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Abstract

What do we want from machine intelligence? We envision machines that are not just
tools for thought, but partners in thought: reasonable, insightful, knowledgeable, reliable,
and trustworthy systems that think with us. Current artificial intelligence (AI) systems
satisfy some of these criteria, some of the time. In this Perspective, we show how the science
of collaborative cognition can be put to work to engineer systems that really can be called
“thought partners,” systems built to meet our expectations and complement our limitations.
We lay out several modes of collaborative thought in which humans and AI thought partners
can engage and propose desiderata for human-compatible thought partnerships. Drawing
on motifs from computational cognitive science, we motivate an alternative scaling path for
the design of thought partners and ecosystems around their use through a Bayesian lens,
whereby the partners we construct actively build and reason over models of the human and
world.

1 Introduction

Computers have long been seen as tools for thought. Steve Jobs called computers “bicycles for
the mind”: tools that dramatically increase the efficiency, productivity, and joy of thinking. Now,
thirty years later, this metaphor is beginning to change. Computer systems are increasingly
referred to not as vehicles but as “copilots” 1,2: we have moved from designing tools for thought
to actual partners in thought.

The current wave of AI technologies, particularly language models, have catalyzed this
transition. Users no longer have to know how to write code to engage intimately with computers;
we can now interface through the medium of natural language. Humans already think alone
and together, at least communicated often through the medium of language3. We long have –
from developing new modes of thinking through questioning and debate to teaching and learning
through language. The apparent power of these new systems – getting closer to the kind of
artificial intelligence (AI) imagined in the field’s early days4–9 – as well as challenges faced by
the current iterations of such systems – invites us to think about what it will take to build
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Figure 1: Examples of ecosystems for thinking. Humans have long thought together. Machines
expanded the efficiency of human thinking. Now, machines – powered by AI – open up new realms of
computational thought partnership with humans.

systems that truly act as effective thought partners. We argue that good thought partners are
systems (1) which can understand us, (2) which we can understand, and (3) which have sufficient
understanding of the world that we can engage on common ground.

One path to building such thought partners is to scale foundation models (e.g., LLMs10) with
large amounts of human demonstrations and feedback, along with “traces” of human thought
scraped from web-scale data11–13. While such an approach has produced systems that accurately
mimic human behavior (e.g., producing fluent text), these machines do not robustly simulate
human cognition (e.g., explicitly reasoning about the world or other minds) in ways expected by
a true thought partner3,14–20.

What would it take to design systems that meet our criteria? One promising path is to
design systems that build explicit models of the task, world, and human (where these models are
structured21, rather than distributionally learned from data) – drawing on formal frameworks
grounded in cognitive psychology for understanding how humans think, alone and together. In
this Perspective, we chart a new vision for the design of AI thought partners. Decades of work in
the behavioral sciences provide valuable insights for designing human-centric, uncertainty-aware
thought partners. Drawing on such research, we argue that effective thought partners are those
which build models of the human and the world.

This toolkit includes foundation models22–24, but is not limited to them. Indeed, foundation
models like LLMs are fueling new motifs for thinking about human minds in computational
terms (e.g., “rational meaning construction” 16) interleaved alongside techniques from probabilistic
programming25–29, goal-directed search30–32, and other explicit, structured representations, e.g.,
of agents thinking about other agents33–35. We already have tools that help us build machines
that learn and think like people36. We propose applying that toolkit to collaborative cognition –
to build machines that learn and think with people.

2 What are Thought Partners?

When we think, we draw coherent inferences, make predictions, and act on these predictions –
from assessing what birthday present to gift a treasured friend, to formulating a new scientific
hypothesis and experiment plan to evaluate a theory. We flexibly draw on prior knowledge and
update our beliefs through experience (as we discuss below). We not only solve problems, but
imagine new ones37. And we think together. For generations, humans have discussed and debated
ideas, and developed ecosystems to disseminate such thoughts to new audiences. Much scientific
innovation has come through collaboration, where advances are frequently fueled by engaging
with diverse partners who offer new ideas yet share our values38.
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2.1 Modes of Collaborative Thought

As an illustration of the many ways that people and machines might think with each other, we
highlight a few modes of collaborative thought (Table 1). This set of modes, partly inspired by
characterizations of thinking and reasoning in psychology39,40, are not meant to be comprehensive
of all aspects of thought. Rather, we see these modes as ripe for the further development of AI
thought partners.

2.2 Example Domains

We next outline a few diverse domains in which the development of AI thought partners able to
truly collaborate with humans (Figure 1) may be particularly valuable. We highlight common
computational challenges that arise when considering what effective partnership might look like
in each domain, foreshadowing our proposed desiderata. We later return to these case studies
with concrete human-centric thought partner instantiations.

Thought Partners for Programming. Programming is a cognitively-demanding activity that
requires gaining fluency in translating human intentions into formal, machine-interpretable
languages. It is no surprise that decades of effort have gone into designing tools to help people
program41–45. New “programming assistant” tools like GitHub Copilot have rapidly gained
enormous popularity and attention; however, these tools are often unreliable46–48, e.g., failing
to understand users’ intentions49 and generating bugs that may be particularly risky alongside
beginner programmers50. Programming involves much more than just accurate in-line code
suggestions – which, at the time of writing, GitHub Copilot specializes in. Humans plan abstract,
structural decisions and collaboratively learn, and need partners who can answer our questions –
like why code behaves as it does, or fails to work. A good collaborative programming partner
seeks to understand not only the programming language, but also their fellow programmer,
inferring and reasoning about our overarching intentions, and adapting to both what we do and
do not know.

Thought Partners for Embodied Assistance. Ensuring embodied agents can form accurate and
physically-realizable plans is foundational for effective assistance we can trust – from guessing
what a friend wants when we help them cook51, to working with someone with different physical
abilities52, or carrying out a high-stakes search-and-rescue mission53. While much current
research on embodied AI and assistive robots focuses on learning specific skills or following simple
instructions54–56, evaluations suggest that even state-of-the-art language models fine-tuned on
extensive human feedback continue to struggle with tasks that require reliable, effective planning
towards novel goals57,58. Instead, ideal assistive partners understand our actions, words, and
instructions as expressions of goals, beliefs, and intentions59–61 that are grounded in physical
possibilities62, while also understanding that these can be shared across multiple minds63–65.
In addition, effective partners account for each others’ limitations in perception, planning, and
world modeling, correcting for possible mistakes66,67, and acting so as to make their intentions
more legible68,69.

Thought Partners for Storytelling. Another domain in which we may want thought partners
is storytelling – for writers, filmmakers, and even scientists. Storytelling is a complex, iterative
cognitive process70,71 with substantial opportunities for thought partners to collaboratively ideate
and create with humans from helping brainstorm new ideas, generate storylines, and improve
their writing style and tone72–77. For this process to be productive, a thought partner needs
to understand more than just our authorial intentions and dispositions – they also need to
understand the audience we are speaking to (that is, to understand the social world), including
audience expectations and likely interpretations of the stories we are crafting for them.

Thought Partners for Medicine. Doctors need to sensemake, plan, deliberate, and continually
learn in the face of new medical evidence. A primary care doctor is not unlike Sherlock Holmes
– collating and integrating disparate bits of evidence with their prior beliefs to make decisions
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under uncertainty. Yet, doctors rarely have enough time to engage deeply with each patient78,
driving high rates of burnout with knock-on effects on patient care quality79. Can we develop
safe, reliable thought partners that can free doctors up to spend more time and communicate
better with their patients? Already, foundation models are becoming proficient in medical
assessments80,81, seemingly capable of easing the heavy burden on doctors by assisting and
partnering82,83, and even providing preferable responses to patients84. Yet, it is not clear that
these systems understand us (and our cognitive limitations), understand the world (underlying
biology), and enable us to understand them (which in this context, may be important for
transparency and reliability85–88).

2.3 Desiderata

What then do we want from thought partners? There are many criteria for tools for thought
that are of course relevant: efficiency, accuracy, robustness, fairness, cost, scalability, etc. But
the domains above illuminate that what is distinctive about a thought partner is its relationship
to the user 89. Looking to ideas the behavioral sciences motivates three desiderata to guide the
design of human-centered thought partners:

1. You understand me: We would like our thought partners to understand our goals,
plans, (possibly false) beliefs, and resource limitations, taking into account what they have
observed of us in the past and present in order to best collaborate with us in the future90,91.
For example, a thought partner should adaptively change strategies when working with an
expert, layperson, or child, meeting us where we are.

2. I understand you: We would like our thought partners to act in a way that is legible to
us68,92, and communicate with us in the way we intuitively understand93–95.

3. We understand the world: We would like our thought partners to be tethered to
reality96. This means being accurate and knowledgeable, but also working with a shared
representation of the world, domain, or task97–99. Further, our use of ‘we’ emphasizes that
thought partnerships are fundamentally about synergy, moving beyond the sum of its parts.

3 Engineering Human-Centered Thought Partners

Our core proposal is that our three desiderata can be engineered explicitly, building on theoretical
motifs from computational cognitive science and cognitively-informed AI (summarized in Table
2), rather than left as emergent and potentially brittle properties arising implicitly in systems
trained for other ends20. Here, we articulate a framework for engineering thought partners
designed to robustly and explicitly function as cooperative, collaborative actors. Humans are
far from homogeneous, perfectly rational oracles, nor are we so unpredictable that it is hopeless
to model human behavior. We argue that models that explain human cognition and choice as
approximately optimal solutions given goals and constraints provide an ideal starting point for
designing thought partners, and that a Bayesian formalism provides a probabilistically-sound
common conceptual language that facilitates cross-talk between different disciplines22,155,156.

3.1 Implementing Our Desiderata

What does it take to engineer real systems that meet our desiderata? First, we propose that a
thought partner that understands us should explicitly model its human collaborator as such – as
a cooperative agent with structured internal beliefs, knowledge, and goals – and fundamental
resource limitations. Second, engineering a thought partner that we can understand benefits from
looking at how humans model other humans; just as a good human collaborator seeks to learn
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Mode Ongoing Challenges Sampling of Existing Systems

Collaborative planning
• Joint decision-making
• Decentralized cooperation
• Goal and task assistance

Reliable goal inference
Value and intent alignment
Scalable multi-agent planning

Collaborative robots68,100

Video game sidekicks101,102

Language-based assistants35,103

Collaborative learning
• Pair & team problem-

solving
• Identification of knowl-

edge gaps
• New problem construc-

tion

Strong & robust problem-
solving abilities
Personalized curriculum pacing
Problem construction of tar-
geted difficulty

Programming learning aids104–107

Mathematics tutors 15,108,109

Collaborative deliberation
• Debate & argumentation
• Critical review & discus-

sion
• Consensus formation

Opinion diversity
Verifiable reasoning
Formation of common ground

Machine-assisted debating110–112

Consensus writing & opinion map-
ping113,114

Collaborative sensemaking
• Explanation
• Visualization
• Data Analytics

Exponential increases in data
produced
Accessible communication
Fidelity of insights to the world

Probabilistic data modeling115–119

Machine-assisted theory discov-
ery120–122

Collaborative creation &
ideation
• Co-design
• Idea critiquing
• Brainstorming

Generation diversity
Style consistency
Modular customizability

Machine-assisted writing

72,74,123

Prompted image creation124–126

Collaborative sketching127–129

Table 1: Modes of collaborative thought. Settings in which human-human and human-AI thought
partners can engage.

and adapt to the relative strengths, imperfections, and computational bounds of their partner, we
can build machine thought partners that also reason about the computational demands they are
placing on another agent such that we can appropriately predict their behavior18,157. Finally, to
build thought partners that understand the world – and learn and think synergistically alongside
us – we argue that it is valuable to build on structured computational toolkits for grounding
shared goals and communication into the environment and domain in which collaboration takes
place.

3.2 Computational Cognitive Science Motifs

We now (non-exhaustively) spotlight several key insights about modeling humans, modeling
humans modeling humans, and modeling humans modeling the world from computational
cognitive science – “motifs” for reverse engineering the mind (Table 2) – that we believe can
inform engineering of human-centered thought partners. While we acknowledge that there are
communities within cognitive science that may disagree with some of these theories, we emphasize
that the computational underpinnings of the motifs hold tremendous engineering potential for
building thought partners in practice.

5



Motif Description Sample References

Probabilistic
Mental Models
and Inference

Humans update beliefs and draw inferences con-
sistent with probabilistic generative models rep-
resenting the world.

21,130,131

Structured
Knowledge Rep-
resentations

Humans have abstract, highly structured con-
ceptual representations that include causality,
agents, and physical representations.

132–134

Hierarchical
Models

Humans construct and update hierarchical rep-
resentations that separate concrete knowledge
and belief from abstract ones.

135–137

Theory Learning
as Program Syn-
thesis

Humans minds can be viewed as growing and
editing theories of the world, expressed as pro-
grams, to “improve” their codebase (world mod-
els).

138–140

Resource-
Rationality

Humans make rational choices about how to
allocate finite computational resources, including
time and memory.

141–143

Goal-Directed
Planning and
Search

Humans are intentional actors, who plan to
achieve goals by reasoning about the (uncer-
tain) effects of their (possible) actions in the
environment.

144–146

Bayesian Theory
of Mind (BToM)

Humans represent other agents as intentional,
intelligent actors; and probabistically infer their
mental states from observations of actions.

147–149

Rational Speech
Acts (RSA)

Humans reason about language as an intentional,
communicative action to infer a speakers’ under-
lying goals.

59,150,151

Learning to
Learn

Humans meta-learn (improve our overarching
ability to learn) jointly with learning new con-
crete concepts and skills.

36,152–154

Table 2: Bayesian Thought Partner Toolkit. A range of computational cognitive motifs for reverse
engineering the mind in engineering terms, drawn from computational cognitive science, can be used to
build human-centric thought partners that meet our desiderata.

Probabilistic Models of Cognition. Decades of work in computational cognitive science
have demonstrated the power of modeling aspects of human cognition as Bayesian inference
through structured probabilistic generative world models21,131,137,158,159. Such approaches have
found empirical success in capturing a diversity of facets of human cognition from early word
learning160, to visual perception161,162, physical reasoning99,163,164, concept learning165–167,
language processing and acquisition158,168–170, causal inference in children171,172 and adults173,174,
memory reconstruction175, and theory formation176,177, among many others. Probabilistic models
of cognition, particularly those built using a Bayesian approach, have offered principled formalisms
in capturing rapid belief updating178 and how we may integrate our commonsense world knowledge
with new evidence to inform the actions and decisions we take in the world149. Probabilistic
inference over structured representations, particularly drawing on Bayesian modeling and tools
like meta-level Markov Decision Processes179, has provided a computational account of how
humans plan so flexibly, with the capability of forming rich hierarchical goals and subgoals, across
varied timescales149,155,180–182.

Theory of Mind and Communication. In our quest to build systems for collaborative cognition,
we are guided by the success of Bayesian accounts of how we reason about others ’ mental states,
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and how we communicate about them. In particular, Bayesian treatments of theory of mind
(ToM) have offered strong accounts for how we may rapidly reason about each others’ beliefs,
desires, goals, and intentions33,147,183–185. We may build mental models186,187 of our thought
partners, which can in turn be used to support communication and collaboration, informing
the way we teach188–190, infer whether to rely on a partner for help191, and support rapid,
flexible adaptation to new conversation partners192,193. We call particular attention to the
Rational Speech Act (RSA) framework59,150, which models communicative partners as recursively
reasoning about each others’ minds to inform what to say (from the perspective of the speaker)
and how to interpret a received utterance (as the listener). Bayesian models provide a useful
framework for formalizing such rich cross-partner inferences, allowing both social cognition and
communication to be modeled with the same computational toolbox194,195.

Resource-Rationality and Tractable Theory-Building. Human brains also have limited resources
such as time, memory, and attention that shape what we think about, how long we spend thinking,
and even how we communicate our thoughts to others196. Thus, we sometimes make systematically
biased inferences197,198. Such “erroneous” judgments can be captured by modeling humans as
making rational use of our finite resources; e.g., via approximate inference 178,199 or bounded
planning67. Crucially, human cognition is tractable200. Indeed, we can navigate large, potentially
unbounded, hypothesis spaces to build theories of the world: a process that seems to demand some
kind of heuristics and approximations, which may be resource-rational 17,142,143,182,196,201,202.
One approach to modeling minds advocates thinking about humans, as “world model builders” (or
“hackers”) – conducting experiments and updating our beliefs about compressed representations of
the world, where these representations may be expressed as programs138,176. Such representations
– bolstered by tools like program synthesis – help explore suboptimal behavior203.

3.3 Scaling Thought Partners via Probabilistic Programming

If Bayesian thought partners are to reason over models of their human thought partner and the
world, these models need to continually evolve as new facts come to light and as the human
thought partner themselves grows in their expertise, beliefs, and needs. Probabilistic programming
26 provides one powerful methodology for building, scaling, and performing inference in these
kinds of rich models. For example, probabilistic programs can be learned from data 116,204,
and synthesized via LLMs that encode rich priors 16,118,205. Probabilistic programs also enable
fast approximate inference in world models that cohere with human common-sense knowledge
and domain expertise115,206, where the learned models are themselves amenable to modular
inspection and editing by humans. Modern probabilistic programming languages 25,27,207 offer
not just generic inference but programmable inference, that is, they automate the math for
hybrids of optimization208,209, dynamic programming210, and Monte Carlo inference211. While
such frameworks are certainly not the only methods to handle uncertainty and build effective and
robust thought partners, we believe they are one promising and cognitively-grounded approach
to instantiating thought partners today, as we discuss in our case studies.

3.4 Infrastructure around Thought Partners

The design of systems that learn and think with people necessitates not only careful construction
of the thought partner (i.e., the machine itself), but also the infrastructure within which human
and computational thought partners collaborate157. Questions like “when and where should a
human be able to engage a computational thought partner to ensure effective and appropriate use?”
or “for a given problem, is the human or computational thought partner better suited to start
first, in light of their respective strengths and weakness, costs of the task at hand, and particular
mode of thought?” inform the design of the workflow that surrounds thought partnership. This
sociotechnical ecosystem may be dictated by external regulations, organizational practices, or
other principles73,212–215, and crucially informed by studies of human behavior. For example,
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(b)

(c) (d)

(a)

product of thought
(story, film, animation)

beliefs about the world 
(audience)

beliefs about writer
(intentions and dispositions)

beliefs about the world 
(medical knowledge)

beliefs about doctor
(time constraints)

product of thought
(treatment)

beliefs about the world 
(erroneous logic)

product of thought
(program)

beliefs about the world 
(correct logic)

beliefs about programmer
(mental model of the logic)

Prepare cheese and
veggies while I knead

dough

beliefs about the world 
(culinary knowledge)

beliefs about cook
(goals)

programmar cook

storyteller doctor

beliefs about machine
(reliability)

product of thought
(pizza)

team beliefs
(joint plan)

Figure 2: Case Study Depictions. (a) WatChat infers the user’s buggy mental model of the
programming environment and interactively helps “patch” bug(s) in their understanding; (b) CLIPS
reasons explicitly about agents’ goals, integrating (culinary) world knowledge and the human’s utterances
to infer appropriate actions. Both agents reason about the joint team plan (tomato and dough are needed
to make pizza); (c) Thought partners based on inverse inverse storytelling explicitly reason over models
of the audience; (d) Future thought partners for medicine can jointly reason with a human doctor across
modalities, a shared understanding of biology and patient needs, and a model of others’ limitations.

Article 14 of the EU AI Act requires users of high-risk AI systems “to correctly interpret the
high-risk AI system’s output” and “to remain aware of the possible tendency of automatically
relying or over-relying on the output.” Satisfying such requirements begets not only careful design
of thought partners (e.g., that we can understand), but demands careful design of the system of
affordances216,217 and infrastructure around thought partnerships (for instance, communicating
back to humans information about their reliance strategies). Disentangling thought partners
from the infrastructure around them provides a modular scaffold for addressing unintentional
thought partnership behavior, e.g, overreliance218 and “illusions of understanding” 219. Bayesian
modeling has already found success in inferring humans’ reliance strategies220 and regions of the
task space where a human versus machine can complement one another221.

4 Case Studies in Engineering Thought Partners

We now return to the example domains previously introduced and discuss specific case studies
(depicted in Figure 2). Our goal is to demonstrate the potential benefits of endowing thought
partners with structured probabilistic models of the human and/or world, and provide a flavor of
the kinds of infrastructure questions that may surround them to ensure that the thought partners
we build work with people.

4.1 Thought Partners for Programming

We highlighted some visions for effective programming partnerships, such as a partner that can
address “why” questions. One recent idea, from Chandra et al. 106 , is to apply the Bayesian toolkit
to explain surprising behavior of computer programs in a human-like way. Chandra et al., apply
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Bayesian models of mental state inference and rational communication222 to design a system
called “WatChat” that answers questions like “why did program p output result r?” in a principled,
human-like way. WatChat infers what erroneous mental model might cause the programmer to
have expected something different (partner understands user) and generates an explanation that
“debugs” that mental model (user understands partner). WatChat represents possible mental
models themselves as “programs” whose “bugs” correspond to possible misconceptions; mental
models can thus be inferred by Bayesian program synthesis (see Table 2). Such a framework
can also be inverted to help design new questions for teachers or self-driven learners to identify
misconceptions.

4.2 Thought Partners for Embodied Assistance

Recall the challenge of collaboratively planning uncertain tasks, from a search-and-rescue mission
to everyday cooking, wherein we typically want to infer shared goals and communicative intent
from our partners. This cooperative logic can be modeled in a Bayesian architecture called Coop-
erative Language-Guided Inverse Plan Search (CLIPS)35. By modeling humans as cooperative
planners who use language to communicate joint plans to achieve their goals65, CLIPS is able
to infer those plans and goals from both the actions and instructions of human collaborators.
This allows CLIPS to pragmatically follow human instructions, using context to disambiguate
the multiple meanings that a request might have, while pro-actively assisting with the goals that
underlie the instruction. For example, CLIPS can understand the likely intentions behind an
instruction like “Can you prepare the vegetables while I knead the dough?”, inferring the shared
goal of making pizza. These capabilities are made possible by using probabilistic programming
infrastructure25 to unite algorithms for Bayesian inverse planning33,184 and human-AI align-
ment51,61,223 with LLMs. In particular, by using LLMs to evaluate the probability of a natural
language instruction given a possible intention, CLIPS can infer intentions from natural language
in a coherent Bayesian manner – demonstrating the power of combining tools from the Bayesian
thought partner toolkit.

4.3 Thought Partners for Storytelling

Storytelling is about crafting experience. Can we also apply the toolkit to help storytellers design
experiences from first principles? Recent work has shown that a system grounded in Bayesian
ToM can predict and even design interventions on the audience’s experience of a story224,225.
Chandra et al. conceive of storytelling as “inverse inverse planning”: that is, starting with human
social cognition, modeled as Bayesian inverse planning33, and then optimizing narrative events
to shape the model’s inferences over time. They show how a variety of storytelling techniques –
from plot twists to stage mime – can be expressed in the language of inverse inverse planning
to create animations that have a desired cognitive effect on viewers. Herein, we also highlight
the breadth of thought partners for media beyond language, though the framework does nicely
suggest a variety of natural extensions, such as integration into tools for creative writing72–77.

4.4 Thought Partners for Medicine

Finally, we envision medical thought partners both understand us – reasoning about the doctor,
patient, and care team as agents with goals, beliefs, and worries – and complement our capabilities,
integrating swaths of evidence that exceed our cognitive capacities to inform diagnosis and
treatment. While no system yet meets our desiderata for these criteria, we believe a range of
motifs and tools from the Bayesian thought partner toolkit here can support the development
of such systems for collaborative sensemaking and deliberation. We imagine Bayesian thought
partners that can update their medical world knowledge in light of new insights in biology, e.g.,
editing a code snippet of the underlying probabilistic world model16 or growing the representation
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in a non-parametric hierarchical Bayesian model135. Such a model can then, similar to WatChat,
synthesize new questions to ensure the human doctor’s own medical world model is sound.
Early work demonstrates that we can employ elements of our toolkit, specifically probabilistic
programming, to learn rich generative models for oncology and support efficient user queries227.
Yet, effective medical thought partners beckon a broader view of the ecosystem in which they are
deployed89,228. If a doctor is over-relying on the output of the thought partner, or overburdened
amidst a surge in patient queries, infrastructure around the human and thought partner can
modulate when a patient query is either routed to a human or the AI thought partner, or deemed
necessary of collaborative planning229. Systems for routing based on probabilistic modeling are
already proving successful in simulation230.

5 Looking Ahead

There is much exciting work to be done to characterize when and how to build thought partners
across modes of collaborative thought, which can advance the dissemination and creation of
new knowledge alongside humans. We next lay out several key challenges for researchers and
designers intent on pursuing a human-centered program of building machines that learn and
think with people.

5.1 Non-Dyad Settings

While there is substantial work to be done characterizing the space of possibilities for a single
human and single AI thought partner (“dyadic”), we envision a future where many humans and
many machines engage (“non-dyadic”), across roles and specialties in increasingly complex social
systems231, engage in the realm of thought232–234. Already, researchers are exploring non-dyadic
versions of many of the modes of thought and case studies laid out above, including collaborative
learning with groups of humans accompanied by an AI thought partner235 and medical robot
collision avoidance systems that need to account for multiple humans236. As in the dyad setting,
extensions to non-dyadic settings can be bolstered by a deepening understanding of human
behavior in groups – expanding the Bayesian thought partner toolkit – as is already underway in
the study of convention formation192,237. Looking ahead, citizen science is a promising example
of the opportunities of creating large networks of humans and thought partners: Zooniverse, a
large-scale galaxy classification crowdsourcing project, serves as a case study for exploring smart
task allocation, blending human and machine classifications, and infrastructure changes that
impact human participation and performance with outcomes including both iterative scientific
progress and serendipitous scientific discovery238.

5.2 Evaluation

The assessment of thought partners demands a multi-faceted, cross-disciplinary suite of ap-
proaches. At minimum, the evaluation of AI thought partners must include some element
of interactivity 239. Recent works have highlighted deficits in static evaluation of foundation
models15,240, demonstrating the need for considering the interaction process in addition to the
final output, the first-person perspective in addition to the third-party perspective, and notions
of preference beyond quality. In addition to interactive user studies, we posit that to study
different kinds of thought partners across modes of collaborative thought would benefit from a
controlled, yet rich, playspace; games provide one such domain. Games offer a good formalism for
the study of repeated interactions between multiple agents and grounds to explore rich patterns
of thought, in social collaborative settings241–244.
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5.3 Risks and Important Considerations

Computational thought partners are by no means a guaranteed nor universal good and come
with certain risks. We call out three such spheres of risk: (i) reliance, critical thinking, and
access, (ii) anthromorphization, and (iii) misalignment.

First, AI thought partners could induce over-reliance and impair the development of critical
thinking skills219,245–247, potentially acting as “steroids” for the mind 248. We are concerned
about these risks; our emphasis on the infrastructure around thought partner use is explicitly
intended to help practitioners take steps to address these challenges, motivating further design
of infrastructure modifications like cognitive forcing functions249,250. Conversely, it is possible
that some people may under-rely on a thought partner, particularly if there is inadequate AI
literacy training for how to best make use of new thought partners251–253. Already, research
has found that the kinds of queries people make of AI systems can be informed by the amount
of prior experience they have interacting with chatbots15 meaning students, researchers, and
other practitioners in lower-income communities may be unable to maximize the value of thought
partnering. It is important to ensure that the benefits of thought partners are not confined to an
exclusive set of people.

Second, on the topic of anthromoprhization, we highlight an important distinction between
human-centric and human-like thought partners254. Our desiderata “I understand you” advocates
for thought partners whose behavior we understand; while this could draw on how we understand
other humans, however, we should be careful about interpreting such machine thought partners
as we do humans. As Weizenbaum 6 illuminated with the ELIZA system, there are risks to
developing computer systems that present themselves as human-like in ways that they are not: for
example, by leading users to attribute undue intention to systems’ responses or (in the long run)
leading society to devalue human intelligence255. Human-like thought partners should maintain
categorical delineation between humans and machines to prevent overreliance245,256 and promote
human dignity without encroaching on any partner’s self-worth257. The term used to refer to a
thought partner can affect the assumptions made about their capabilities (e.g., teammate implies
the machine and human are on equal footing) or can detract from a partner’s human-like nature
(e.g., tool would be less anthropomorphic).

Lastly, we note that insufficiently accurate, robust, or cognitively-grounded models can yield
misalignment with humans, leading intended AI thought partners to act towards the wrong
goals258, provide wrong or misleading information259, or violate safety constraints260. A Bayesian
approach to thought partnership can address some of these issues, enabling uncertainty-aware
decision-making that avoids overconfidence223,261,262. Yet, while inferring human thoughts and
behavior can be used to design better collaborators, models of humans are inherently dual-use
and can also be used to mislead, surveil, or manipulate263. It is crucial to consider whether
thought partners are aligned with society at large, or merely superficially aligned with users
while serving more powerful interests264.

6 Conclusion

If we are to build helpful and reliable human-AI thought partnerships, we advocate for design that
explicitly recognizes and engages with the richness and diversity of human thought in an often
unpredictable world. We have argued, supported by several case studies, that those engineering
thought partners and the infrastructure around their use can benefit from drawing on motifs
from computational cognitive science and cognitive-AI. The future of collaborative cognition is
bright, but not without risk; continual collaboration and knowledge sharing amongst behavioral
scientists, AI practitioners, domain experts, and related disciplines is crucial as we strive to build
machines that truly learn and think with people.
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Glossary of main terms

• Collaborative cognition: the process by which two or more agents work together in some
aspect(s) of thinking (e.g., planning together, learning together, creating together).

• Thought partner: another entity (human or AI) that works with an agent to push forward
some aspect(s) of thinking.

• Artificial Intelligence (AI): computational systems that are able to process inputs and
engage in some aspect of learning, planning, reasoning, and/or decision-making. Used
interchangeably with machines.

• Large language model (LLM): a particular kind of AI system which learns a distribution
over text, often trained on large amounts of web-scale text data. LLMs are a class of
large-scale foundation models.

• Agent: an entity that can process inputs, make decisions, and take actions in some
environment.

• Dyad: a system with two agents (e.g., human-human, human-AI, AI-AI).

• Resource-rationality: the idea that human behavior and cognition can be viewed as rational
under bounded constraints (e.g., under limited working memory).

• Probabilistic generative model: a model of how the data one observes about the world is
generated by some probabilistic process, from which one can sample new observations and
make queries about existing observations.

• Probabilistic programming language (PPL): a language for expressing probabilistic genera-
tive models as computer programs that interleave deterministic code (e.g. arithmetic, logic,
or artificial neural networks) with random choices. PPLs allow users to specify probabilistic
models and inference algorithms in a modular and compositional manner.

• Bayesian inference: a method for updating one’s beliefs over various aspects of the world,
grounded in probability theory; in Bayesian inference, an agent updates their beliefs by
assigning higher credence to hypotheses that better explain the evidence, weighted against
the backdrop of their prior beliefs.

• Affordance: design features of a system that inform use.
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