
CLIC recap
• Several breaking changes since the paper

• Old target → new target: new target is better aligned with PF, more physical and harder to
reconstruct

• TF → pytorch: generally, we saw comparable performance between the two
implementations on the old target, but small differences can exist.

• GNNLSH → Transformer: Transformer significantly outperforms GNNLSH in terms of final
loss and convergence speed in our tests, regardless of the target.

• Transformer implementation has several degrees of freedom that have not been studied
so far

• Changes to model structure have resulted in limited improvements to loss or final physics
performance, but results only clear after several days of training with multiple GPUs on
large samples.

• We need to provide a new CLIC model that outperforms PF with the new setup

embed1 embed2

MHA MHA

MHA

MHA

MHA

MHA

MHA

MHA

PID

0/1 pt

eta

sphi

cphi

E

• Reconstructing or not reconstructing a particle matters more
than the specific PID: classification split to binary (ptcl/no ptcl
with cross-entropy) and PID multiclass (focal)

• Transform targets as: Etgt’=log[Etgt/Eelem], approx. Gaussian for
energy and pt, more stable loss

• Momentum regression predicts pt, eta, sphi/cphi, energy
separately, particles can be off shell, restrict to positive
mass^2

• Final MHA layer queries can be one of three options: previous
MHA output, initial embeddings, or trainable queries (a la
ParticleTransformer)

• MultiheadAttention uses key_padding_mask with math
backend (CLIC-size events)

• Initial embeddings and final FFNs can be split according to
element type, different weights for tracks & clusters

FFN

FFN

FFN

FFN

FFN

FFN

Model

Momentum regression of separate E, pT, eta
components can result in negative mass^2, which
silently screws up fastjet.

Hack in model output to constrain E^2 > pT^2 + pz^2. Doing
this with a loss term was not effective. Any better way?

pT and energy highly correlated, can we reparametrize?

Log-transform pT and energy with element pt/energy.

Attention backend
• Math: default in pytorch, simple N^2 evaluation of attention.

Works for CLIC (N<300), does not work for CMS due to
memory and speed constraints. Supports
key_padding_mask. Supports old GPU architectures.

• Flash: available since pytorch 2.2, numerically equivalent to
math, but much faster for large events (N>500 ptcls) and
does not require N^2 memory. Required for CMS training.
Does not support key_padding_mask. Requires recent
GPU architecture: A100, H100, MI250X or similar.

• Training on CLIC: use math and whatever GPU you have

• Training on CMS: use flash and a recent GPU

Datasets
• Pythia, CLICdet Geant4 model, Marlin, Pandora, 380 GeV, Key4HEP, ~4M

events in each sample. No PU-like overlay, simple ee.

• Samples used in training so far: ttbar, qq

• New, not used so far: WW → full hadronic, ZH→𝜏𝜏, Z→𝜏𝜏

1.1T /local/joosep/clic_edm4hep/2024_07/p8_ee_qq_ecm380
1.5T /local/joosep/clic_edm4hep/2024_07/p8_ee_tt_ecm380
1.5T /local/joosep/clic_edm4hep/2024_07/p8_ee_WW_fullhad_ecm380
790G /local/joosep/clic_edm4hep/2024_07/p8_ee_ZH_Htautau_ecm380
443G /local/joosep/clic_edm4hep/2024_07/p8_ee_Z_Ztautau_ecm380

32G /local/joosep/mlpf/clic_edm4hep/p8_ee_qq_ecm380
63G /local/joosep/mlpf/clic_edm4hep/p8_ee_tt_ecm380
51G /local/joosep/mlpf/clic_edm4hep/p8_ee_WW_fullhad_ecm380
24G /local/joosep/mlpf/clic_edm4hep/p8_ee_ZH_Htautau_ecm380
5.7G /local/joosep/mlpf/clic_edm4hep/p8_ee_Z_Ztautau_ecm380

EDMHEP + HEPMC MLPF features and targets

23G	/eos/user/j/jpata/mlpf/tensorflow_datasets/clic/clic_edm_qq_pf
36G	/eos/user/j/jpata/mlpf/tensorflow_datasets/clic/clic_edm_ttbar_pf
37G	/eos/user/j/jpata/mlpf/tensorflow_datasets/clic/clic_edm_ww_fullhad_pf
18G	/eos/user/j/jpata/mlpf/tensorflow_datasets/clic/clic_edm_zh_tautau_pf
4.3G	/eos/user/j/jpata/mlpf/tensorflow_datasets/clic/clic_edm_z_tautau_pf

TFDS, available on EOS

valid
train

30 epochs (~1h/epoch) on 8x MI250X (LUMI HPC). Stable
convergence and no numerical issues.

Stepwise loss is decreasing stably.

valid
train

MET and SWD losses are for monitoring, no gradient propagation.
No significant improvement in MET after initial convergence.

 Energy & pt regression start to overtrain.

Learned attention matrix is nontrivial in all layers. ID / reg
attention matrices visually rather similar: redundant?

Performance is on par with PF

Performance is on par / slightly worse than PF

Performance is on par with PF

Performance is on par with PF

Performance is somewhat worse than PF

Performance is somewhat worse than PF

pT / energy regression is challenging, model output is too narrow.

clusters clusters

default: 4x layers, bs256, initial embeddings as final queries
v1: 4x layers, bs256, trainable final queries (no effect)

v3: 8x layers, bs128, initial embeddings as final queries (no effect)

Decreasing batch size 256 to 128 has a small positive effect on
convergence speed. Increasing the number of layers did not
improve the result.

v2: 4x layers, bs128, initial embeddings as final queries (improved)

