rather similar: redundant?



Performance is on par with PF



Performance is on par / slightly worse than PF



Performance is on par with PF



Performance is on par with PF



Performance is somewhat worse than PF



Performance is somewhat worse than PF



pT / energy regression is challenging, model output is too narrow.

clusters clusters



default: 4x layers, bs256, initial embeddings as final queries
v1: 4x layers, bs256, trainable final queries (no effect)

v3: 8x layers, bs128, initial embeddings as final queries (no effect)

Decreasing batch size 256 to 128 has a small positive effect on 
convergence speed. Increasing the number of layers did not 
improve the result.

v2: 4x layers, bs128, initial embeddings as final queries (improved)


