
GenSQL: A Probabilistic Programming System forQuerying
Generative Models of Database Tables
MATHIEU HUOT, Massachusetts Institute of Technology, USA
MATIN GHAVAMI, Massachusetts Institute of Technology, USA
ALEXANDER K. LEW, Massachusetts Institute of Technology, USA
ULRICH SCHAECHTLE, Digital Garage, Japan
CAMERON E. FREER, Massachusetts Institute of Technology, USA
ZANE SHELBY, Digital Garage, Japan
MARTIN C. RINARD, Massachusetts Institute of Technology, USA
FERAS A. SAAD, Carnegie Mellon University, USA
VIKASH K. MANSINGHKA, Massachusetts Institute of Technology, USA

This article presents GenSQL, a probabilistic programming system for querying probabilistic generative
models of database tables. By augmenting SQL with only a few key primitives for querying probabilistic
models, GenSQL enables complex Bayesian inference workflows to be concisely implemented. GenSQL’s
query planner rests on a unified programmatic interface for interacting with probabilistic models of tabular
data, which makes it possible to use models written in a variety of probabilistic programming languages that
are tailored to specific workflows. Probabilistic models may be automatically learned via probabilistic program
synthesis, hand-designed, or a combination of both. GenSQL is formalized using a novel type system and
denotational semantics, which together enable us to establish proofs that precisely characterize its soundness
guarantees. We evaluate our system on two case real-world studies—an anomaly detection in clinical trials and
conditional synthetic data generation for a virtual wet lab—and show that GenSQL more accurately captures
the complexity of the data as compared to common baselines. We also show that the declarative syntax in
GenSQL is more concise and less error-prone as compared to several alternatives. Finally, GenSQL delivers a
1.7-6.8x speedup compared to its closest competitor on a representative benchmark set and runs in comparable
time to hand-written code, in part due to its reusable optimizations and code specialization.

CCS Concepts: • Mathematics of computing → Bayesian computation; Statistical software; • Software
and its engineering→ Semantics.

Additional Key Words and Phrases: generative modeling, Bayesian data science, probabilistic query language

ACM Reference Format:
Mathieu Huot, Matin Ghavami, Alexander K. Lew, Ulrich Schaechtle, Cameron E. Freer, Zane Shelby, Martin
C. Rinard, Feras A. Saad, and Vikash K. Mansinghka. 2024. GenSQL: A Probabilistic Programming System for
Querying Generative Models of Database Tables. Proc. ACM Program. Lang. 8, PLDI, Article 179 (June 2024),
26 pages. https://doi.org/10.1145/3656409

Authors’ addresses: Mathieu Huot, mhuot@mit.edu, Massachusetts Institute of Technology, Cambridge, MA, USA; Matin
Ghavami, mghavami@mit.edu, Massachusetts Institute of Technology, Cambridge, MA, USA; Alexander K. Lew, alexlew@
mit.edu, Massachusetts Institute of Technology, Cambridge, MA, USA; Ulrich Schaechtle, ulli-schaechtle@garage.co.jp,
Digital Garage, Tokyo, Japan; Cameron E. Freer, freer@mit.edu, Massachusetts Institute of Technology, Cambridge, MA,
USA; Zane Shelby, pldi@zane.io, Digital Garage, Tokyo, Japan; Martin C. Rinard, rinard@csail.mit.edu, Massachusetts
Institute of Technology, Cambridge, MA, USA; Feras A. Saad, fsaad@cmu.edu, Carnegie Mellon University, Pittsburgh, PA,
USA; Vikash K. Mansinghka, vkm@mit.edu, Massachusetts Institute of Technology, Cambridge, MA, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/6-ART179
https://doi.org/10.1145/3656409

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

HTTPS://ORCID.ORG/0000-0002-5294-9088
HTTPS://ORCID.ORG/0000-0003-3052-7412
HTTPS://ORCID.ORG/0000-0002-9262-4392
HTTPS://ORCID.ORG/0009-0005-8897-6394
HTTPS://ORCID.ORG/0000-0003-1791-6843
HTTPS://ORCID.ORG/0009-0003-2976-4581
HTTPS://ORCID.ORG/0000-0001-8095-8523
HTTPS://ORCID.ORG/0000-0002-0505-795X
HTTPS://ORCID.ORG/0000-0003-2507-0833
https://doi.org/10.1145/3656409
https://orcid.org/0000-0002-5294-9088
https://orcid.org/0000-0003-3052-7412
https://orcid.org/0000-0003-3052-7412
https://orcid.org/0000-0002-9262-4392
https://orcid.org/0009-0005-8897-6394
https://orcid.org/0000-0003-1791-6843
https://orcid.org/0009-0003-2976-4581
https://orcid.org/0000-0001-8095-8523
https://orcid.org/0000-0002-0505-795X
https://orcid.org/0000-0003-2507-0833
https://doi.org/10.1145/3656409

179:2 Huot, Ghavami, Lew, Schaechtle, Freer, Shelby, Rinard, Saad, Mansinghka

GenSQL Planner

Imputation

Guess all missing values
of the “Experience” field

with confidences.

SELECT exp AS Experience,
PROBABILITY OF exp UNDER
model GIVEN * AS Pr_Exp

FROM data GENERATIVE JOIN
model GIVEN *

Experience Pr_Exp
5 years 0.6
3 years 0.3
1 year 0.1

Anomaly
Detection

Who are the 3
most anomalous

respondents?

SELECT *, PROBABILITY OF
* AS Pr_Data

UNDER model FROM data
ORDER BY ASC Pr_Data
LIMIT 3

name . . . Pr_Data
Tom . . . 0.11
Lisa . . . 0.15
John . . . 0.27

Prediction

How likely is it that
a developer from

Seattle knows Rust?

SELECT
PROBABILITY OF Rust

UNDER model
GIVEN city = "Seattle"

value probability
Yes 0.78
No 0.22

Synthetic Data
Generation
Generate 1,000

synthetic rows for
women in MA.

SELECT age, salary FROM
GENERATE UNDER model
GIVEN gender = "Woman"
AND state = "MA"
LIMIT 1000

age salary
26 61k
31 77k
.

Data
Table

Probabilistic
Program

program
synthesis(optional)

User
Question

GenSQL
Query

Answer

Fig. 1. Overview of GenSQL.

1 INTRODUCTION
Building generative models of tabular data is a central focus in Bayesian data analysis [28], proba-
bilistic machine learning [55] and in applications such as econometrics [4], healthcare [38] and
systems biology [83]. Motivated by these applications, researchers have developed techniques
for automatically learning rich probabilistic models of tabular data [1, 30, 36, 50, 69]. To fully
exploit these models for solving complex tasks, users must be able to easily interleave operations
that access both tabular data records and probabilistic models. Examples computations include
(i) generating synthetic data records that satisfy user constraints; (ii) conditioning distributions
specified by probabilistic models given observed data records; and (iii) using database operations
to aggregate the results of combined queries against tabular and model data. However, the majority
of existing probabilistic programming systems are designed for specifying generative models and
estimating parameters given observations. They do not support complex database queries that
combine tabular data with generative models specified by probabilistic programs.
GenSQL. This article introduces GenSQL, a novel probabilistic programming system for querying
generative models of database tables. GenSQL is structured as a declarative extension to SQL which
seamlessly enables queries that integrate access to the tabular data with operations against the
probabilistic model. Examples include predicting new data, detecting anomalies, imputing missing
values, cleaning noisy entries, and generating synthetic observations [25, 29, 46, 73]. GenSQL
introduces a novel interface and soundness guarantees that decouple user-level specification of
high-level queries against probabilistic models from low-level details of probabilistic program-
ming, such as probabilistic modelling, inference algorithm design, and high-performance machine
implementations. GenSQL extends SQL with several constructs:

• To complement SELECT clauses that retrieve existing records from a table, GenSQL includes
the clause GENERATE UNDER𝑚 to generate synthetic records from a probabilistic model𝑚.

• To complement WHERE clauses that filter data via constraints, GenSQL introduces the clause
𝑚 GIVEN 𝑒 to condition a probabilistic model𝑚 on an event (i.e., a set of constraints) 𝑒 .

• To complement joins between tables, GenSQL introduces a new mixed join clause 𝑡 GENERATIVE

JOIN𝑚 to join each row of a data table 𝑡 with a synthetic row generated from a probabilistic
model𝑚, whose generation can be conditioned in a per-row fashion on the values of 𝑡 .

• To complement arithmetic expressions, GenSQL introduces PROBABILITY OF 𝑒 UNDER 𝑚

expressions, which compute the probability (density) of an event 𝑒 under a probabilistic
model𝑚.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

GenSQL: A Probabilistic Programming System for Querying Generative Models of Database Tables 179:3

In this work, we assume that an existing probabilistic program synthesis tool has been used to
automatically generate a probabilistic model of the user’s data satisfying a certain formal interface.
The user then uploads the data and model to GenSQL which automatically integrates them. The
user can then issue queries for a variety of tasks, as illustrated in Fig. 1. Although we envision
most users using automatically discovered models on their data, the GenSQL implementation also
supports hand-implemented or partly-learned probabilistic models. For instance, a user can develop
custom models for harmonization across different sources, as shown in Appendix A.3.

The core of GenSQL is formalized as a simply-typed extension of SQL (Section 3.1). This extension
includes standard SQL scalar expressions and tables as well as rowModels (probabilistic models of
tables) and events (a set of constructs that allow users to issue probabilistic queries that leverage
Bayesian conditioning). Together, rowModels and events enable a seamless integration of standard
SQL databases with probabilistic models, which include queries that interleave accesses to the
database records and probabilistic models.

The GenSQL query planner (Section 4) lowers queries into plans that execute against a new model
interface for probabilistic models of tabular data. This Abstract Model Interface (AMI) (Section 4.1)
provides a unifying specification of probabilistic models that are compatible with GenSQL. To
implement the AMI, the model must be able to: (i) generative samples from a (potentially approxi-
mate) conditional distribution; (ii) compute probability densities for specified points; (iii) compute
probabilities of sets in the support of the conditional distribution.

The open source GenSQL system includes a number of implementations of the AMI, including
• a Clojure implementation [61] of Gen [20], a general purpose probabilistic programming

language; see Appendix A.3 for an example.
• models produced by CrossCat [50], a probabilistic program synthesis tool;
• SPPL [73], a probabilistic programming language for exact inference.

We provide a measure-theoretic denotational semantics for the language (Section 3.2). This
semantics captures the interaction between deterministic SQL operations and probabilistic opera-
tions on the probabilistic model, enabling us to prove several correctness guarantees that query
results satisfy. Specifically, we prove guarantees for (i) the exact case, where exact inference about
marginal and conditional distributions of the probabilistic model is available (Theorem 4.2); and
(ii) a range of approximate cases, where answers to marginal and conditional queries are obtained
via approximate inference algorithms (Theorem 4.3).

We benchmark GenSQL on a set of representative queries, testing the runtime performance,
overhead of the query planner, and effect of our optimizations. The results show that all queries
execute in milliseconds against data tables of sizes up to 10,000 rows, with a speedup in the
range 1.7–6.8x against the most closely related baseline, and that the query planner’s overhead as
compared to hand-written code is small. We evaluate our system on two case studies to test its
applicability to solving real-world problems (conditional synthetic data generation for a virtual
wet lab and an anomaly detection in clinical trials), comparing against a generalized linear model
(GLM) and a conditional tabular generative adversarial network (CTGAN [87]) baseline.
Contributions. This paper makes the following contributions:

(1) The GenSQL language (Section 3.1), an extension of SQL with probabilistic models of tabular
data as first-class constructs and probabilistic constructs to allow the integration of queries
on these models with queries on the data.

(2) A unifying abstract interface for models of tabular data (Section 4.1), which bridges
the query language and probabilistic models of database tables, to which all models must
conform. The query planner lowers GenSQL queries on models to queries on this interface.

(3) Soundness theorems, which fall into two classes:

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

179:4 Huot, Ghavami, Lew, Schaechtle, Freer, Shelby, Rinard, Saad, Mansinghka

• Exact: We show that if models satisfy the exact interface, all deterministic computations
will be exact (Theorem 4.2). This theorem works with an exact denotational semantics
(Section 4.3) that precisely characterize the behavior of exact models.

• Approximate: If approximate models implement consistent estimators (i.e., estimators that
converge to the true value), we prove that all queries return consistent results (Theorem 4.3).
This theorem works with a novel denotational semantics that combines measure-theoretic
aspects with sequences of random variables.

Together, these guarantees highlight some of the tradeoffs between using an exact model
(which deliver stronger guarantees but may be difficult to obtain in some use cases) and an
approximate model (which deliver weaker guarantees but are more easily available).

(4) An open-source implementation of GenSQL in Clojure (https://github.com/OpenGen/
GenSQL.query), which can be compiled into JavaScript and run natively in the browser.

(5) A performance evaluation of our approach (Section 5) which establishes that GenSQL
is competitive with hand-coded implementations and gives improved performance over a
competitive baseline. Two case studies further demonstrate the utility of GenSQL.

2 EXAMPLE
Figure 2 presents an example GenSQL query. In this example, we work with a probabilistic model

(health_model) derived from a national database of patient information, as well as a data table
(health_data) from a set of local hospitals. The query uses the probabilistic model to estimate the
mutual information—an information-theoretic measure used in data analysis— between the age
and bmi columns (from the probabilistic model) for specific valueso f patient weights (selected from
the data table). The mutual information is a statistical measure of the strength of the association
between these two columns, defined as a sum or integral, over the joint distribution of age and
bmi, of the logarithm of the ratio of the joint density and the product of the marginal density.

The query estimates the mutual information by Monte Carlo integration, i.e., it approximates
the integral by sampling. We first generate 1000 copies of each row in the health_data table (line
15) and then use the GenSQL generative join construct (line 16) to complete each row as follows.
For each such row 𝑟 :

1 SELECT weight, AVG(log_pxy_div_px_py) AS mutual_information
2 FROM (
3 SELECT weight, LOG(pxy) - (LOG(px) + LOG(py)) AS log_pxy_div_px_py
4 FROM (
5 SELECT weight,
6 PROBABILITY OF h_model.age = table.age AND h_model.bmi = table.bmi
7 UNDER h_model GIVEN h_model.weight = table.weight AS pxy,
8 PROBABILITY OF h_model.age = table.age
9 UNDER h_model GIVEN h_model.weight = table.weight AS px,

10 PROBABILITY OF h_model.bmi = table.bmi
11 UNDER h_model GIVEN h_model.weight = table.weight AS py
12 FROM (
13 SELECT table.weight, table.age, table.bmi
14 FROM (
15 health_data DUPLICATE 1000 TIMES
16 GENERATIVE JOIN h_model
17 GIVEN h_model.weight = health_data.weight) AS table)))
18 GROUP BY weight

Fig. 2. Estimating the conditional mutual information between age and bmi given patient weights.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

https://github.com/OpenGen/GenSQL.query
https://github.com/OpenGen/GenSQL.query

GenSQL: A Probabilistic Programming System for Querying Generative Models of Database Tables 179:5

(1) a row 𝑟 ′ is sampled from a version of the model conditioned on the weight value of row 𝑟 ;
(2) the rows 𝑟 and 𝑟 ′ are concatenated.

The resulting intermediate table is called table (line 17). Each synthetic row 𝑟 ′ is used as a sample
for the Monte Carlo integration of the conditional mutual information for the corresponding weight
value. From this intermediate table, we select the weight, age, and bmi columns (line 13). Note that
the weight column comes from the patient data while the age and bmi columns come from the
rows sampled from the probabilistic model.

For each weight in the patient data, we compute the Monte Carlo approximation of the mutual
information between age and bmi for that weight as

1
1000𝑘

∑1000𝑘
𝑖=1 log 𝑝 (age𝑖 ,bmi𝑖)

𝑝 (age𝑖)𝑝 (bmi𝑖) ,

where 𝑘 is the number of patients with that specific weight, and (age𝑖 , bmi𝑖) is a sample from the
model for that weight. To do so, lines 6–11 compute the probability densities 𝑝 (age𝑖 , bmi𝑖) (lines
6–7), 𝑝 (age𝑖) (lines 8-9), and 𝑝 (bmi𝑖) (lines 10–11). For instance, the GIVEN clause conditions the
model on the weight column of the model being equal to the weight column of table (line 11).
Line 10 then computes the probability density that the bmi column of the conditioned model is
equal to the corresponding column in table. GenSQL computes these probability densities by
invoking the logpdf function in the probabilistic model interface (Section 4.1).

A traditional SQL select statement (line 5) propagates the patient weights and corresponding prob-
abilities pxy, px, and py to generate a table with four columns: the weight and the corresponding
probability densities for that weight. Line 3 computes log𝑝 (age𝑖 , bmi𝑖)−log𝑝 (age𝑖)𝑝 (bmi𝑖) for each
of the rows, naming this ratio log_pxy_div_px_py. Note that there are 1000𝑘 log_pxy_div_px_py
values for each weight in the local patient data, where 𝑘 is the number of patients with that specific
weight. Finally, line 1 computes the mutual information estimate between age and bmi, for each
weight, as the average of the log_pxy_div_px_py values for that weight. This example illustrates
the expressivity of GenSQL, but we note that our implementation has a primitive which directly
estimates conditional mutual information without the need to materialize intermediate tables.

3 SYNTAX AND SEMANTICS
3.1 Language
The core calculus extending SQL for querying from probabilistic models of tabular data is given
in Fig. 3, and the type-system is given in Fig. 4.1 As SQL is a subset of GenSQL, this calculus also
includes a simply-typed formalization of SQL where terms are given in a pair of context: a local
and a global one. We found this formalization interesting in its own right, as we could not find an
equivalent formalization in the programming languages literature.

There are several noteworthy differences with variables and contexts from traditional simply-
typed languages based on the lambda-calculus, which are explained below. We note early that
we distinguish two types of conditioning through constructs called events and events-0. Events-0
come from a technical difficulty well-known in the PPL and measure theory literature [77, 85]
when conditioning on a continuous variable taking a specific value. This creates a possible event of

probability 0, and requires special treatment.
Names and Identifiers. We assume a countable set C of names col ∈ C for the columns of tables
and rowModels, as well as a countable set I of identifiers id ∈ I for naming tables and rowModels.

1The core SQL-part of the language is minimal for expository purposes. Appendix E presents the formalization for a richer
language, including the operations GROUP BY and DUPLICATE used in Fig. 2.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

179:6 Huot, Ghavami, Lew, Schaechtle, Freer, Shelby, Rinard, Saad, Mansinghka

Description SQL Probabilistic Extension
Base/Event Type 𝜎 ::= 𝜎𝑐 | 𝜎𝑑 E ::= 𝐶1{col1 : 𝜎1, . . . , col𝑛 : 𝜎𝑛}

| 𝐶0{col1 : 𝜎1, . . . , col𝑛 : 𝜎𝑛}
Table/RowModel Type T ::= 𝑇 [id]{col1 : 𝜎1, . . . , col𝑛 : 𝜎𝑛} M ::= 𝑀 [id]{col1 : 𝜎1, . . . , col𝑛 : 𝜎𝑛}
Table Expression 𝑡 H id | RENAME 𝑡 AS id 𝑡 ::= . . .

| 𝑡1 JOIN 𝑡2 | 𝑡 WHERE 𝑒 | GENERATE UNDER𝑚 LIMIT 𝑒

| SELECT 𝑒 AS col FROM 𝑡 | 𝑡 GENERATIVE JOIN𝑚

RowModel Expression 𝑚 ::= id | 𝑚 GIVEN 𝑐𝑖 | RENAME𝑚 AS id
Scalar Expression 𝑒 ::= id.col | op(𝑒1, . . . , 𝑒𝑛) 𝑒 ::= . . . | PROBABILITY OF 𝑐𝑖 UNDER𝑚

Event Expressions 𝑐1 ::= 𝑐1
1 ∧ 𝑐1

2 | 𝑐1
1 ∨ 𝑐1

2 | id.col op 𝑒
Event-0 Expressions 𝑐0 ::= 𝑐0

1 ∧ 𝑐0
2 | id.col = 𝑒

Primitive Domains: op ∈ Op, id ∈ I, col ∈ C, 𝜎𝑐 ∈ {Real,PosReal,Ranged(𝑎, 𝑏), . . .}, 𝜎𝑑 ∈ {Int, Str,Nat,Bool, . . .}
Syntactic Sugar: 𝑒 AS col ≡ 𝑒1 AS col1, . . . , 𝑒𝑛 AS col𝑛 .

Fig. 3. Syntax of GenSQL.

Base types. Cells of tables can have a base type 𝜎 , which is either a continuous type 𝜎𝑐 or a discrete
type 𝜎𝑑 . Continuous types are Real for reals, PosReal for non-negative reals, or Ranged(𝑎, 𝑏)
for reals in the range [𝑎, 𝑏]. Discrete types are Nat for natural numbers, Int for integers, Str for
strings, Cat(n1, . . . ,n𝑘) for a categorical type over 𝑘 attributes, and Bool for Boolean.
Table and rowModel types. We denote these types by 𝐷 [?id]{col1 : 𝜎1, . . . , col𝑛 : 𝜎𝑛}. 𝐷 is either
𝑇 for tables or 𝑀 for rowModels. ?id is an optional identifier, allowing access to columns of a table
or rowModel in a query. For instance, in SELECT id.weight, the identifier id refers to a table and
weight to a column of that table. The identifier can be be optional, e.g. there is no default identifier
for a table created after a join. The notation {col1 : 𝜎1, . . . , col𝑛 : 𝜎𝑛} indicate that the table has
columns col𝑖 of type 𝜎𝑖 . Therefore, we can think of each row of a table as an element of a record
type {col1 : 𝜎1, . . . , col𝑛 : 𝜎𝑛}, a bag of rows as a table, and a rowModel as a row generator.
Scalar Expressions. Op is a set of primitive operations on base types including standard operations
such as +, ∗, <, >,= on integers and reals, ∧,∨ on Booleans, as well as constants for every value of
a base type. For any op ∈ Op, we write op : 𝜎1, . . . , 𝜎𝑛 → 𝜎 if op has arity 𝑛, takes arguments of
base types 𝜎1, . . . , 𝜎𝑛 and returns a value of type 𝜎 . In particular, operations with no arguments are
constants of the appropriate type such as true and false at the boolean type. All base types have
an additional constant Null representing a missing value. This constant is preserved by primitive
operations (e.g. Null + 3 ↦→ Null, Null ∗ 4.1 ↦→ Null). By convention, WHERE Null clauses act as
WHERE false.
Table expressions. Apart from typical SQL operations, we have two ways to generate synthetic data.
GENERATE UNDER returns a synthetic table with a given number of rows specified by the LIMIT clause,
where each row is generated by sampling from a given rowModel. GENERATIVE JOIN takes a rowModel
and a table, and returns a synthetic table with the same number of rows, where each row is
generated by concatenating the current row of the table with a sample from the rowModel. The
model generating the samples can be conditioned on the current row of the table. RENAME renames
a table or rowModel with a new identifier, therefore changing the identifier in its type and the way
to access their column in a select of event clause.
Event and event-0 expressions. Events are Boolean expressions on tables and rowModels, which
include equality on discrete values but not on continuous values, which is reserved for events-0. The
only probability 0 events are impossible under a given model, e.g. 𝑥 > 6 ∧ 𝑥 < 3, and those do not
require a separate treatment. Events and events-0 are used in the PROBABILITY OF and GIVEN constructs.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

GenSQL: A Probabilistic Programming System for Querying Generative Models of Database Tables 179:7

(a) Type System for Table Expressions
Γ,𝑇 [id] {cols};Δ ⊢ id : 𝑇 [id] {cols}
Γ;Δ ⊢ 𝑡 : 𝑇 [?id] {cols} id′ fresh

Γ;Δ ⊢ RENAME 𝑡 AS id′ : 𝑇 [id′] {cols}
Γ;Δ ⊢ 𝑡1 : 𝑇 [?id1] {cols}

Γ;Δ ⊢ 𝑡2 : 𝑇 [?id2] {cols′ } cols ∩ cols′ = ∅
Γ;Δ ⊢ 𝑡1 JOIN 𝑡2 : 𝑇 [] {cols, cols′ }

Γ;Δ ⊢ 𝑡 : 𝑇 [id] {cols} Γ;Δ,𝑇 [id] {cols} ⊢ 𝑒 : Bool
Γ;Δ ⊢ 𝑡 WHERE 𝑒 : 𝑇 [id] {cols}

Γ;Δ ⊢𝑚 : 𝑀 [id] {cols} Γ;Δ ⊢ 𝑒 : Nat
Γ;Δ ⊢ GENERATE UNDER𝑚

LIMIT 𝑒 : 𝑇 [] {cols}
Γ;Δ ⊢ 𝑡 : 𝑇 [id] {cols} cols ∩ cols′ = ∅
Γ;Δ,𝑇 [id] {cols} ⊢𝑚 : 𝑀 [id′] {cols′ }

Γ;Δ ⊢ 𝑡 GENERATIVE JOIN𝑚 : 𝑇 [] {cols, cols′ }
Γ;Δ ⊢ 𝑡 : 𝑇 [id] {cols}

Γ;Δ,𝑇 [id] {cols} ⊢ 𝑒𝑖 : 𝜎𝑖 for 1 ≤ 𝑖 ≤ 𝑛

𝑒 AS col := 𝑒1 AS col1, . . . , 𝑒𝑛 AS col𝑛
Γ;Δ ⊢ SELECT 𝑒 AS col

FROM 𝑡 : 𝑇 [] {col1 : 𝜎1, . . . , col𝑛 : 𝜎𝑛 }

(b) Type System for Event Expressions
Γ;Δ ⊢ 𝑒 : 𝜎𝑖 𝑖 ∈ {1, . . . , 𝑛}

op ∈ {<,>,=} ∀𝜎𝑐 .(𝜎𝑖 , op) ≠ (𝜎𝑐 ,=)
cols = col1 : 𝜎1, . . . , col𝑖 : 𝜎𝑖 , . . . , col𝑛 : 𝜎𝑛
Γ;Δ, 𝑀 [id] {cols} ⊢ id.col𝑖 op 𝑒 : 𝐶1{cols}
Γ;Δ ⊢ 𝑐1

1 : 𝐶1{cols} Γ;Δ ⊢ 𝑐1
2 : 𝐶1{cols}

Γ;Δ ⊢ 𝑐1
1 ∧ 𝑐1

2 : 𝐶1{cols}
Γ;Δ ⊢ 𝑐1

1 : 𝐶1{cols} Γ;Δ ⊢ 𝑐1
2 : 𝐶1{cols}

Γ;Δ ⊢ 𝑐1
1 ∨ 𝑐1

2 : 𝐶1{cols}

(c) Type System for rowModel Expressions
Γ, 𝑀 [id] {cols};Δ ⊢ id : 𝑀 [id] {cols}

Γ;Δ ⊢𝑚 : 𝑀 [id] {cols}
Γ;Δ, 𝑀 [id] {cols} ⊢ 𝑐1 : 𝐶1{cols}
Γ;Δ ⊢𝑚 GIVEN 𝑐1 : 𝑀 [id] {cols}
Γ;Δ, 𝑀 [id] {cols} ⊢ 𝑐0 : 𝐶0{cols′ }
Γ;Δ ⊢ id GIVEN 𝑐0 : 𝑀 [id] {cols}
Γ;Δ ⊢𝑚 : 𝑀 [id] {cols} id′ fresh

Γ;Δ ⊢ RENAME𝑚 AS id′ : 𝑀 [id′] {cols}

(d) Type System for Scalar Expressions
𝑖 ∈ {1, . . . , 𝑛}

Γ;Δ,𝑇 [id] {col1 : 𝜎1, . . . , col𝑛 : 𝜎𝑛 } ⊢ id.col𝑖 : 𝜎𝑖
Γ;Δ ⊢𝑚 : 𝑀 [id] {cols}

Γ;Δ, 𝑀 [id] {cols} ⊢ 𝑐1 : 𝐶1{cols}
Γ;Δ ⊢ PROBABILITY OF 𝑐1 UNDER𝑚 : Ranged(0, 1)
Γ;Δ ⊢𝑚 : 𝑀 [id] {cols} vars(𝑐0) ∩ condvars(𝑚) = ∅

Γ;Δ, 𝑀 [id] {cols} ⊢ 𝑐0 : 𝐶0{cols′ }
Γ;Δ ⊢ PROBABILITY OF 𝑐0 UNDER𝑚 : PosReal
Γ;Δ ⊢ 𝑒𝑖 : 𝜎𝑖 for 1 ≤ 𝑖 ≤ 𝑛 op : 𝜎1, . . . , 𝜎𝑛 → 𝜎

Γ;Δ ⊢ op(𝑒1, . . . , 𝑒𝑛) : 𝜎

(e) Type System for Event-0 Expressions
Γ;Δ ⊢ 𝑒 : 𝜎 𝑖 ∈ {1, . . . , 𝑛}

cols = . . . , col𝑖 : 𝜎, . . .
Γ;Δ, 𝑀 [id] {cols} ⊢ id.col𝑖 = 𝑒 : 𝐶0{col𝑖 : 𝜎 }

Γ;Δ ⊢ 𝑐0
1 : 𝐶0{cols} Γ;Δ ⊢ 𝑐0

2 : 𝐶0{cols′ }
cols ∩ cols′ = ∅

Γ;Δ ⊢ 𝑐0
1 ∧ 𝑐0

2 : 𝐶0{cols, cols′ }

Fig. 4. Type system of GenSQL.

PROBABILITY OF takes an event (or event-0) expression and a rowModel to query and returns the
probability (or probability density) of the event under the model.2

RowModel expressions. GIVEN takes a rowModel and an event (or event-0) expression, and returns
a new rowModel, the conditional distribution of the original rowModel on the event. The event
expression can be given by a list of inequalities on arbitrary variables and equalities on discrete
variables, in which case GIVEN acts as a set of constraints on the possible returned values of the
model. Otherwise, the event expression can be a set of equalities on possibly continuous values
and is understood as conditioning the model on the given values.
Contexts. Expressions are typed in a pair of contexts Γ;Δ containing table and rowModel types.
As these types include identifiers, there is no need for the more classical notation 𝑥 : 𝜏 pairing
a variable with its type. Γ is a set of types, while Δ is an ordered list of types. In the premise of a
2It may be confusing for people familiar with probabilistic programming languages (PPLs) to use PROBABILITY OF for
both a probability mass and a probability density. Our implementation has two versions of the syntax: a strict one
and a permissive one. The strict syntax distinguishes between the two, and in particular on events-0 one the primitive
is PROBABILITY DENSITY OF. The permissive syntax allows to use PROBABILITY OF for both, and the system will
automatically choose the right version based on the type of the event.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

179:8 Huot, Ghavami, Lew, Schaechtle, Freer, Shelby, Rinard, Saad, Mansinghka

typing rule such as PROBABILITY OF , only the last element of Δ will be accessible to an expression.
We denote the empty context by []. Intuitively, Γ contains the ambient tables in the database
schema and any loaded models, and within Γ, all identifiers id are assumed distinct. Δ is the value

environment, and contains only tables that are “in scope” for a particular expression. Scalar, event,
and event-0 expressions all depend on the value environment. If an expression has a table in scope,
it will be iterated over the rows of that table and can only access the current row. If a PROBABILITY OF

expression has a rowModel in scope, it will query the model for the probability of an event under
that model. If it’s a GIVEN expression, it will condition that model on an event.
Typing rules. Judgments are of the form Γ;Δ ⊢ e : t where e is an expression (𝑡 , 𝑒 , 𝑚, 𝑐1, 𝑐0 in
Figure 3); t is a type (𝜎 , T , E, M in Figure 3), and Γ;Δ is a context. Given some loaded tables and
rowModels forming environment Γ, the objects of interest are “closed expressions” of table type,
i.e., expressions of the form Γ; [] ⊢ 𝑡 : 𝑇 [?id]{cols}. “Closed” here refers to Δ being empty, not
Γ. Notable rules include those that need the same identifier twice, such as the PROBABILITY OF or
the WHERE rule. For instance, in the 𝑡 WHERE 𝑒 rule, where 𝑡 has identifier id, a valid SQL 𝑒 would
be id.col = 3 where col is a column of 𝑡 . This reflects the fact that the expression 𝑒 should have
access to the identifier id in its local environment, and that the column col of 𝑡 will be iterated
over by the expression 𝑒 .
Notations used in the type system. ?id indicates an optional identifier and id. ”id′ fresh” means
that id′ is not in the contexts Γ, Δ or in the type of a subterm of the expression. We will often
abbreviate {col1 : 𝜎1, . . . , col𝑛 : 𝜎𝑛} as {cols}. We write cols ∩ cols′ = ∅ when the set of
column names in cols and in cols′ should be disjoint. In the first typing rule for events, we write
∀𝜎𝑐 .(𝜎𝑖 , op) ≠ (𝜎𝑐 ,=) to mean that op cannot be an equality on a continuous type. We recursively
define the following two macros:
vars(id.col op 𝑡) = {col} vars(𝑐 ∧ 𝑐′) = vars(𝑐) ∪ vars(𝑐′) vars(𝑐 ∨ 𝑐′) = vars(𝑐) ∪ vars(𝑐′)
condvars(𝑚 GIVEN 𝑐0) = vars(𝑐0) condvars(𝑚 GIVEN 𝑐1) = condvars(𝑚) condvars(id) = ∅
Restrictions imposed by the type system. If the same identifier id appears twice in the premise of
a typing rule, the two identifiers must equal, and two different identifiers id and id′ must be distinct.
The JOIN and GENERATIVE JOIN operations require that the columns of the two tables have disjoint
names. As explained above, events are disallowed to be equalities on continuous types. A model can
only be conditioned once on an event-0, which is enforced by the restriction id GIVEN 𝑐0. Events-0
follow a linear typing system to avoid contradictory statements such as id.col = 1.0∧ id.col = 2.0.
Events-0 in a PROBABILITY OF query on a conditioned model cannot refer to the conditioned columns
of the model, which is enforced by the restriction vars(𝑐0) ∩ condvars(𝑚) = ∅.3

Syntactic sugar. Our implementation includes various syntactic sugars that are not present
in the formalization but which are used in several figures. Given 𝑡 :𝑇 [id]{col1:𝜎1, . . . , col𝑛 :𝜎𝑛},
𝑚:𝑀 [id′]{col′1:𝜎1, . . . , col′𝑛 :𝜎𝑛}, we have the following equivalences:
• SELECT ∗ FROM 𝑡 ⇝ SELECT id.col1, . . . , id.col𝑛 FROM 𝑡

• PROBABILITY OF ∗ ⇝ PROBABILITY OF 𝑒 for any query of the form SELECT PROBABILITY OF ∗
UNDER𝑚 GIVEN 𝑐 FROM 𝑡 , where 𝑒 B id′ .col′1 = id.col1 ∧ . . . ∧ id′ .col′𝑛 = id.col𝑛 .

• 𝑚 GIVEN ∗⇝𝑚 GIVEN 𝑒 within a SELECT FROM 𝑡 query. The event 𝑒 B id′ .col′𝑖1 = id.col𝑖1 ∧ . . .∧
id′ .col′𝑖𝑘 = id.col𝑖𝑘 , where the col𝑖 𝑗 are columns 𝑡 that do not appear in the SELECT clause.

• ∗ EXCEPT id.col removes the column col from list of columns that ∗ selects.

3Our implementation is less restricted. It allows join variants such as SQL’s left join where the tables do not have disjoint
columns. It also allows multiple conditionings on the same model, which are then normalized to the form above. See
Appendix D.1 for details about the normalization.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

GenSQL: A Probabilistic Programming System for Querying Generative Models of Database Tables 179:9

3.2 Semantics
We define denotational semantics using measure theory, shown in Fig. 5. Even though the SQL subset
of GenSQL is not probabilistic, our probabilistic semantics ensures compositional reasoning about
the semantics of SQL queries combined with probabilistic GenSQL expressions, such as synthetic
tables generated by rowModels. Per usual, the semantics of expressions is defined compositionally
on typing judgement derivations, and ⟦e⟧ is a shorthand for ⟦Γ;Δ ⊢ e : t⟧.
Base types (Fig. 5c). We assign to each type 𝜎 a measure space ⟦𝜎⟧ := (𝑋𝜎 , Σ𝑋𝜎

, 𝜈𝜎) consisting of
a set 𝑋𝜎 , a sigma-algebra Σ𝑋𝜎

, and reference measure 𝜈𝜎 . Z denotes the set of integers, N natural
numbers, and B Booleans, which are equipped with the discrete sigma-algebra. We equip the reals
R with the Borel sigma-algebra. We interpret Null by adding a fresh element {★} to the standard
interpretation of each base type, equipped with the discrete sigma-algebra. The semantics of a base
type 𝜎 is then given by the smallest sigma-algebra making {★} measurable, as well as ensuring
that every previously measurable set remains measurable. (This construction is also called the
“direct-sum sigma-algebra” [24, 214L]).

The base measure on discrete types 𝜎𝑑 such as Int,Nat,Bool, Str is the counting measure. On
continuous types 𝜎𝑐 such as Real, the base measure is the Lebesgue measure 𝜆. These are extended
to base measures 𝜈𝜎 on ⟦𝜎⟧ by using the dirac measure 𝛿{★} on {★}, e.g. the base measure on ⟦R⟧
is 𝜆R + 𝛿{★} . We write 𝜇 ⊗ 𝜈 for the product of measures. We extend the reference measure to the
product space

∏
1≤𝑖≤𝑛⟦𝜎𝑖⟧ by taking the product of the reference measures 𝜈 ≔

⊗
1≤𝑖≤𝑛 𝜈𝜎𝑖 .

Table types (Fig. 5a). Our semantics has two modes of interpreting table types, a “tuple mode”
Tup⟦−⟧, and a “table mode” Tab⟦−⟧. Tab⟦−⟧ interprets tables as measures on bags of tuples, while
Tup⟦−⟧ interprets a table as a tuple, representing the current row of the table being processed
by a scalar, event or event-0 expression. More precisely, we denote by P(𝑋) the measurable
space of probability measures on the standard Borel space 𝑋 [32]. The table semantics interprets
table types as measures on bags of tuples Tab⟦𝑇 [?id]{cols}⟧ = Bag(Tup⟦𝑇 [?id]{cols}⟧), where
Bag(𝑋) = {𝑓 : 𝑋 → N | 𝑓 (𝑥) = 0 except for finitely many 𝑥}. Bag(𝑋) is equipped with the least
sigma-algebra containing the generating sets {𝑏 ∈ Bag(𝑋) | 𝑏 contains exactly 𝑘 elements in 𝐴}
for measurable sets 𝐴 of 𝑋 [21].
Contexts (Fig. 5b). We interpret the global context Γ with the table semantics Tab⟦−⟧ and the
local context Δ with the tuple semantics Tup⟦−⟧. We write 𝛾 for an element of Tab⟦Γ⟧, and see
it as a finite map from identifiers to values. Likewise, we write 𝛿 for an element of Δ. We write
𝛿 [id ↦→ 𝑣] for the extended finite map mapping id to 𝑣 .
Scalar expressions (Fig. 5d). We then interpret scalar expressions Γ;Δ ⊢ 𝑒 : 𝜎 as measurable
functions Tab⟦Γ⟧ × Tup⟦Δ⟧ → ⟦𝜎⟧. We lift operations op to interpret Null, and write op𝑠 for the
extended version of op which sends ★ to ★.
Event expressions (Fig. 5g). An event expression ⟦𝑐1 : 𝐶1{cols}⟧(𝛾, 𝛿) is interpreted as a measur-
able subset 𝑆 of ⟦cols⟧ (disjoint union of hyper-rectangles [73]). Depending on the expression, this
set 𝑆 is used in different ways. We interpret the probability clause PROBABILITY OF 𝑐1 UNDER𝑚 as∫
⟦cols⟧ 1𝑆𝑑𝜇, where 𝜇 is the measure denoting the model𝑚, i.e. 𝑆 is used in an indicator function 1𝑆 .

When used in a GIVEN clause, we constrain the model to the event 𝑆 , which is then renormalized.
If the event has probability 0, we instead return a row of Null. A similar situation to WHERE Null
arises for GIVEN , e.g. in GIVEN id.col op Null. Following the principle of least surprise, Null acts
by convention as a unit for conditioning, i.e. id GIVEN id.col op Null behaves the same as id. To
ensure this we interpret boolean expressions op differently in the semantics of events, and write
op𝑙 for the extended version of op which sends ★ to true. The denotation of id.col op Null will
therefore be the entire space, and conditioning a model on this event will not change its denotation.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

179:10 Huot, Ghavami, Lew, Schaechtle, Freer, Shelby, Rinard, Saad, Mansinghka

(a) Semantics of Table and rowModel Types
Tup⟦𝑇 [?id] {col1 : 𝜎1, . . . , col𝑛 : 𝜎𝑛 }⟧ =

∏
1≤𝑖≤𝑛⟦𝜎𝑖⟧

⟦𝑀 [?id] {col1 : 𝜎1, . . . , col𝑛 : 𝜎𝑛 }⟧ = Pdens
(∏

1≤𝑖≤𝑛⟦𝜎𝑖⟧
)

Tab⟦𝑇 [?id] {col1 : 𝜎1, . . . , col𝑛 : 𝜎𝑛 }⟧ = PBag
(∏

1≤𝑖≤𝑛⟦𝜎𝑖⟧
)

Tab⟦𝑀 [?id] {col1 : 𝜎1, . . . , col𝑛 : 𝜎𝑛 }⟧ = Padm
(∏

1≤𝑖≤𝑛⟦𝜎𝑖⟧
)

(b) Semantics of Contexts
Tup⟦Δ := T,Δ′⟧ = Tup⟦T⟧ × Tup⟦Δ′⟧
Tup⟦Δ := M,Δ′⟧ = ⟦M⟧ × Tup⟦Δ′⟧
Tab⟦Γ := T, Γ′⟧ = Tab⟦T⟧ × Tab⟦Γ′⟧
Tab⟦Γ := M, Γ′⟧ = Tab⟦M⟧ × Tab⟦Γ′⟧

(c) Semantics of Base Types
⟦Bool⟧ := (B ∪ {★}, P(B ∪ {★}), 𝜈B)
⟦Int⟧ := (Z ∪ {★}, P(Z ∪ {★}), 𝜈Z)
⟦Str⟧ := (Str ∪ {★}, P(Str ∪ {★}), 𝜈Str)

⟦Real⟧ := (R ∪ {★}, B(R ∪ {★}), 𝜈R)
⟦PosReal⟧ := (R+ ∪ {★}, B(R+ ∪ {★}), 𝜈R+)

(d) Semantics of Scalar Expressions
⟦id.col𝑖⟧(𝛾, 𝛿) = 𝜋𝑖 (𝛿 (id)) where𝑇 [?id] {cols} ∈ Δ

⟦op(𝑒1, . . . , 𝑒𝑛)⟧(𝛾, 𝛿) = op𝑠 (⟦𝑒1⟧(𝛾, 𝛿), . . . , ⟦𝑒𝑛⟧(𝛾, 𝛿))
⟦ PROBABILITY OF 𝑐1 UNDER𝑚⟧(𝛾, 𝛿)= ⟦𝑚⟧(𝛾, 𝛿) .meas

(
⟦𝑐1⟧(𝛾, 𝛿)

)
⟦ PROBABILITY OF 𝑐0 UNDER𝑚⟧(𝛾, 𝛿) = let (𝜋, 𝑣) =
⟦𝑐0⟧(𝛾, 𝛿 [id ↦→ ⟦𝑚⟧(𝛾, 𝛿)])in ⟦𝑚⟧(𝛾, 𝛿) .pdf(𝑣)

(e) Semantics of Table Expressions
⟦id : 𝑇 [?id] {cols}⟧(𝛾, 𝛿) = 𝛾 (id) ⟦ RENAME 𝑡 AS id′⟧(𝛾, 𝛿) = ⟦𝑡⟧(𝛾, 𝛿)

⟦𝑡1 JOIN 𝑡2⟧(𝛾, 𝛿) = (𝜆𝑥, 𝑦.map2 (𝜆𝑟1, 𝑟2 .(𝑟1, 𝑟2)) 𝑥 𝑦)∗ (⟦𝑡1⟧(𝛾, 𝛿) ⊗ ⟦𝑡2⟧(𝛾, 𝛿))

⟦𝑡 : 𝑇 [?id] {cols} WHERE 𝑒⟧(𝛾, 𝛿) =
(
𝜆𝑥.filter (𝜆𝑟 .⟦𝑒⟧(𝛾, 𝛿 [id ↦→ 𝑟])) 𝑥

)
∗
⟦𝑡⟧(𝛾, 𝛿)

⟦ GENERATE UNDER𝑚 LIMIT 𝑒⟧(𝛾, 𝛿) = let 𝑛 = ⟦𝑒⟧(𝛾, 𝛿) in
(
𝜆 (𝑥1, . . . , 𝑥𝑛) .

⋃
1≤𝑖≤𝑛 {𝑥𝑖 }

)
∗

⊗
1≤𝑖≤𝑛⟦𝑚⟧(𝛾, 𝛿) .meas

⟦ SELECT 𝑒1 AS col1, . . . , 𝑒𝑛 AS col𝑛 FROM 𝑡 : 𝑇 [?id] {cols}⟧(𝛾, 𝛿) =(
𝜆𝑥.map (𝜆𝑟 .

(
⟦𝑒1⟧(𝛾, 𝛿 [id ↦→ 𝑟]), . . . , ⟦𝑒𝑛⟧(𝛾, 𝛿 [id ↦→ 𝑟])

)
) 𝑥

)
∗
⟦𝑡⟧(𝛾, 𝛿)

⟦(𝑡 : 𝑇 [?id] {cols}) GENERATIVE JOIN𝑚⟧(𝛾, 𝛿) = ⟦𝑡⟧(𝛾, 𝛿) ≫=
(
𝜆𝑦.fold (𝜆𝜇, 𝑟 .𝜇 ≫=(

𝜆𝑥.(𝜆{𝑟 ′ } .𝑥 ∪ { (𝑟, 𝑟 ′) })∗⟦ GENERATE UNDER𝑚 LIMIT 1⟧(𝛾, 𝛿 [id ↦→ 𝑟]) .meas
)
𝛿{} 𝑦

)
(f) Semantics of rowModel Expressions

⟦id : 𝑀 [?id] {cols}⟧(𝛾, 𝛿) = (𝛾 (id) .meas, 𝛾 (id) .pdf) ⟦ RENAME𝑚 AS id′⟧(𝛾, 𝛿) = ⟦𝑚⟧(𝛾, 𝛿)
⟦𝑚 GIVEN 𝑐1 : 𝐶1{cols}⟧(𝛾, 𝛿) = Cond(⟦𝑚⟧(𝛾, 𝛿), ⟦𝑐1⟧(𝛾, 𝛿 [id ↦→ ⟦𝑚⟧(𝛾, 𝛿)]))
⟦id GIVEN 𝑐0 : 𝐶0{cols′ }⟧(𝛾, 𝛿) = let (𝜋, 𝑣) = ⟦𝑐0⟧((𝛾, 𝛿 [id ↦→ ⟦id⟧(𝛾, 𝛿)])) in Dis(𝛾 (id), 𝜋, 𝑣)

(g) Semantics of Event Expressions
⟦∧1≤𝑖≤2 𝑐

1
𝑖
⟧(𝛾, 𝛿) = ⋂

1≤𝑖≤2⟦𝑐1
𝑖
⟧(𝛾, 𝛿)

⟦∨1≤𝑖≤2 𝑐
1
𝑖
⟧(𝛾, 𝛿) = ⋃

1≤𝑖≤2⟦𝑐1
𝑖
⟧(𝛾, 𝛿)

(h) Semantics of Event-0 Expressions

⟦
∧

1≤𝑖≤2
𝑐0
𝑖 ⟧(𝛾, 𝛿) =

{(
𝜆𝑥.(𝑓1 (𝑥), 𝑓2 (𝑥)), (𝑣1, 𝑣2)

)let 1≤𝑖≤2 (𝑓𝑖 , 𝑣𝑖) = ⟦𝑐0
𝑖
⟧(𝛾, 𝛿) in

⟦id.col𝑖 op 𝑒 : 𝐶1{cols}⟧(𝛾, 𝛿) = { (𝑥1, . . . , 𝑥𝑛) ∈ ⟦cols⟧ | 𝑥𝑖 op𝑙 ⟦𝑒⟧(𝛾, 𝛿) } ⟦id.col𝑖 = 𝑒⟧(𝛾, 𝛿) = (𝜋𝑖 , ⟦𝑒⟧(𝛾, 𝛿))

Fig. 5. Denotational semantics of GenSQL.

Event-0 expressions (Fig. 5h). ⟦𝑐0 : 𝐶0{cols}⟧(𝛾, 𝛿) is interpreted as a pair of a projection function
𝜋 and a value 𝑣 in the codomain of the projection. 𝑣 is used to specify the point at which we want to
condition or evaluate a density, and 𝜋 is used to project the model to the relevant subspace, which
we detail in the paragraph on rowModel expressions.
Table expressions (Fig. 5e). We interpret closed tables expressions ⊢ 𝑡 : 𝑇 [?id]{cols} as measures
on their columns, i.e. elements of P

(
Tab⟦𝑇 [?id]{cols}⟧

)
. We write 𝜇≫=𝜅 for the composition

of a measure 𝜇 on 𝑋 with a kernel 𝑋 → P𝑌 , defined by 𝜇≫=𝜅 (𝑑𝑦) =
∫
𝜅 (𝑥, 𝑑𝑦)𝜇 (𝑑𝑥). Given a

measurable function 𝑓 : 𝑋 → 𝑌 , we denote the pushforward measure by 𝑓∗𝜇 (𝐴) := 𝜇 (𝑓 −1 (𝐴)).

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

GenSQL: A Probabilistic Programming System for Querying Generative Models of Database Tables 179:11

We use functional programming notation for the mathematical functions filter , map , map2 ,
fold . Given a bag 𝑆 and a function 𝑓 : 𝑆 → B, we define the bag filter 𝑓 𝑆 := {𝑥 ∈ 𝑆 | 𝑓 (𝑥) ≠ 0}.
Likewise, we define map 𝑓 𝑆 := {𝑓 (𝑥) | 𝑥 ∈ 𝑆} and map2 𝑓 𝑆 𝑇 := {𝑓 (𝑥,𝑦) | 𝑥 ∈ 𝑆,𝑦 ∈ 𝑇 }. A
function 𝑓 : 𝑋 × 𝑌 → 𝑌 is commutative [21] if 𝑓 (𝑥1, 𝑓 (𝑥2, 𝑦)) = 𝑓 (𝑥2, 𝑓 (𝑥1, 𝑦)) for all 𝑥1, 𝑥2, 𝑦.
Given a commutative function 𝑓 : 𝑋 × 𝑌 → 𝑌 , we further define fold 𝑓 : 𝑌 × Bag(𝑋) → 𝑌 by
fold 𝑓 𝑦0{𝑥1, . . . , 𝑥𝑛} = 𝑓 (𝑥1, 𝑓 (𝑥2, . . . 𝑓 (𝑥𝑛, 𝑦0) . . .)).
RowModel expressions (Fig. 5f). The semantics of rowModels is more involved, as conditioning
statements GIVEN 𝑐0 require conditioning on events of probability 0. We first review the minimal
setting that helps us define conditioning on event-0 expressions. Given measurable spaces 𝐴, 𝐵
with reference measure 𝜈𝐴, 𝜈𝐵 , a measure 𝜇 on 𝐴 × 𝐵 admits an (𝐴, 𝐵) disintegration if we can write
𝜇 = 𝜈𝐴 ⊗ 𝜅 for some measure kernel 𝜅 such that for all 𝑎 ∈ 𝐴, 𝜅 (𝑎) has a density 𝑝 (− | 𝑎) w.r.t. 𝜈𝐵 .
A valid decomposition (𝐴, 𝐵) for

∏
1≤𝑖≤𝑛⟦𝜎𝑖⟧ is given by 𝐴 =

∏
𝑗∈ 𝐽 ⟦𝜎 𝑗⟧ for some 𝐽 ⊆ {1, . . . , 𝑛}

and 𝐵 =
∏

𝑗∈{1,...,𝑛}− 𝐽 ⟦𝜎 𝑗⟧. A measure 𝜇 ∈ P(∏1≤𝑖≤𝑛⟦𝜎𝑖⟧) is admissible if it admits an (𝐴, 𝐵)
disintegration for all valid decompositions (𝐴, 𝐵) of

∏
1≤𝑖≤𝑛⟦𝜎𝑖⟧.

We consider measures 𝜇 on spaces 𝑋 with chosen disintegrations and (marginal) densities w.r.t.
the reference measure. More precisely, we interpret a rowModel id from the global context Γ as a
quadruple Tab⟦id⟧ := (𝜇, 𝑝, {𝜅𝐴}𝐴, {𝑝}𝐴). Here, 𝜇 is a measure denoting the unconditioned model,
and 𝑝 a density of 𝜇 w.r.t. the reference measure. For each valid decomposition (𝐴, 𝐵) of the columns
of id, the kernel 𝜅𝐴 is an (𝐴, 𝐵)-disintegration of 𝜇. For all 𝑎 ∈ 𝐴, 𝑝𝐴 (− | 𝑎) is a density for 𝜅𝐴 (𝑎)
w.r.t. the reference measure 𝜈𝐵 . If 𝑣 is a partial assignment of the variables in 𝐵, we also write
𝑝𝐴 (𝑣 | 𝑎) for the marginal density of 𝜅𝐴 (𝑎) at 𝑣 obtained from 𝑝𝐴 (− | 𝑎) by integrating out the
missing variables in 𝑣 . We denote by Padm (𝑋) the set of such quadruples (𝜇, 𝑝, {𝜅𝐴}𝐴, {𝑝}𝐴), where
𝜇 is a measure on 𝑋 . Given 𝑚 ∈ Padm (𝑋), we write 𝑚.meas for its first component 𝜇, 𝑚.pdf for
the density 𝑝 , 𝑚.𝐴 for the kernel 𝜅𝐴, and 𝑚.𝐴.pdf for the density 𝑝𝐴. Using this notation, given an
event-0 𝑐0 denoting a projection 𝜋 and value 𝑣 , the expression𝑚.pdf(𝑣) gives a marginal density of
the model𝑚 at 𝑣 ; i.e.𝑚.pdf(𝑣) is a version of the density of 𝜋∗𝑚.meas evaluated at 𝑣 . We assume
that all the models in the context are admissible, which is enforced in the semantics of contexts.

The models used in queries are built from admissible models and will carry chosen densities,
which is enforced in the semantics of rowModel expressions. We write Pdens (𝑋) for the set of pairs
(𝜇, 𝑝) where 𝜇 is a measure on 𝑋 := 𝑋1 × . . . × 𝑋𝑛 and 𝑝 is either a density of 𝜇 w.r.t. the reference
measure, or of the form 𝜆(𝑥1, . . . , 𝑥𝑛).𝑞(𝑥𝑖1 , . . . , 𝑥𝑖𝑘) for some 𝑖1, . . . , 𝑖𝑘 , and where 𝑞 is a marginal
density of 𝜇 on 𝑋𝑖1 × . . . ×𝑋𝑖𝑘 w.r.t. the reference measure. The second case is used to represent the
density of a model conditioned on an event-0 expression.

Conditioning on events-0 requires access to a disintegration of the model at the point 𝑣 , which is
possible thanks to the restriction from the type-system. For𝑚 ∈ Padm (𝑋), 𝜋 : 𝑋 → 𝑌 a projection
function, and 𝑣 ∈ 𝑌 , we define Dis(𝑚, 𝜋, 𝑣) := (𝑚.𝜋 (𝑋) (𝑣) ⊗ 𝛿𝑣,𝑚.𝜋 (𝑋).pdf(𝑣)).

For conditioning on events, given𝑚 ∈ Pdens (𝑋) and a measurable 𝑆 ⊆ 𝑋 , we define

cond(𝑚, 𝑆) :=

(
𝜆𝑆 ′ .

𝑚.meas(𝑆 ∩ 𝑆 ′)
𝑚.meas(𝑆) , 𝜆𝑥 .

1𝑆 (𝑥)𝑚.pdf(𝑥)
𝑚.meas(𝑆)

)
if𝑚.meas(𝑆) > 0(

𝛿{★,...,★},1{ (★,...,★) }
)

otherwise

4 ABSTRACT MODEL INTERFACE AND QUERY PLANNER
This section presents a query planner that automatically lowers GenSQL queries to programs that
operate on tables and rowModels. This lowering depends on the Abstract rowModel Interface (AMI)
which we assume all loaded rowModels must satisfy. The AMI is a flexible interface that many
rowModel implementations can easily satisfy. This flexibility means that model implementations
can strike different expressiveness-speed-accuracy trade-offs, and give different guarantees.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

179:12 Huot, Ghavami, Lew, Schaechtle, Freer, Shelby, Rinard, Saad, Mansinghka

Appendix A.2 compares an exact SPPL backend to an approximate Gen.clj backend on 5 queries.
In what follows, we define the AMI and show how to lower GenSQL queries to programs that

access rowModels through the AMI interface. We showcase the flexibility of the AMI by proving
formal guarantees for two different implementations of the AMI. We show in Section 4.3 that if the
AMI is implemented in a PPL with exact inference, then GenSQL queries can be lowered to programs
in a semantics-preserving way. We then show in Section 4.4 that if the AMI is implemented in a
PPL with approximate inference, then GenSQL queries can be lowered to programs that encode
asymptotically sound estimators for PROBABILITY OF expressions and asymptotically sound samplers
for GENERATE UNDER expressions.

4.1 Abstract Model Interface (AMI)
A rowModel represents a probability distribution on rows with a fixed set of columns. The AMI
captures the intuition that a model should be able to produce samples and compute probabilities
and densities for all conditioned versions of the distribution it represents. For each rowModel
𝑀 [?id]{cols}, the AMI requires the existence of the following three methods:

simulateid : (𝐶0{cols′},𝐶1{cols}) → 𝑇 [?id]{cols}
logpdf id : (𝐶0{cols′},𝐶1{cols},𝐶0{cols′′}) → Real

probid : (𝐶0{cols′},𝐶1{cols},𝐶1{cols}) → Ranged(0, 1).

where cols′, cols′′ ⊆ cols. These methods should behave as follows:
• simulateid (𝑐0, 𝑐1) returns a sample from a model with identifier id, conditioned on the event-0
𝑐0 and event 𝑐1.

• logpdf id (𝑐0, 𝑐1, 𝑐0
2) returns the (marginal if cols′′ ⊊ cols) log-density of the model id condi-

tioned on the event-0 𝑐0 and event 𝑐1, at the point 𝑐0
2.

• probid (𝑐0, 𝑐1, 𝑐1
2) returns the probability of the event 𝑐1

2 under the model id, conditioned on
the event-0 𝑐0 and event 𝑐1.

A non-conditioned model is recovered by letting the subset cols′ to be empty. The precise usage
of these methods is given in the next section. The AMI methods can have different formal semantics,
capturing different aspects of the backend probabilistic model it abstracts. These semantics reflect
different implementation strategies implementing conditional sampling and probability evaluation.
Appendix C shows how different model classes can implement the AMI. In particular, we show
that SPPL [73] and truncated multivariate Gaussians satisfy the exact AMI, and that any PPL
implementing ancestral sampling will satisfy the approximate AMI. We next describe how the
GenSQL query planner lowers queries to programs that rely on the AMI, before giving details about
the semantics and correctness guarantees.

4.2 Lowering GenSQL toQueries on the AMI
The lowering procedure from GenSQL to a lowered language is given in two steps: (i) a normalization
transform for GenSQL queries; and (ii) a program transform to the lowered language.
Normalization ofGenSQLQueries. The normalization (see Appendix D.1) simply simplifies RENAME

statements and aggregates events in a single conditioning statement. It leads to the following normal
forms, where GIVEN clauses are optional:

• Probability queries: PROBABILITY OF 𝑐𝑖1 UNDER (id GIVEN 𝑐0 GIVEN 𝑐1).
• Generate queries: GENERATE UNDER (id GIVEN 𝑐0 GIVEN 𝑐1) LIMIT 𝑒 and
𝑡 GENERATIVE JOIN (id GIVEN 𝑐0 GIVEN 𝑐1).

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

GenSQL: A Probabilistic Programming System for Querying Generative Models of Database Tables 179:13

base type 𝜎 ::= 𝜎𝑐 | 𝜎𝑑 ground type 𝜎𝑔 ::= 𝜎 | (𝜎1, . . . , 𝜎𝑛) event type E ::= 𝐶1 [𝜎𝑔] | 𝐶0 [𝜎𝑔]
type 𝜏 ::= Bag[𝜎𝑔] operator op ::= + | − | × | ÷ | ∧ | ∨ | = rowModel M ::= 𝑀 [𝜎𝑔]

primitives 𝑓 ::= mapreduce | map | filter | replicate | join | exp
| singleton | simulateid | probid | logpdf id

term 𝑡 ::= 𝑐 | id | 𝑓 (𝑡1, . . . , 𝑡𝑛) | 𝑥 | (𝑡1, . . . , 𝑡𝑛) | 𝜋𝑖 𝑡 | 𝑡1 𝑜𝑝 𝑡2

Γ ⊢ 𝑡1 : 𝐶0 [𝜎1
𝑔] Γ ⊢ 𝑡2 : 𝐶0 [𝜎2

𝑔]
Γ ⊢ 𝑡1 ∧ 𝑡2 : 𝐶0 [𝜎1

𝑔 , 𝜎
2
𝑔]

Γ ⊢ 𝑡1 : 𝐶1 [𝜎𝑔] Γ ⊢ 𝑡2 : 𝐶1 [𝜎𝑔] op ∈ {∧,∨}
Γ ⊢ 𝑡1 op 𝑡2 : 𝐶1 [𝜎𝑔]

Γ ⊢ 𝑡 : 𝜎𝑖 op ∈ {=, <, >} (𝜎𝑖 , op) ≠ (𝜎𝑐 ,=)
Γ, id : 𝑀 [(𝜎1, . . . , 𝜎𝑛)] ⊢ (id, 𝑖) op 𝑡 : 𝐶1 [(𝜎1, . . . , 𝜎𝑛)]

Γ, id : 𝑀 [𝜎𝑔] ⊢ 𝑐𝑖 : 𝐶𝑖 [𝜎𝑔] Γ, id : 𝑀 [𝜎𝑔] ⊢ 𝑐1
1 : 𝐶1 [𝜎𝑔]

Γ, id : 𝑀 [𝜎𝑔] ⊢ probid (𝑐0, 𝑐1, 𝑐1
1,) : Ranged(0, 1)

Γ, id : 𝑀 [𝜎𝑔] ⊢ 𝑐𝑖 : 𝐶𝑖 [(𝜎1, . . . , 𝜎𝑛)]
Γ, id : 𝑀 [𝜎𝑔] ⊢ simulateid (𝑐0, 𝑐1) : Bag[𝜎𝑔]

Γ ⊢ 𝑡 : 𝜎𝑖
Γ, id : 𝑀 [(𝜎1, . . . , 𝜎𝑛)] ⊢ (id, 𝑖) = 𝑡 : 𝐶0 [𝜎𝑖]

Γ, id : 𝑀 [𝜎𝑔] ⊢ 𝑐𝑖 : 𝐶𝑖 [𝜎𝑔] Γ, id : 𝑀 [𝜎𝑔] ⊢ 𝑐0
1 : 𝐶0 [𝜎𝑔]

Γ, id : 𝑀 [𝜎𝑔] ⊢ logpdf id (𝑐0, 𝑐1, 𝑐0
1) : Real

Fig. 6. A selected subset of the syntax and type system of the lowered language.

Lowering Language (Fig. 6). It is a first-order simply-typed lambda calculus with second-order
operations acting on bags, and primitives for the AMI. It also contains a version of events and
events-0 which can be used by AMI primitives. Operations like map , filter and exp have their
usual meaning, and their typing along with those for constants, tuples, projections, and arithmetic
operations are standard and recalled in Appendix D (Fig. 20). join takes two bags of tuples and
returns their Cartesian product. replicate evaluates its bag argument 𝑛 times and returns the union
of all the resulting bags. mapreduce takes a bag of tuples and a function 𝑓 from tuples to bags,
and returns the union of all the bags obtained by applying 𝑓 to each tuple in the input bag.
Lowering program transform (Fig. 7). After obtaining a normal form query, the planner applies a
program transformation T𝛿 {·} from normalized GenSQL queries to the lowered language, defined
by pattern matching on the structure of the query. It carries a local context 𝛿 of variables (a finite
map from identifiers to variable names) which are bound in the surrounding program. Similarly
to the local context Δ in GenSQL, 𝛿 will start empty [] at the root of the syntax tree. It is used
to rename variables in the lowered query. The rationale is that a table identifier id in Δ will be
transformed to a variable 𝑟 representing a tuple being iterated over by a map or fold primitive. A
rowModel identifier id, on the other hand, will be uniquely accessible and identified from the global
context Γ, thanks to the normalization procedure which ensures that no rowModel is renamed in
the normalized query. A simple proof by induction shows that the transformation preserves typing.

Proposition 4.1. If Γ, [] ⊢ 𝑡 : 𝑇 [?id]{cols}, then T {Γ} ⊢ T[] {𝑡} : T {𝑇 [?id]{cols}}.

4.3 Lowering Guarantees for Exact Backend
A large class of models supports exact inference, e.g. those expressible in SPPL [73] and truncated
multivariate Gaussians. These models satisfy the exact AMI and are able to return exact samples
from simulate, and compute exact marginal logpdf and prob queries, even for conditioned models.
We make this precise by giving a measure semantics on the lowered language (Fig. 21) and show
that the program transform T {·} preserves the semantics of the lowered query (Theorem 4.2).
In particular, all the scalar computations in the query are deterministic and that the generated
synthetic data comes from exact conditional distributions.

The denotational semantics (Appendix D, Fig. 21) of the lowered language is mostly standard
and resembles the measure-theoretic semantics of GenSQL given in Fig. 5. Terms Γ ⊢ 𝑒 : 𝜎𝑔 are

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

179:14 Huot, Ghavami, Lew, Schaechtle, Freer, Shelby, Rinard, Saad, Mansinghka

(a) Translating Types and Contexts

T {𝑇 [?id] {col1 : 𝜎1, . . . , col𝑛 : 𝜎𝑛 }} = Bag[(𝜎1, . . . , 𝜎𝑛)]
T {𝑀 [?id] {col1 : 𝜎1, . . . , col𝑛 : 𝜎𝑛 }} = 𝑀 [(𝜎1, . . . , 𝜎𝑛)]
T
{
𝐶𝑖 {col1 : 𝜎1, . . . , col𝑛 : 𝜎𝑛 }

}
= 𝐶𝑖 [(𝜎1, . . . , 𝜎𝑛)]

T {Γ,𝑇 [?id] {cols}} = T {Γ} , id : T {𝑇 [?id] {cols}}
T {Γ, 𝑀 [?id] {cols}} = T {Γ} , id : T {𝑀 [?id] {cols}}
T {𝜎 } = 𝜎 T {[] } = []

(b) Translating Event and Event-0 Expressions

T𝛿 {id.col𝑖 = 𝑒 } = (id, 𝑖) = T𝛿 {𝑒 }
T𝛿 {id.col𝑖 > 𝑒 } = (id, 𝑖) > T𝛿 {𝑒 }
T𝛿 {id.col𝑖 < 𝑒 } = (id, 𝑖) < T𝛿 {𝑒 }

T𝛿 {𝑐1 ∧ 𝑐2} = T𝛿 {𝑐1} ∧ T𝛿 {𝑐2}
T𝛿 {𝑐1 ∨ 𝑐2} = T𝛿 {𝑐1} ∨ T𝛿 {𝑐2}

(c) Translating RowModelQueries

T𝛿
{
PROBABILITY OF 𝑐0

2 UNDER id GIVEN 𝑐0 GIVEN 𝑐1} = exp
(
logpdf id (T𝛿

{
𝑐0} , T𝛿 {

𝑐1} , T𝛿 {
𝑐0

2
}
)
)

T𝛿
{
PROBABILITY OF 𝑐1

2 UNDER id GIVEN 𝑐0 GIVEN 𝑐1} = probid (T𝛿
{
𝑐0} , T𝛿 {

𝑐1} , T𝛿 {
𝑐1

2
}
,)

T𝛿
{
GENERATE UNDER id GIVEN 𝑐0 GIVEN 𝑐1 LIMIT 𝑒

}
= replicate (T𝛿 {𝑒 } , simulateid (T𝛿

{
𝑐0} , T𝛿 {

𝑐1}))
T𝛿

{
𝑡 : 𝑇 [id′] {cols} GENERATIVE JOIN id GIVEN 𝑐0 GIVEN 𝑐1} =

mapreduce
(
𝜆𝑟 .join

(
singleton(𝑟), simulateid (T𝛿 [id′ ↦→𝑟]

{
𝑐0} , T𝛿 [id′ ↦→𝑟]

{
𝑐1})) , T𝛿 {𝑡 }

)
(d) Translating Scalar Expressions

T𝛿 {𝑐 } = 𝑐 T𝛿 [id↦→𝑟] {id.col𝑖 } = 𝜋𝑖 (𝑟) T𝛿 {op(𝑒1, . . . , 𝑒𝑛) } = op(T𝛿 {𝑒1} , . . . T𝛿 {𝑒𝑛 })
(e) Translating Table Expressions

T𝛿 { RENAME 𝑡 AS id} = T𝛿 {𝑡 } ; T𝛿 {id} = id
T𝛿 {𝑡1 JOIN 𝑡2} = join(T𝛿 {𝑡1} , T𝛿 {𝑡1})

T𝛿 {𝑡 : 𝑇 [id] {cols} WHERE 𝑒 } = filter (𝜆𝑟 .T𝛿 [id↦→𝑟] {𝑒 } , T𝛿 {𝑡 })

T𝛿

{
SELECT 𝑒 AS col
FROM 𝑡 : 𝑇 [id] {cols}

}
=

map (𝜆𝑟 .T𝛿 [id ↦→𝑟] {𝑒 } , T𝛿 {𝑡 })

Fig. 7. The lowering transformation T {·}.

interpreted as deterministic measurable functions ⟦Γ⟧exact → ⟦𝜎𝑔⟧exact. Terms Γ ⊢ 𝑒 : Bag[𝜎𝑔]
are interpreted as probability kernels ⟦Γ⟧exact → PBag(⟦𝜎𝑔⟧exact), where substitution for these
programs is interpreted using the Kleisli composition for the point process monad [21]. By induction
on the structure of GenSQL programs 𝑡 in context Γ;Δ, we can show (proof in Appendix D.3):

Theorem 4.2 (Exact AMI Guarantee). Let Γ, [] ⊢ 𝑡 : 𝑇 [?id]{cols}. Then, for every evaluation

of the context 𝛾 ,

⟦𝑡⟧(𝛾, []) = ⟦T[] {𝑡}⟧exact (𝛾).

4.4 Approximate Backend Guarantee
By relying on approximate probabilistic inference, general-purpose PPLs can express large classes
of models in which exact inference is intractable. In addition, programmable inference [51] ensures
PPLs can support a diverse class of probabilistic models without sacrificing inference quality. We
give a new denotational semantics for the lowered language that is appropriate for reasoning in
scenarios where the rowModels are implemented in PPLs with approximate Monte Carlo inference.

Monte Carlo algorithms are typically parameterized by a positive integer 𝑛 specifying a compute
budget, such as the number of particles in a sequential Monte Carlo (SMC) algorithm [18] or
the number of samples in a Markov Chain Monte Carlo (MCMC) algorithm [64]. The algorithm
specifies a sequence of distributions or estimators that converge in some sense to a quantity of
interest as 𝑛 → ∞. In the case of approximate sampling algorithms, most typically the distribution
of the generated samples converges weakly to the target distribution, and in the case of parameter
estimation the algorithm produces a strongly consistent estimator of the target parameter [18, 64].
Random variable semantics. Our denotational semantics for approximate AMI implementations
is motivated by the above discussion. We assume the existence of an ambient probability space
(Ω, F , P) and associate with each term a sequence of random variables approximating the term

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

GenSQL: A Probabilistic Programming System for Querying Generative Models of Database Tables 179:15

in the exact semantics. As an example, the approximate semantics of ⟦map (𝑥 .𝑡1) 𝑡2⟧approx in the
context 𝛾 and at the “random seed” 𝜔 ∈ Ω is given at the 𝑛-th approximation by

⟦𝑡2⟧approx (𝛾, 𝜔)𝑛 ≫=
(
𝜆𝑆.return

{
𝜆𝑥 ′ .⟦𝑡1⟧approx (𝛾 [𝑥 ↦→ 𝑥 ′], 𝜔)𝑛 𝑦

�� 𝑦 ∈ 𝑆
})

.

This means that we first obtain the 𝑛-th approximation of the input 𝑡2, which is a measure on
tables, which we then evaluate to obtain a concrete table, 𝑆 . We then apply the function to each
row obtained by the 𝑛-th approximation of 𝑡1. The full semantics is given in Appendix D.4, Fig. 23.
We assume the following hold:

• For each rowModel identifier id : 𝑀 [(𝜎1, . . . , 𝜎𝑘)] in environment𝛾 , event 𝑐1 : 𝐶1 [(𝜎1, . . . , 𝜎𝑘)],
and event-0 𝑐0 : 𝐶0 [(𝜎1, . . . , 𝜎𝑘)], there exists a sequence of probability measures
{𝜇𝑛id;⟦𝑐0⟧approx (𝛾)𝑛,⟦𝑐1⟧approx (𝛾)𝑛

} on Bag
∏𝑘

𝑖=1⟦𝜎𝑖⟧;
• for id, 𝛾 , 𝑐1 and 𝑐0 as above, and 𝑐1

2 : 𝐶1 [(𝜎1, . . . , 𝜎𝑘)], there exists a sequence of real ran-
dom variables {𝑃𝑛id;⟦𝑐0⟧approx (𝛾)𝑛,⟦𝑐1⟧approx (𝛾)𝑛,⟦𝑐1

2⟧approx (𝛾)𝑛
} which takes values in [0, 1] P-almost

surely;
• for id, 𝛾 , 𝑐1 and 𝑐0 as above, and 𝑐0

2 : 𝐶0 [(𝜎1, . . . , 𝜎𝑘)], there exists a sequence of real random
variables {𝐿𝑛id;⟦𝑐0⟧approx (𝛾)𝑛,⟦𝑐1⟧approx (𝛾)𝑛,⟦𝑐0

2⟧approx (𝛾)𝑛
}.

These random sequences represent the sequences of approximations produced by the implemen-
tation of the AMI. In general, for a given term 𝑡 the convergence of sequences associated with
its sub-terms do not imply that the sequence associated with 𝑡 converges. For instance, consider
evaluating the following query in an appropriate context (𝛾, 𝛿):

SELECT id.col FROM id WHERE id.col ≤ (PROBABILITY OF id′ .col′ = 7).
If the value of the term PROBABILITY OF id′ .col′ = 7 is approximated, even if we can make this

approximation arbitrarily accurate, the output of the query need not converge. For example, if the
table id contains a row in which the value of col is exactly ⟦ PROBABILITY OF id′ .col′ = 7⟧(𝛾, 𝛿)
but the approximation converges to the true value from below, this row will not be included in the
query result no matter the accuracy of the approximation. Intuitively, this arises from the fact that
the indicator functions of half intervals are not continuous.

In order for the lowered queries to denote asymptotically sound estimators for the original
queries, we require that the implementation of the AMI methods are asymptotically sound, and
write lim𝑛 𝛾𝑛 to denote an evaluation of the context 𝛾 in which each random variable is replaced by
its limit as 𝑛 → ∞. In Appendix D.4, we formalize the notions of safe queries and asymptotically
sound AMI implementations and details of the proofs. We then give the following guarantee.

Theorem 4.3 (Consistent AMI Guarantee). Let Γ, [] ⊢ 𝑡 : 𝑇 [?id]{cols} be a safe query and

suppose the AMI methods have asymptotically sound implementations. Then, for every evaluation of

the context 𝛾 , P-almost surely

lim
𝑛
(⟦T[] {𝑡}⟧approx) (𝛾) = ⟦𝑡⟧(lim

𝑛
𝛾, []) .

5 EVALUATION
The performance of an open-source Clojure implementation of GenSQL is evaluated against other
systems that have similar capabilities. We test runtime, the effect of optimizations, and runtime
overhead of our system over alternative implementations of the same task. Experiments were run
on an Amazon EC2 C6a instance with Ubuntu 22.04, 4 vCPUs and 8.0 GiB RAM.

The probabilistic models used in the evaluation are obtained using probabilistic program synthe-
sis [74, Chapter 3]. Each model is an ensemble of “MultiMixture” probabilistic programs [69, Section
6], which are posterior samples from the CrossCat model class [50], generated using ClojureCat [16].
An ensemble of 10 probabilistic programs is used in Section 5.1 and 12 programs in Section 5.2.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

179:16 Huot, Ghavami, Lew, Schaechtle, Freer, Shelby, Rinard, Saad, Mansinghka

Table 1. Runtime (sec) comparison of GenSQL and

BayesDB [52] on 10 benchmark queries (Appendix F) for

evaluating probability densities of measure-zero events.

GenSQL BayesDB Speedup
(ClojureCat Backend) (CGPM Backend)

Q1 0.24 ± 0.03 0.59 ± 0.16 2.5x
Q2 0.29 ± 0.03 1.15 ± 0.2 4.0x
Q3 0.43 ± 0.06 1.72 ± 0.28 4.0x
Q4 0.48 ± 0.06 2.25 ± 0.27 4.7x
Q5 0.57 ± 0.07 2.68 ± 0.36 4.7x
Q6 0.33 ± 0.06 0.55 ± 0.23 1.7x
Q7 0.49 ± 0.05 1.53 ± 0.26 3.1x
Q8 0.46 ± 0.03 1.81 ± 0.21 3.9x
Q9 0.37 ± 0.03 2.51 ± 0.32 6.8x
Q10 0.45 ± 0.04 2.87 ± 0.39 6.4x
Mean 0.41 ± 0.11 1.77 ± 0.83 4.3x

10−3 10−1

Pr[condition]

10−3

10−2

10−1

100

101

102

103
Runtime (sec)

10−3 10−1

Pr[condition]

0.0

0.2

0.4

0.6

0.8

1.0

Normalized Stdev (sec)

GenSQL (Exact Inference using SPPL Backend)
BayesDB (Rejection Sampling using Fixed Samples)
BayesDB (Rejection Sampling using Fixed Acceptance Rate)

Fig. 8. Runtime/stdev comparison of GenSQL and

BayesDB [52] on 5 benchmark queries for evalu-

ating probabilities of positive measure events.

5.1 Performance and Usability
Runtime comparison. Table 1 shows a comparison of the runtime to solve 10 benchmark queries
(Appendix F) adapted from Charchut [16, Tables 4.2 and 4.3] using GenSQL (with the ClojureCat
backend) and BayesDB (with the CGPM backend [66]) for evaluating exact probability densities.
Section 5 compares the runtime and standard deviation for computing the probabilities of positive
measure events. GenSQL (with the SPPL backend [73]) delivers exact solutions, whereas BayesDB
delivers approximate solutions using rejection sampling. Two rejection strategies in BayesDB are
shown in Section 5: a fixed number of samples (faster but higher variance) or a fixed acceptance
rate (slower but lower variance), which both are inferior to exact solutions from GenSQL.

The performance gains in GenSQL are due to three main reasons: the ClojureCat backend is faster
than the CGPM backend in BayesDB, GenSQL has optimizations (discussed below) that exploit
repetitive computations, and GenSQL itself is implemented in Clojure, a performant language.
Optimizations and system overhead. GenSQL leverages two classes of optimizations: caching
(of the likelihood queries and conditioned models) and exploiting independence relations between
columns. The latter allows us to simplify a query such as PROBABILITY OF id.𝑥 > 42 UNDER id GIVEN

id.𝑦 = 17 to the semantically equivalent query PROBABILITY OF id.𝑥 > 42 UNDER id if the columns 𝑥
and 𝑦 are independent. Appendix B gives a detailed account of the optimizations.

In Fig. 9, the unoptimized GenSQL queries have a 1.1-1.6x overhead compared to the pure
ClojureCat baseline. The optimizations reduce the overhead and can sometimes drastically improve
performance. In addition, caching seems to heavily reduce the variance in the runtime of the
queries. In Fig. 9b, the effect of the independence optimization varies between replicates, as these
are different CrossCat model samples, which explains the higher variance in query runtime.
Code comparison. Figure 10 compares the code required in GenSQL, pure Python using SPPL [73],
and pure Clojure using ClojureCat [16], for a conditional probability query. Figure 10a shows how
GenSQL gains clarity by specializing in data that comes from database tables. In contrast, both
SPPL and ClojureCat require users to hand-write the looping/mapping over the data, which is
error prone. For instance, the code in Fig. 10c will crash if the table has missing values. In Fig. 10b,
ClojureCat requires conditions to be maps. Users can decide if they encode columns with strings,
symbols, or keywords. If this choice does not align with the key type returned by the CSV reader,
the query will run but conditioning will result in a null-op.

In Appendix A.1, we compare a single line query on a conditioned model in GenSQL to the
equivalent code in Scikit-learn [60] on the Iris data from the UCI ML repository. The model querying

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

GenSQL: A Probabilistic Programming System for Querying Generative Models of Database Tables 179:17

1 2 3 4 5
Number of Conditions and Targets

200

400

600

800

Runtime (ms)

GenSQL (Optimized)
GenSQL (Unoptimized)
ClojureCat

(a) Varying number of conditions
and targets in the PROBABILITY OF
queries shown in Table 1.

4 6 8 10 12
Number of Conditions

60

80

100

120

Runtime (ms)

(b) Varying number of conditions in
GIVEN clause for GENERATE UNDER
queries (caching does not apply).

2000 4000 6000 8000 10000
Number of Rows

1000

2000

3000

4000

Runtime (ms)

(c) Varying number of rows in a data
table used in the FROM clause of SE-
LECT with a PROBABILITY OF query.

Fig. 9. Runtime comparison between GenSQL (ClojureCat backend) and raw ClojureCat [16].

SELECT PROBABILITY OF
Period_minutes = 98.6,
Type_of_Orbit = "Sun-Synchro.",
Contractor = "Lockheed Martin"

UNDER model GIVEN Country_of_Operator, Launch_Mass_kg
FROM data

(a) GenSQL

(let
[event {:Period_minutes 98.6

:Type_of_Orbit "Sun-Synchro."
:Contractor "Lockheed Martin"}

cols-in-condition [:Country_of_Operator,
:Launch_Mass_kg]]

(->> data
(map #(select-keys cols-in-condition %))
(mapv #(exp (gpm/logpdf model event %)))))

(b) ClojureCat (Clojure)

event = {
"Period_minutes": 98.6,
"Type_of_Orbit": "Sun-Synchro.",
"Contractor": "Lockheed Martin",

}
cols_in_condition = ["Country_of_Operator", "Launch_Mass_kg"]

targets = {sppl.transforms.Identity(k): v for k, v in event.
items()}

constraints = [
{

sppl.transforms.Identity(column): value
for column, value in row.items()
if column in cols_in_condition

}
for _, row in data.iterrows()

]
print([exp(spe.constrain(constraint).logpdf(targets)) for

constraint in constraints])

(c) SPPL (Python)
Fig. 10. Comparison of GenSQL, ClojureCat [16], and SPPL [73] code for a conditional probability query.

a b c
𝑎0 𝑏0 𝑐0
𝑎1 𝑏1 𝑐1
𝑎0 𝑏0 𝑐0
𝑎0 𝑏1 𝑐0
.

(a) Table foo

a b x y z
𝑎0 𝑏1 4.2 4.1 0.6
𝑎1 𝑏1 -4.4 -5.4 0.2
𝑎1 𝑏0 -3.7 -6.2 0.5
𝑎1 𝑏1 -6.2 -4.2 0.1
.

(b) Table bar to build model

SELECT * FROM foo GENERATIVE JOIN bar_model GIVEN *

(c) GenSQL

escape into SQLite
ALTER TABLE bar ADD COLUMN c TEXT
UPDATE bar SET c = 'placeholder'
INSERT INTO bar SELECT
a,b, NULL AS x, NULL AS y, NULL AS z, c
FROM foo

INFER a, b, c, x, y, z
FROM bar WHERE rowid > [num rows in foo]

(d) BayesDB
Fig. 11. Comparison of GenSQL and BayesDB [52] code. The latter does not support GENERATIVE JOIN .

alone in Scikit-learn is more than 50 lines long and clearly error prone, and we find that GenSQL
offers a significant advantage in simplicity over such baselines.
Code comparison with BayesDB. Figure 11 shows GenSQL and its closest relative, BayesDB [52],
on a GENERATIVE JOIN query on synthetic data. The GenSQL code is more concise and simpler than
BayesDB’s code, which is possible due to the language abstractions for manipulating models. In
BayesDB, the user must exit to SQL and hand-code column manipulations to fit the expected fixed
pattern to query a model. Section 6 provides a detailed comparison of GenSQL and BayesDB.

5.2 Case Studies on Real World Data
We present two case studies to demonstrate the application of GenSQL to real-world problems:
one in medicine (clinical trial data) and one in synthetic biology (wetlab data). The datasets can be
costly to obtain and researchers are interested in understanding and analyzing their data.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

179:18 Huot, Ghavami, Lew, Schaechtle, Freer, Shelby, Rinard, Saad, Mansinghka

SELECT
BMI, exercise, health_status, age, smoker

FROM clinical_trial_records
WHERE

(BMI > 20.3) AND
(BMI < 38.4) AND
(PROBABILITY OF BMI UNDER clinical_trial_model GIVEN *) < 0.01

(a) Show participants with anomalous BMI values.

Define anomalous as 𝑃 (BMI | ∗) < 0.01 for all BMI

values that are larger than the 5th percentile (20.3)

and smaller than the 95th (38.4) in the United states.

BMI exercise health_status age smoker
38 yes Above average 40-49 never
33 yes Well above average 30-39 never
33 yes Well above average 50-59 never
35 yes Above average 40-49 never
37 yes Well above average 40-49 never
33 yes Well above average 50-59 never
36 yes Above average 30-39 former
35 yes Above average 40-49 former

(b) Result from the query in (a). Eight anomalous par-

ticipants are returned: all are clinically obese but re-

port above-average health status and exercise.

Well below Below Average Above Well above
Health Status compared to average

0.2

0.4

0.6
P (BMI > 30 | Exercise,Health Status)

Participant exercises:
yes
no

(c) Conditonal probabilites encoded

by the underlying model.

20 30 40 50

BMI

100

101

102

Frequency
All observed BMI
BMI values for
similar participants
BMI values for
anomalous participants

(d) Compare anomalous BMI values to

normal ones.

10−3 10−1

P (BMI)

10−4

10−3

10−2

10−1

P (BMI | ∗)
Not Anomaly
Anomaly

(e) Compare conditional

and marginal BMI.

Fig. 12. Case study: Anomaly detection in clinical trials.

In the first case, we show how anomaly detection in GenSQL can be used to check for probable
mislabelling of the data. The anomalous rows can also be investigated further to understand the
reasons for the anomaly. In the second case, we show how GenSQL can be used to generate
accurate synthetic data, capturing the complex relationships between different host genes and
experimental conditions. Capturing these relationships with the model helps predict whether a
certain experimental condition or modification of the genome has cascading downstream effects
through the interrelations between the genes. Such effects can render the cell toxic and kill the
bacterium, leading to a failed experiment. The virtual wet lab allows researchers to check for such
effects before running costly experiments in the real world.
Anomaly detection in clinical trials. We surface anomalies in data from the (BEAT19) clinical
trial [86] which contains data about COVID-19 and records behavior, environment variables, and
treatments. Each row represents a clinical trial participant. Figure 12a shows the query and the
anomaly criteria used [15]. For each row, it computes the likelihood under the model of obtaining
the value BMI given all the other values of the row. The trial participants labeled anomalous
(Fig. 12b) all report above-average or well-above-average health and that they exercise, while
meeting the World Health Organization’s definition of clinicial obesity [82]. Fig. 12d compares
the overall population in the trial (grey) with the anomalous individuals (red) and the subset of
the overall population that reports the same behavioral covariates (black). The latter means that
those individuals have similar values for exercising, health status, age, and smoking habits. For
similar individuals, the data suggests a lower BMI, even though much larger BMI values are not
infrequent. We can also compare the marginal and the conditional probability of BMI values in
the table of clinical trial records (Fig. 12d). The data labeled anomalous (red) is lower than the
diagonal line, which highlights the “contextualization” of BMI values that happens by conditioning
the models. The goal here is not to detect extreme values, i.e., univariate outliers, which can be
done using a WHERE filter. Instead, we are highlighting data points where other cell values in the
same row provide a context that renders a data point unlikely. To demonstrate this effect, we first

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

GenSQL: A Probabilistic Programming System for Querying Generative Models of Database Tables 179:19

SELECT * FROM gene_expression_data

GENERATE UNDER gene_expression_model
LIMIT 1000

(a) Overall population

0 50 100 150 200 250

eno

0

10

20

30

lhgO
SELECT
GENERATE

0 1 2 3 4

glnL

5

10

15

tyrR

0 10 20 30

atpD

0

20

40

60

qorA

(b) 6 genes from the overall population.

SELECT * FROM gene_expression_data
WHERE Ara. = "not added" AND IPTG = "added"

GENERATE UNDER gene_expression_model
GIVEN Ara. = "not added" AND IPTG = "added"

LIMIT 1000

(c) Add IPTG but not Arabinose

0 50 100 150 200 250

eno

0

10

20

30

lhgO
SELECT
GENERATE

0 1 2 3 4

glnL

5

10

15

tyrR

0 10 20 30

atpD

0

20

40

60

qorA

(d) 6 genes from (c).

SELECT * FROM gene_expression_data
WHERE Ara. = "added" AND IPTG = "added"

GENERATE UNDER gene_expression_model
GIVEN Ara. = "added" AND IPTG = "added"

LIMIT 1000

(e) Add both IPTG and Arabinose

0 50 100 150 200 250

eno

0

10

20

30

lhgO
SELECT
GENERATE

0 1 2 3 4

glnL

5

10

15

tyrR

0 10 20 30

atpD

0

20

40

60

qorA

(f) 6 genes from (e).

Fig. 13. Case study: Conditional synthetic data generation for a virtual wet lab.

0 50 100 150 200 250

eno

0

10

20

30

lhgO
SELECT * FROM gene expression data
Linear model
Regression line

0 1 2 3 4

glnL

5

10

15

tyrR

0 10 20 30

atpD

0

20

40

60

qorA

(a) Real and generated data from bivariate linear models (compare to Fig. 13b).

0 50 100 150 200 250

eno

0

10

20

30

lhgO
SELECT * FROM gene expression data
CTGAN

0 1 2 3 4

glnL

5

10

15

tyrR

0 10 20 30

atpD

0

20

40

60

qorA

(b) Comparison of real and generated data from CTGAN (compare to Fig. 13b).

Fig. 14. Linear models and conditional generative adversarial networks (CTGAN [87]) produce less accurate

synthetic virtual wet lab data as compared to the synthetic data from GenSQL shown in Fig. 13b. In (b), the

default model and inference parameters in the open source implementation of CTGAN is used.

apply a WHERE filter that removes BMI values outside of the 5th and the 95th percentile, excluding
one-dimensional extreme values (Fig. 12a). We then compute the conditional probabilities of the
BMI values in each row for the remaining data and return anomalies. Fig. 12c shows the posterior
predictive over the ensemble of models (line) and for each individual model (dots) for a BMI above
30 given exercise and health status.
Conditional synthetic data generation for virtual wet lab. Figure 13 shows synthetic gene
expression data generated using GenSQL, given a dataset from an experiment testing genetic

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

179:20 Huot, Ghavami, Lew, Schaechtle, Freer, Shelby, Rinard, Saad, Mansinghka

circuits [56] in Escherichia coli. The synthetic data aligns with the overall population characteris-
tics (Figs. 13a and 13b) and accurately reflects the outcomes of actual experimental interventions
(Figs. 13c to 13f). In synthetic biology, the prospect of implementing genetic circuits has fundamental
implications for medical device engineering [53], bio-sensing [81] and environmental biotechnol-
ogy [88]. These circuits require input which is typically provided by adding inducer substances to
the culture mediums where the organisms are grown. Our figures show the effect of adding two
such inducer substances, Arabinose and IPTG on 6 different host genes.

Producing standard RNA sequencing data can be costly [48], especially for new, engineered
organisms that are not mass-produced. When it is produced, RNA sequencing will yield measure-
ments for gene expressions for thousands of annotated host genes [9]. These genes are highly
interrelated, and knowledge of the relations is only partially available [44]. Thus, the application
of generative models to these data presents a challenging high-dimensional modeling problem,
further compounded by the inherent non-linearity in the data, as illustrated in Figs. 14a and 14b.

The most popular approach to modeling gene expression data is linear regression [22], as models
are easy to interpret and readily available in data analysis libraries. For non-numerical data, linear
regression requires analysis-specific re-coding of discrete values. That aside, the low capacity
of the model means that it fails to faithfully reproduce in the actual wet lab data, as shown in
Fig. 14a. A more complex approach to generating synthetic expression data is using conditional
generative adversarial networks (CTGAN) [87]. CTGANs are an appropriate baseline because they
are domain-general and effective at modeling multivariate, heterogeneous data. However, GANs
are hard to interpret and as RNA sequencing data acquisition is so costly, the number of available
training examples (943) renders it unsuitable for CTGANs. Fig. 14b depicts this model class failing
to accurately model the gene expression data.

6 RELATEDWORK
Probabilistic databases. Probabilistic databases systems [78, 80] develop efficient algorithms for
inference queries on discrete distributions over databases, often based on variants of weighted
model counting, for which hardness complexity results were shown and algorithms were developed
for tractable cases and efficient approximations. Cambronero et al. [13] integrate probabilities into
a relational database system to support imputation, while Hilprecht et al. [39] use probabilistic
circuits to improve query performance. Jampani et al. [42] use probabilistic databases to support
random data generation and simulation. Cai et al. [12] provides Gibbs sampling support in the
space of database tables to a SQL-like language, enabling bayesian machine learning workload
such as linear regression or latent Dirichlet allocation. These languages are typically extensions to
SQL or relational algebra but with limited support for probabilistic models, which they tradeoff for
performance. Schaechtle et al. [76] presents a preliminary design for extending SQL to support
probabilistic models of tabular data. Our work differs in that it presents (1) a formalization of the
system; (2) a denotational semantics; (3) soundness guarantees for the system; (4) a unified interface
that probabilistic models implement; (5) a lowering transform and target lowering language; (6) an
extensive performance evaluation; and (7) two new case studies on real-world data.

Semantics of probabilistic databases. Bárány et al. [3] and Grohe et al. [34] give a semantic
account to probabilistic databases by giving a probabilistic semantics and guarantees to an extension
of Datalog. Dash and Staton [21] give a monadic account and denotational semantics for measurable
queries in probabilistic databases. Their semantics of SQL-like expressions inspired the semantics
of our table expressions. Grohe and Lindner [35] established a formal framework for reasoning
about infinite probabilistic databases. Benzaken and Contejean [5] formalized the semantics of SQL
in Coq while Borya [11] formalized relational algebra and a SQL-like syntax using a model checker.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

GenSQL: A Probabilistic Programming System for Querying Generative Models of Database Tables 179:21

Probabilistic program synthesis. GenSQL has been designed with the possibility to lever-
age powerful probabilistic program synthesis techniques based on Bayesian [1, 50, 69] or non-
Bayesian [17, 30, 36, 41, 57] probabilistic model discovery. The AMI provides a unifying approach
to expressing powerful Bayesian inference workflows in these probabilistic programs using a high-
level SQL-like language. Extending the interface to handle synthesized models of time series [70, 72]
and/or relational data [71] is a promising avenue for future work.
Probabilistic programming systems. While we used a Clojure version [16] of CrossCat [50]
in our experiments, our system supports any probabilistic program that satisfies the rowModel
interface. We can thus reuse models written in the variety of PPLs developed in the literature, such
as models written in languages supporting approximate inference [8, 14, 20, 26, 54, 75, 84] and exact
inference [27, 40, 73, 89]. Our model interface is inspired by the SPPL interface [73] and the CGPM
interface [68]. Gordon et al. [33] propose a probabilistic programming system using a functional
syntax similar to the stochastic lambda calculus, specialized to inference over relational databases,
implemented on top on Infer.net. It can perform inference tasks such as linear regression and
querying for missing values which enable data imputation, classification, or clustering. Borgström
et al. [10] present a probabilistic DSL and semantics for regression formulas in the style of the
formula DSL in R. Domain-specific PPLs for tabular data have also been designed to solve tasks
such as data cleaning [46, 63].
BayesDB. Although BayesDB [52] was motivated by similar goals as GenSQL, GenSQL introduces
novel semantics concepts and soundness theorems that BayesDB did not. GenSQL also improves
upon BayesDB in terms of expressiveness and performance, as shown in Section 5. For example,
GenSQL queries can be nested and interleaved with SQL, and also combine results from multiple
models. GenSQL also provides an exact inference engine for a broad class of sum-product prob-
abilistic programs [73]. BayesDB, on the other hand, has interesting features that GenSQL does
not yet support such as iterating over model and columns (e.g. to find pairs of columns with the
highest mutual information) [67] and similarity search between rows [65]. BayesDB also has a
“meta-modeling” DSL [66] for composing probabilistic programs from various sources.
Automated Machine Learning. Several systems [6, 23, 43, 45, 58, 79] have been developed to
automate the use of discriminative machine learning methods for analyzing tabular data. Unlike
GenSQL, they do not support the use of generative probabilistic programs for tabular data satisfying
a unified interface (for sampling, conditioning, and evaluating probabilities or densities) which
enables a single model to be reused across many different tasks.

7 CONTRIBUTIONS
GenSQL specializes probabilistic programming languages to applications with tabular data. It is
differentiated from general purpose PPLs in three main ways:

• Through the AMI, GenSQL enables multi-language workflows. Users from different
domains and with different expertise should be able to use probabilistic models for their queries
without having to learn all the details of the PPL in which the model is written. The AMI enables
this separation of concerns by providing a well-specified interface. It enables the integrating
probabilistic models of tabular data in different languages, as it can be implemented in either a
general-purpose or domain-specific PPL (Appendix C). There is no standard way to jointly query
models in different PPLs or use the result of a query in one language against a model in another
language. As different PPLs focus on different workloads, users of GenSQL can work with several
models written in different PPLs. GenSQL thus provides a natural multi-language workflow, and
our experiments already use multiple backends (Gen.clj, SPPL, and ClojureCat).

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

179:22 Huot, Ghavami, Lew, Schaechtle, Freer, Shelby, Rinard, Saad, Mansinghka

• GenSQL enables declarative querying. No current PPL offers a simple declarative syntax
for evaluating complex queries (e.g., containing elaborate joins and nested selects) interleaving
calls on probabilistic models and database tables. A number of PPLs provide declarative syntax for
specifying and conditioning models, but the user must decide which operations on what conditional
distributions to evaluate and then manually combine the results of these operations. GenSQL
relieves the users of such concerns, reducing the chances of programming errors.

• GenSQL enables reusable performance optimizations. Widely used database management
systems (DBMS) have been optimized by many engineer-hours of effort over several decades. These
optimizations are highly reusable because they are independent of the application domain and
specific languages that the DBMS interfaces with. GenSQL enables analogous optimizations for
workloads that interleave ordinary database queries with probabilistic inference and generative
modeling. GenSQL’s optimizations can carry over to many domains and workflows, avoiding the
need for project-specific performance optimizations involving probabilistic models of tabular data.

We see two interesting avenues for GenSQL to impact database applications and design.

Integration of GenSQL with database management systems (DBMS). First, GenSQL could serve
as a query language, allowing users to query generative models of tabular data directly from the
DBMS. One use case of rapidly increasing practical importance is querying synthetic data, generated
on the fly to meet user-specified privacy-utility trade-offs, instead of querying real data that cannot
be shared due to privacy constraints. Other potential applications for synthetic data include testing,
performance tuning, and sensitivity analysis of end-to-end data analysis workflows. In all these
settings, GenSQL implementations could also draw on performance engineering innovations from
DBMS engines, optimized further using the generative models themselves (e.g., to reduce variance
for stratified sampling approximations to SQL aggregates [2]).

Modularized development of queries and models. GenSQL introduces abstractions that isolate
query developers and query users from model developers. This separation of concerns is analogous
to the physical data independence property achieved by relational databases [19]. Most database
users do not need to know the details of how data is stored and indexed to be able to query it
efficiently, but some experts do understand how to tune indices to ensure that databases meet the
necessary performance constraints. Most GenSQL users need not be experts on the details of the
algorithms, modeling assumptions, and software pipelines that produced the underlying generative
models. Expert statisticians and generative modelers can still ensure the models are of sufficient
quality and tune trade-offs between performance, maintenance costs, and accuracy, improving
models without invalidating user workflows. With GenSQL, both typical users and experts can
more easily and interactively query generative models to test their validity, both qualitatively and
quantitatively. This division of responsibility between users, generative modelers, and probabilistic
programming system developers could potentially help our society more safely and productively
broaden the deployment of generative models for tabular data.

ACKNOWLEDGMENTS
MIT contributors would like to acknowledge support from DARPA, under the Machine Common
Sense (MCS) program (Award ID: 030523-00001) Synergistic Discovery and Design (SD2) program
(Contract No. FA8750-17-C-0239), and Compositionally Organized Learning To Reason About
Novel Experiences (COLTRANE) grant (Contract No. 140D0422C0045); and unrestricted gifts from
Google, an anonymous donor, and the Siegel Family Foundation. The authors wish to thank the
anonymous referees for their valuable comments and suggestions. We have also benefited greatly
from conversations with and feedback from Timothy J. O’Donnell, João Loula and Pierre Glaser.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

GenSQL: A Probabilistic Programming System for Querying Generative Models of Database Tables 179:23

REFERENCES
[1] Ryan P. Adams, Hanna Wallach, and Zoubin Ghahramani. 2010. Learning the Structure of Deep Sparse Graphical

Models. In Proceedings of the 13th International Conference on Artificial Intelligence and Statistics. PMLR, Norfolk, MA,
USA, 1–8.

[2] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden, and Stoica Ion. 2013. BlinkDB:
Queries with bounded errors and bounded response times on very large data. In Proceedings of the 8th ACM European

Conference on Computer Systems. ACM, New York, NY, USA, 29–42. https://doi.org/10.1145/2465351.2465355
[3] Vince Bárány, Balder Ten Cate, Benny Kimelfeld, Dan Olteanu, and Zografoula Vagena. 2017. Declarative Probabilistic

Programming with Datalog. ACM Transactions on Database Systems 42, 4 (2017), 1–35. https://doi.org/10.1145/3132700
[4] Luc Bauwens, Michel Lubrano, and Jean-Francois Richard. 2000. Bayesian Inference in Dynamic Econometric Models.

Oxford University Press, Oxford, UK.
[5] Véronique Benzaken and Evelyne Contejean. 2019. A Coq Mechanised Formal Semantics For Realistic SQL Queries:

Formally Reconciling SQL and Bag Relational Algebra. In Proceedings of the 8th ACM SIGPLAN International Conference

on Certified Programs and Proofs. ACM, New York, NY, USA, 249–261. https://doi.org/10.1145/3293880.3294107
[6] James Bergstra, Brent Komer, Chris Eliasmith, Dan Yamins, and David D Cox. 2015. Hyperopt: A Python Library

for Model Selection And Hyperparameter Optimization. Computational Science & Discovery 8, 1 (2015), 014008.
https://doi.org/10.1088/1749-4699/8/1/014008

[7] Patrick Billingsley. 1995. Probability and Measure (3rd ed.). John Wiley & Sons, New York.
[8] Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh,

Paul Szerlip, Paul Horsfall, and Noah D Goodman. 2019. Pyro: Deep Universal Probabilistic Programming. Journal of
Machine Learning Research 20, 1 (2019), 973–978.

[9] Frederick R. Blattner et al. 1997. The Complete Genome Sequence of Escherichia Coli K-12. Science 277, 5331 (1997),
1453–1462. https://doi.org/10.1126/science.277.5331.1453

[10] Johannes Borgström, Andrew D. Gordon, Long Ouyang, Claudio Russo, Adam Scibior, and Marcin Szymczak. 2016.
Fabular: Regression Formulas as Probabilistic Programming. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages. ACM, New York, NY, USA, 271–283. https://doi.org/10.1145/
2837614.2837653

[11] Joachim Borya. 2023. Formalisation of Relational Algebra and a SQL-like Language with the RISCAL Model Checker.
Technical Report 23-06. Research Institute for Symbolic Computation (RISC), Johannes Kepler University Linz. https:
//doi.org/10.35011/risc.23-06

[12] Zhuhua Cai, Zografoula Vagena, Luis Perez, Subramanian Arumugam, Peter J. Haas, and Christopher Jermaine. 2013.
Simulation of Database-Valued Markov Chains Using SimSQL. In Proceedings of the 2013 ACM SIGMOD International

Conference on Management of Data. ACM, New York, NY, USA, 637–648. https://doi.org/10.1145/2463676.2465283
[13] José Cambronero, John K. Feser, Micah J. Smith, and Samuel Madden. 2017. Query Optimization for Dynamic Imputation.

Proceedings of the VLDB Endowment 10, 11 (2017), 1310–1321. https://doi.org/10.14778/3137628.3137641
[14] Bob Carpenter, Andrew Gelman, Matthew D. Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus A.

Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. 2017. Stan: A Probabilistic Programming Language. Journal of
Statistical Software 76, 1 (2017), 1–32. https://doi.org/10.18637/jss.v076.i01

[15] CDC. 2022. BMI Percentile Calculator: Body Mass Indexes in the United States. https://dqydj.com/bmi-percentile-
calculator-united-states

[16] Nicholas G. Charchut. 2020. Implementation of a Cross-Platform Automated Bayesian Data Modeling System. Master’s
thesis. Massachusetts Institute of Technology, Cambridge, MA.

[17] Sarah Chasins and Phitchaya M. Phothilimthana. 2017. Data-driven synthesis of full probabilistic programs. In
Proceedings of the 29th International Conference on Computer Aided Verification. Springer, Cham, 279–304. https:
//doi.org/10.1007/978-3-319-63387-9_14

[18] Nicolas Chopin, Omiros Papaspiliopoulos, et al. 2020. An Introduction to Sequential Monte Carlo. Springer, Cham.
https://doi.org/10.1007/978-3-030-47845-2

[19] Edgar F. Codd. 1970. A Relational Model of Data for Large Shared Data Banks. Commun. ACM 13, 6 (1970), 377–387.
https://doi.org/10.1145/362384.362685

[20] Marco F. Cusumano-Towner, Feras A. Saad, Alexander K. Lew, and Vikash K. Mansinghka. 2019. Gen: A general-
purpose probabilistic programming system with programmable inference. In Proceedings of the 40th ACM SIGPLAN

Conference on Programming Language Design and Implementation. ACM, New York, NY, USA, 221–236. https:
//doi.org/10.1145/3314221.3314642

[21] Swaraj Dash and Sam Staton. 2021. Monads for Measurable Queries in Probabilistic Databases. arXiv:2112.14048
[22] Sebastian Eck and Wolfgang Stephan. 2008. Determining the Relationship of Gene Expression and Global mRNA

Stability in Drosophila Melanogaster And Escherichia Coli Using Linear Models. Gene 424, 1-2 (2008), 102–107.
https://doi.org/10.1016/j.gene.2008.07.033

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

https://doi.org/10.1145/2465351.2465355
https://doi.org/10.1145/3132700
https://doi.org/10.1145/3293880.3294107
https://doi.org/10.1088/1749-4699/8/1/014008
https://doi.org/10.1126/science.277.5331.1453
https://doi.org/10.1145/2837614.2837653
https://doi.org/10.1145/2837614.2837653
https://doi.org/10.35011/risc.23-06
https://doi.org/10.35011/risc.23-06
https://doi.org/10.1145/2463676.2465283
https://doi.org/10.14778/3137628.3137641
https://doi.org/10.18637/jss.v076.i01
https://dqydj.com/bmi-percentile-calculator-united-states
https://dqydj.com/bmi-percentile-calculator-united-states
https://doi.org/10.1007/978-3-319-63387-9_14
https://doi.org/10.1007/978-3-319-63387-9_14
https://doi.org/10.1007/978-3-030-47845-2
https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/3314221.3314642
https://doi.org/10.1145/3314221.3314642
https://arxiv.org/abs/2112.14048
https://doi.org/10.1016/j.gene.2008.07.033

179:24 Huot, Ghavami, Lew, Schaechtle, Freer, Shelby, Rinard, Saad, Mansinghka

[23] Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and Alexander Smola. 2020.
AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data. arXiv:2003.06505

[24] D. H. Fremlin. 2001. Measure Theory. Vol. 2. Torres Fremlin, Colchester, England.
[25] Jonah Gabry, Daniel Simpson, Aki Vehtari, Michael Betancourt, and Andrew Gelman. 2019. Visualization in Bayesian

Workflow. Journal of the Royal Statistical Society Series A: Statistics in Society 182, 2 (2019), 389–402. https://doi.org/10.
1111/rssa.12378

[26] Hong Ge, Kai Xu, and Zoubin Ghahramani. 2018. Turing: A Language for Flexible Probabilistic Inference. In Proceedings

of the 21st International Conference on Artificial Intelligence and Statistics. PMLR, Norfolk, MA, USA, 1682–1690.
[27] Timon Gehr, Sasa Misailovic, and Martin Vechev. 2016. PSI: Exact Symbolic Inference for Probabilistic Programs.

In Proceedings of the 28th International Conference on Computer Aided Verification. Springer, Cham, 62–83. https:
//doi.org/10.1007/978-3-319-41528-4_4

[28] Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin. 2014. Bayesian Data Analysis (3rd ed.). CRC Press,
Boca Raton. https://doi.org/10.1201/9780429258411

[29] Andrew Gelman, Aki Vehtari, Daniel Simpson, Charles C. Margossian, Bob Carpenter, Yuling Yao, Lauren Kennedy,
Jonah Gabry, Paul-Christian Bürkner, and Martin Modrák. 2020. Bayesian Workflow. arXiv:2011.01808

[30] Robert Gens and Pedro Domingos. 2013. Learning the Structure of Sum-Product Networks. In Proceedings of the 30th

International Conference on Machine Learning. PMLR, Norfolk, MA, USA, 873–880.
[31] Alan Genz and Frank Bretz. 2009. Computation of Multivariate Normal and t Probabilities. Lecture Notes in Statistics,

Vol. 195. Springer, Cham. https://doi.org/10.1007/978-3-642-01689-9
[32] Michele Giry. 2006. A Categorical Approach To Probability Theory. In Categorical Aspects of Topology and Analysis:

Proceedings of an International Conference. Springer, Cham, 68–85. https://doi.org/10.1007/BFb0092872
[33] Andrew D. Gordon, Thore Graepel, Nicolas Rolland, Claudio Russo, Johannes Borgström, and John Guiver. 2014. Tabular:

A Schema-Driven Probabilistic Programming Language. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages. ACM, New York, NY, USA, 321–334. https://doi.org/10.1145/2535838.2535850
[34] Martin Grohe, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Peter Lindner. 2022. Generative Datalog with

Continuous Distributions. J. ACM 69, 6 (2022), 1–52. https://doi.org/10.1145/3559102
[35] Martin Grohe and Peter Lindner. 2022. Infinite Probabilistic Databases. Logical Methods in Computer Science 18, 1,

Article 34 (2022), 43 pages. https://doi.org/10.46298/LMCS-18(1:34)2022
[36] Roger Grosse, Ruslan Salakhutdinov, William Freeman, and Joshua B. Tenenbaum. 2012. Exploiting compositionality

to explore a large space of model structures. In Proceedings of the 28th Annual Conference on Uncertainty in Artificial

Intelligence. AUAI Press, Puyallup, WA, USA, 306–315.
[37] Allen Hatcher. 2002. Algebraic Topology. Cambridge University Press, Cambridge, UK.
[38] Miguel A. Hernán and James M. Robins. 2006. Estimating Causal Effects from Epidemiological Data. Journal of

Epidemiology & Community Health 60, 7 (2006), 578–586. https://doi.org/10.1136/jech.2004.029496
[39] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kristian Kersting, and Carsten Binnig. 2020.

DeepDB: Learn from Data, Not from Queries! Proc. VLDB Endow. 13, 7 (2020), 992–1005. https://doi.org/10.14778/
3384345.3384349

[40] Steven Holtzen, Guy Van den Broeck, and Todd Millstein. 2020. Scaling Exact Inference for Discrete Probabilistic
Programs. Proc. ACM Program. Lang. 4, OOPSLA, Article 140 (2020), 31 pages. https://doi.org/10.1145/3133904

[41] Irvin Hwang, Andreas Stuhlmüller, and Noah D Goodman. 2011. Inducing Probabilistic Programs by Bayesian Program
Merging. arXiv:1110.5667

[42] Ravi Jampani, Fei Xu, Mingxi Wu, Luis Perez, Chris Jermaine, and Peter J. Haas. 2011. The Monte Carlo Database
System: Stochastic Analysis Close to the Data. ACM Transactions on Database Systems 36, 3 (2011), 1–41. https:
//doi.org/10.1145/2000824.2000828

[43] Haifeng Jin, Qingquan Song, and Xia Hu. 2019. Auto-Keras: An Efficient Neural Architecture Search System. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, New York,
NY, USA, 1946–1956. https://doi.org/10.1145/3292500.3330648

[44] Ingrid M Keseler, Socorro Gama-Castro, Amanda Mackie, Peter E Midford, Alan J Wolfe, Julio Collado-Vides, Ian T
Paulsen, and Peter D Karp. 2021. The EcoCyc Database in 2021. Frontiers in Microbiology 12 (2021), 711077. https:
//doi.org/10.3389/fmicb.2021.711077

[45] Erin LeDell and Sebastien Poirier. 2020. H2O AutoML: Scalable Automatic Machine Learning. In Proceedings of the 7th

ICML Workshop on AutoML. AutoML-Conf, 16 pages.
[46] Alexander Lew, Monica Agrawal, David Sontag, and Vikash Mansinghka. 2021. PClean: Bayesian Data Cleaning at

Scale With Domain-Specific Probabilistic Programming. In Proceedings of The 24th International Conference on Artificial

Intelligence and Statistics. PMLR, Norfolk, MA, USA, 1927–1935.
[47] Alexander K Lew, Matin Ghavamizadeh, Martin C Rinard, and Vikash K Mansinghka. 2023. Probabilistic Programming

with Stochastic Probabilities. Proceedings of the ACM on Programming Languages 7, PLDI (2023), 1708–1732. https:

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

https://arxiv.org/abs/2003.06505
https://doi.org/10.1111/rssa.12378
https://doi.org/10.1111/rssa.12378
https://doi.org/10.1007/978-3-319-41528-4_4
https://doi.org/10.1007/978-3-319-41528-4_4
https://doi.org/10.1201/9780429258411
https://arxiv.org/abs/2011.01808
https://doi.org/10.1007/978-3-642-01689-9
https://doi.org/10.1007/BFb0092872
https://doi.org/10.1145/2535838.2535850
https://doi.org/10.1145/3559102
https://doi.org/10.46298/LMCS-18(1:34)2022
https://doi.org/10.1136/jech.2004.029496
https://doi.org/10.14778/3384345.3384349
https://doi.org/10.14778/3384345.3384349
https://doi.org/10.1145/3133904
https://arxiv.org/abs/1110.5667
https://doi.org/10.1145/2000824.2000828
https://doi.org/10.1145/2000824.2000828
https://doi.org/10.1145/3292500.3330648
https://doi.org/10.3389/fmicb.2021.711077
https://doi.org/10.3389/fmicb.2021.711077
https://doi.org/10.1145/3591290
https://doi.org/10.1145/3591290

GenSQL: A Probabilistic Programming System for Querying Generative Models of Database Tables 179:25

//doi.org/10.1145/3591290
[48] Brian K. Lohman, Jesse N. Weber, and Daniel I. Bolnick. 2016. Evaluation Of Tagseq, A Reliable Low-Cost Alternative

for RNA Seq. Molecular Ecology Resources 16, 6 (2016), 1315–1321. https://doi.org/10.1111/1755-0998.12529
[49] David JC MacKay et al. 1998. Introduction to Gaussian Processes. NATO ASI series F computer and systems sciences 168

(1998), 133–166.
[50] Vikash Mansinghka, Patrick Shafto, Eric Jonas, Cap Petschulat, Max Gasner, and Joshua B. Tenenbaum. 2016. CrossCat:

A Fully Bayesian Nonparametric Method for Analyzing Heterogeneous, High Dimensional Data. Journal of Machine

Learning Research 17, 138 (2016), 1–49.
[51] Vikash K. Mansinghka, Ulrich Schaechtle, Shivam Handa, Alexey Radul, Yutian Chen, and Martin Rinard. 2018.

Probabilistic programming with programmable inference. In Proceedings of the 39th ACM SIGPLAN Conference on

Programming Language Design and Implementation. ACM, New York, NY, USA, 603–616. https://doi.org/10.1145/
3192366.3192409

[52] Vikash K. Mansinghka, Richard Tibbetts, Jay Baxter, Pat Shafto, and Baxter Eaves. 2015. BayesDB: A Probabilistic
Programming System for Querying the Probable Implications of Data. arXiv:1512.05006

[53] Maysam Mansouri and Martin Fussenegger. 2022. Therapeutic Cell Engineering: Designing Programmable Synthetic
Genetic Circuits in Mammalian Cells. Protein & Cell 13, 7 (2022), 476–489. https://doi.org/10.1007/s13238-021-00876-1

[54] Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L. Ong, and Sontag Kolobov. 2005. BLOG:
Probabilistic models with unknown objects. In Proceedings of the 19th International Joint Conference on Artificial

Intelligence. Morgan Kaufmann, San Francisco, CA, USA, 1352–1359.
[55] Kevin P. Murphy. 2022. Probabilistic Machine Learning: An Introduction. MIT Press, Cambridge, MA.
[56] Alec A. K. Nielsen, Bryan S. Der, Jonghyeon Shin, Prashant Vaidyanathan, Vanya Paralanov, Elizabeth A. Strychalski,

David Ross, Douglas Densmore, and Christopher A. Voigt. 2016. Genetic circuit design automation. Science 352, 6281
(2016), aac7341. https://doi.org/10.1126/science.aac7341

[57] Aditya V. Nori, Sherjil Ozair, Sriram K. Rajamani, and Deepak Vijaykeerthy. 2015. Efficient synthesis of probabilistic
programs. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation.
ACM, New York, NY, USA, 208–217. https://doi.org/10.1145/2737924.2737982

[58] Randal S. Olson, Ryan J. Urbanowicz, Peter C. Andrews, Nicole A. Lavender, La Creis Kidd, and Jason H. Moore. 2016.
Automating Biomedical Data Science Through Tree-Based Pipeline Optimization. In Applications of Evolutionary

Computation. Springer, Cham, 123–137. https://doi.org/10.1007/978-3-319-31204-0_9
[59] Judea Pearl. 1988. Probabilistic Reasoning In Intelligent Systems: Networks Of Plausible Inference. Morgan Kaufmann,

San Francisco, CA, USA.
[60] Fabian Pedregosa et al. 2011. Scikit-learn: Machine Learning in Python. Journal of Machine Learning research 12 (2011),

2825–2830.
[61] MIT Probabilistic Computing Project. 2024. Gen.clj. https://github.com/probcomp/Gen.clj
[62] Tom Rainforth. 2018. Nesting Probabilistic Programs. In Proceedings of the 34th Annual Conference on Uncertainty in

Artificial Intelligence. AUAI Press, Puyallup, WA, USA, 10 pages. arXiv:1803.06328
[63] Theodoros Rekatsinas, Xu Chu, Ihab F Ilyas, and Christopher Ré. 2017. HoloClean: Holistic Data Repairs with

Probabilistic Inference. Proceedings of the VLDB Endowment 10, 11 (2017), 1190–1201. https://doi.org/10.14778/3137628.
3137631

[64] Christian P. Robert and George Casella. 2004. Monte Carlo Statistical Methods (2 ed.). Springer, Cham. https:
//doi.org/10.1007/978-1-4757-4145-2

[65] Feras Saad, Leonardo Casarsa, and Vikash Mansinghka. 2017. Probabilistic Search for Structured Data via Probabilistic
Programming and Nonparametric Bayes. arXiv:1704.01087

[66] Feras Saad and Vikash Mansinghka. 2016. Probabilistic Data Analysis with Probabilistic Programming. arXiv:1608.05347
[67] Feras Saad and Vikash Mansinghka. 2017. Detecting Dependencies in Sparse, Multivariate Databases using Probabilistic

Programming and Non-Parametric Bayes. In Proceedings of the 20th International Conference on Artificial Intelligence

and Statistics. PMLR, Norfolk, MA, USA, 632–641.
[68] Feras Saad and Vikash K. Mansinghka. 2016. A Probabilistic Programming Approach to Probabilistic Data Analysis. In

Advances in Neural Information Processing Systems, Vol. 29. Curran Associates, Inc., Red Hook, NY, USA, 2011–2019.
[69] Feras A. Saad, Marco F. Cusumano-Towner, Ulrich Schaechtle, Martin C. Rinard, and Vikash K. Mansinghka. 2019.

Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling. Proceedings of the ACM on Programming

Languages 3, POPL, Article 37 (2019), 29 pages. https://doi.org/10.1145/3290350
[70] Feras A. Saad and Vikash K. Mansinghka. 2018. Temporally-Reweighted Chinese Restaurant Process Mixtures for

Clustering, Imputing, and Forecasting Multivariate Time Series. In Proceedings of the 21st International Conference on

Artificial Intelligence and Statistics. PMLR, Norfolk, MA, USA, 755–764.
[71] Feras A. Saad and Vikash K. Mansinghka. 2021. Hierarchical Infinite Relational Model. In Proceedings of the 37th

Conference on Uncertainty in Artificial Intelligence. PMLR, Norfolk, MA, USA, 1067–1077.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

https://doi.org/10.1145/3591290
https://doi.org/10.1145/3591290
https://doi.org/10.1145/3591290
https://doi.org/10.1111/1755-0998.12529
https://doi.org/10.1145/3192366.3192409
https://doi.org/10.1145/3192366.3192409
https://arxiv.org/abs/1512.05006
https://doi.org/10.1007/s13238-021-00876-1
https://doi.org/10.1126/science.aac7341
https://doi.org/10.1145/2737924.2737982
https://doi.org/10.1007/978-3-319-31204-0_9
https://github.com/probcomp/Gen.clj
https://arxiv.org/abs/1803.06328
https://doi.org/10.14778/3137628.3137631
https://doi.org/10.14778/3137628.3137631
https://doi.org/10.1007/978-1-4757-4145-2
https://doi.org/10.1007/978-1-4757-4145-2
https://arxiv.org/abs/1704.01087
https://arxiv.org/abs/1608.05347
https://doi.org/10.1145/3290350

179:26 Huot, Ghavami, Lew, Schaechtle, Freer, Shelby, Rinard, Saad, Mansinghka

[72] Feras A. Saad, Brian J. Patton, Matthew D. Hoffmann, Rif A. Saurous, and Vikash K. Mansinghka. 2023. Sequential
Monte Carlo Learning for Time Series Structure Discovery. In Proceedings of the 40th International Conference on

Machine Learning. PMLR, Norfolk, MA, USA, Article 1226, 17 pages.
[73] Feras A. Saad, Martin C. Rinard, and Vikash K. Mansinghka. 2021. SPPL: Probabilistic Programming with Fast Exact

Symbolic Inference. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language

Design and Implementation. ACM, New York, NY, USA, 804–819. https://doi.org/10.1145/3453483.3454078
[74] Feras A. K. Saad. 2022. Scalable Structure Learning, Inference, and Analysis with Probabilistic Programs. Ph. D. Dissertation.

Massachusetts Institute of Technology.
[75] John Salvatier, Thomas V. Wiecki, and Christopher Fonnesbeck. 2016. Probabilistic Programming in Python using

PyMC3. PeerJ Computer Science 2 (2016), e55. https://doi.org/10.7717/peerj-cs.55
[76] Ulrich Schaechtle, Cameron Freer, Zane Shelby, Feras Saad, and Vikash Mansinghka. 2022. Bayesian AutoML for

Databases via the InferenceQL Probabilistic Programming System. In Proceedings of the 1st Conference on Automated

Machine Learning (Late-Breaking Workshop). AutoML-Conf, 8 pages.
[77] Chung-chieh Shan and Norman Ramsey. 2017. Exact Bayesian Inference by Symbolic Disintegration. In Proceedings

of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages. ACM, New York, NY, USA, 130–144.
https://doi.org/10.1145/3009837.3009852

[78] Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. 2011. Probabilistic Databases. Springer, Cham.
https://doi.org/10.1007/978-3-031-01879-4

[79] Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2013. Auto-WEKA: Combined Selection and
Hyperparameter Optimization Of Classification Algorithms. In Proceedings of the 19th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining. ACM, New York, NY, USA, 847–855. https://doi.org/10.1145/
2487575.2487629

[80] Guy Van den Broeck and Dan Suciu. 2017. Query Processing on Probabilistic Data: A Survey. Foundations and Trends
in Databases 7, 3-4 (2017), 197–341. https://doi.org/10.1561/1900000052

[81] Baojun Wang, Mauricio Barahona, and Martin Buck. 2013. A Modular Cell-Based Biosensor Using Engineered Genetic
Logic Circuits to Detect and Integrate Multiple Environmental Signals. Biosensors and Bioelectronics 40, 1 (2013),
368–376. https://doi.org/10.1016/j.bios.2012.08.011

[82] WHO. 2023. World Health Organization: Obesity. https://www.who.int/health-topics/obesity
[83] Darren J. Wilkinson. 2018. Stochastic Modelling for Systems Biology. CRC Press, Boca Raton, FL, USA.
[84] Frank Wood, Jan Willem Meent, and Vikash Mansinghka. 2014. A New Approach To Probabilistic Programming

Inference. In Proceedings of the 17th International Conference on Artificial Intelligence and Statistics. PMLR, Norfolk, MA,
USA, 1024–1032.

[85] Yi Wu, Siddharth Srivastava, Nicholas Hay, Simon Du, and Stuart Russell. 2018. Discrete-Continuous Mixtures in
Probabilistic Programming: Generalized Semantics and Inference Algorithms. In Proceedings of the 35th International

Conference on Machine Learning. PMLR, Norfolk, MA, USA, 5343–5352.
[86] xCures. 2019. BEAT19 Behavior, Environment And Treatments for COVID-19. https://classic.clinicaltrials.gov/ct2/

show/results/NCT04321811?view=results
[87] Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. 2019. Modeling Tabular Data using

Conditional GAN. In Advances in Neural Information Processing Systems, Vol. 32. Curran Associates, Inc., Red Hook,
NY, USA, 11 pages.

[88] Yubin Xue, Pei Du, Amal Amin Ibrahim Shendi, and Bo Yu. 2022. Mercury Bioremediation in Aquatic Environment
by Genetically Modified Bacteria with Self-Controlled Biosecurity Circuit. Journal of Cleaner Production 337 (2022),
130524. https://doi.org/10.1016/j.jclepro.2022.130524

[89] Fabian Zaiser, Andrzej Murawski, and Chih-Hao Luke Ong. 2023. Exact Bayesian Inference on Discrete Models via
Probability Generating Functions: A Probabilistic Programming Approach. In Advances in Neural Information Processing

Systems, Vol. 36. Curran Associates, Inc., Red Hook, NY, USA, 2427–2462.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

https://doi.org/10.1145/3453483.3454078
https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.1145/3009837.3009852
https://doi.org/10.1007/978-3-031-01879-4
https://doi.org/10.1145/2487575.2487629
https://doi.org/10.1145/2487575.2487629
https://doi.org/10.1561/1900000052
https://doi.org/10.1016/j.bios.2012.08.011
https://www.who.int/health-topics/obesity
https://classic.clinicaltrials.gov/ct2/show/results/NCT04321811?view = results
https://classic.clinicaltrials.gov/ct2/show/results/NCT04321811?view = results
https://doi.org/10.1016/j.jclepro.2022.130524

GenSQL: A Probabilistic Programming System for Querying Generative Models of Database Tables 179:27

A FURTHER EXPERIMENTS AND COMPARISONS
A.1 Code comparison with Scikit-learn
Figure 15 shows the implementation of a single-line GenSQL query

SELECT class FROM GENERATE UNDER model GIVEN petal width = 0.1 LIMIT 100
in Scikit-learn [60] on the Iris data from the UCI ML repository. Even though the implementation
contains data loading and preprocessing, model building, and a few comments, the model querying
alone is more than 50 lines long and clearly error prone. GenSQL offers a significant advantage in
simplicity over such baselines.

The reason is that Scikit-learn is a Python library that focuses on predictive modeling, not
a platform for interactive querying of probabilistic models. We now detail some aspects of the
implementation in Scikit-learn. Heterogeneously typed mixture models are closely related to the
AMI specification we use for many experiments in the model. The Scikit-learn implementations does
not natively support discrete columns. Instead, Scikit-learn advises to apply column transformations
like one-hot encoding. This makes sense for discriminative machine learning pipelines but less so
for multivariate generative models where users want to refer to columns and their discrete values
repeatedly and in two directions (what goes into the model for conditioning and what comes out).
More importantly, conditioning models on partial information is not supported in Scikit-learn.
The predict_proba method for mixture models in Scikit-learn returns updated weights for latent
components which are at the core of conditioning such a model. Yet, the predict_proba method
crashes with partial input. Users have to implement such methods manually before they can refer
to the sample method and post-process its output for the readability of discrete columns.

A.2 Comparison against a baseline using approximate inference
In this section, we present some more simple experiments comparing GenSQL using an exact
backend (SPPL) with a Gen.clj baseline using approximate inference. The results obtained are
expected and confirm the fact that for simple but non-trivial models, exact inference can be both
faster and more accurate than approximate inference. This is especially true for rare events for
which getting accurate estimates can be crucial in domains such as risk assessment, fraud detection,
and rare disease diagnosis. The fact that in GenSQL one can easily change the backend models is
therefore a significant advantage, where one can use approximate models when the exact model is
too slow, or switch to an exact model when the approximate model is not accurate enough. We
compare the normalized standard deviation of the estimator and the runtime of the queries. We use
the same probabilistic model for both backends, and we compare the results on a PROBABILITY OF 𝑐0

query on a possibly conditioned model.
Fig. 16 presents a runtime and normalized standard deviation of the estimator comparison. We

compare an exact and an approximate backend using importance sampling on a query
PROBABILITY OF 𝑐0 UNDER𝑚 GIVEN 𝑐0

𝑖

with varying 𝑐0
𝑖 . The same probabilistic model is used, using exact inference for GenSQL and

importance sampling (blue: 5000, red: 10000 importance samples) in Gen.clj. GenSQL is faster by
orders of magnitude and more accurate than the baseline Gen.clj model (runtime: in the presence
of at least one condition).

A.3 Gen.clj code for emission functions
Fig. 17 shows the Gen.clj code for a simple population model and a harmonized model with emission
functions that uses age categories as opposed to integers for age. Such emissions functions are
useful for harmonizing models with different data sources. For instance, one model can be trained

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

179:28 Huot, Ghavami, Lew, Schaechtle, Freer, Shelby, Rinard, Saad, Mansinghka

import numpy as np
import pandas as pd
from scipy.stats import norm
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder
from sklearn.mixture import GaussianMixture
from sklearn.pipeline import make_pipeline
from ucimlrepo import fetch_ucirepo

Fetch Iris data from UCI ML repo
iris = fetch_ucirepo(id=53)
data = iris.data["original"]

Model building
Define the preprocessing for the categorical features.
categorical_features = ["class"]
categorical_transformer = OneHotEncoder(handle_unknown="ignore")

Create the ColumnTransformer to apply the transformations to the correct
columns.
preprocessor = ColumnTransformer(

transformers=[("categorical-columns", categorical_transformer, categorical_features)],
remainder="passthrough")

Use SKlearn to create a mixture model with heterogenous types;
Gaussians are a bad choice of primitive here but this is
supposed to be an illustrative example... SKlearn does not actually
support heterogenously typed mixtures.
pipeline = make_pipeline(

preprocessor, GaussianMixture(n_components=3, covariance_type="diag")
).fit(data)

Model querying: GENERATE class UNDER model GIVEN petal width = 0.1
def get_normal_params(component_idx, pipeline, condition_name):

Get index of the column in the sklearn internals. The first columns
are the one-hot encoded columns, then we add the original index.
col_index = data["class"].unique().shape[0] + data.columns.get_loc(condition_name)
2. Read out mu.
m = pipeline.named_steps["gaussianmixture"].means_[component_idx, col_index]
3. Read out sigma.
sigma = np.sqrt(

pipeline.named_steps["gaussianmixture"].covariances_[component_idx, col_index])
return {"mu": m, "sigma": sigma}

def get_comp_score(val, params):
return norm.pdf(val, params["mu"], params["sigma"])

Fig. 15. Scikit-learn implementation of a simple GenSQL query.

on data with age as an integer, while another model can be trained on data with age categories.
These two values are not directly comparable, but emission functions can be used to harmonize
them, and therefore allow for querying across models trained on different data sources. While the
given example is simple, they are essential for real-world applications where data sources are often
heterogeneous.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

GenSQL: A Probabilistic Programming System for Querying Generative Models of Database Tables 179:29

def condition_model(pipeline, condition_name, condition_value):
unnormalized_updated_weights = pipeline.named_steps["gaussianmixture"].weights_

* np.asarray([
get_comp_score(

condition_value, get_normal_params(0, pipeline, condition_name)),
get_comp_score(

condition_value, get_normal_params(1, pipeline, condition_name)),
get_comp_score(

condition_value, get_normal_params(2, pipeline, condition_name)),
])

updated_weights = unnormalized_updated_weights / sum(unnormalized_updated_weights)
pipeline.named_steps["gaussianmixture"].weights_ = updated_weights
return pipeline

Sample 100 times from conditional model.
conditioned_pipeline = condition_model(

pipeline, condition_name="petal width", condition_value=0.1)
synethetic_data_with_unreadable_categoricals, _ = conditioned_pipeline.named_steps[

"gaussianmixture"].sample(100)

Back transform one-hot encoded class column to readiable iris names.
print(preprocessor

.named_transformers_["categorical-columns"]

.inverse_transform(X=synethetic_data_with_unreadable_categoricals[:, -3:]))

Fig. 15. Scikit-learn implementation of a simple GenSQL query (continued).

0 1 2 3 4
No. of Conditions in PROBABILITY OF �ery

10−1

100

101

102

Runtime (ms)

GenSQL (Optimized)
GenSQL (Unoptimized)
Gen.clj (5000 Importance Samples)
Gen.clj (10000 Importance Samples)

0 1 2 3 4
No. of Conditions in PROBABILITY OF �ery

0.0

0.1

0.2

0.3

Normalized Standard Deviation (ms)

Fig. 16. Comparing the effect on runtime (left) and on standard deviation of the estimated probability (right)

between GenSQL and Gen.clj [20] on a simple probability query, varying the number of conditions.

B DETAILS OF THE OPTIMIZATIONS
A dominating computational factor in GenSQL queries for exact models is often model conditioning,
analogously to the role of join computations in SQL. For these models, this usually amounts to a
program transformation [73], or e.g., a costly matrix inversion [49]. Likewise, for both exact and
approximate models, a typical GenSQL workload will involve repeated likelihood evaluations and
querying a conditioned rowModel repeatedly over the rows of a data table. We can optimize this

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

179:30 Huot, Ghavami, Lew, Schaechtle, Freer, Shelby, Rinard, Saad, Mansinghka

;; This function extends Gen's GFI to the AMI using 1000 importance samples for each query.
(gen->iql 1000)

;; Create a simple population model for exposition
(def population-model

(with-meta ;; users have to specify all variables in the Gen model that will be queried.
(gen

[]
(let [age (dynamic/trace! "age" dist/uniform-discrete 18 100)

likes_video_games (if (< age 60)
(dynamic/trace! "likes_video_games" dist/bernoulli 0.9)
(dynamic/trace! "likes_video_games" dist/bernoulli 0.1))]

[age, likes_video_games]))
{:variables #{"age" "likes_video_games"}}))

;; Create a harmonized model with emission functions that uses age categories as
;; opposed to integers for age.
(def harmonized-model-with-emission

(with-meta ;; users have to specify all variables in the Gen model that will be queried.
(gen
[]
(let [[age likes_video_games] (dynamic/splice! population-model)

age-group-probabilities (fn [age-group]
(assoc {"18-30" 0.0

"31-40" 0.0
"41-50" 0.0
"51-60" 0.0
"60+" 0.0}

age-group
1.0))]

(cond
(<= age 30)
(dynamic/trace! "age_group" dist/categorical (age-group-probabilities "18-30"))

(<= age 40)
(dynamic/trace! "age_group" dist/categorical (age-group-probabilities "31-40"))

(<= age 50)
(dynamic/trace! "age_group" dist/categorical (age-group-probabilities "41-50"))

(<= age 60)
(dynamic/trace! "age_group" dist/categorical (age-group-probabilities "51-60"))

:else
(dynamic/trace! "age_group" dist/categorical (age-group-probabilities "60+")))))

{:variables #{"age_group" "likes_video_games"}}))

Fig. 17. Gen.clj code for a simple population model and a harmonized model with emission functions.

by caching the results of the likelihood evaluations and the conditioned rowModels in a way that
would not typically appear in other general purpose PPLs.

A second class of optimizations exploits the conditional independence relations between subsets
of the columns of probabilistic models. We can simplify a query of the form PROBABILITY OF 𝑐1 UNDER id

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

GenSQL: A Probabilistic Programming System for Querying Generative Models of Database Tables 179:31

GIVEN 𝑐2∧ id.𝑦 op 𝑒 to PROBABILITY OF 𝑐1 UNDER id GIVEN 𝑐2 if𝑦 is independent from the joint distribu-
tion of the variables appearing in 𝑐1 and 𝑐2. This independence check can sometimes be performed
by simply looking at the structure of the program. For probabilistic programs produced by CrossCat,
we can read that a variable 𝑦 is independent from variables 𝑥, 𝑧 if 𝑦 is not in the same cluster as
𝑥 and 𝑧. If we see these programs as Bayesian networks, the reason is that no column-variables
have nodes as children, and this is what we exploit in our implementation. More generally, one
could use more sophisticated algorithms to detect independence relations, for example in Bayesian
networks based on d-separation [59]. However, there may be more independence relations that
cannot be directly detected, even in the case of exact models expressed as sum-product expressions,
and in that case more independence relations can perhaps be detected by using more sophisticated
algorithms.

Together, these optimizations can lead to significant speedups in the evaluation of GenSQL
queries. One reason is that these optimizations can synergize with each other. To see this, imagine
as a first example if id GIVEN 𝑐 ∧ id.𝑦 = 3 and id GIVEN 𝑐 ∧ id.𝑦 = 4 both get simplified to id GIVEN 𝑐 .
Then, caching the first conditioned model will hit for the second query. As a second example,
consider a subquery id GIVEN id.𝑥 = (PROBABILITY OF id′ .𝑦 = 3 UNDER id′) appearing at least twice
in a query. If id′ only approximates the computation of the probability query, then it’s unlikely for
id′ to compute the same approximation twice. In that case, caching the result instead allows to
compute only one conditioned model for id, instead of two.

B.1 Caching
Caching conditioned models. GenSQL is agnostic to the implementation of the AMI methods, as
long as they satisfy the interface described in Section 4. In particular, the simulate, logpdf and prob
methods are free to construct and cache any intermediate data structures, such as a data structure
that represents the conditioned model.

Caching exact prob and logpdf computations. A cache hit typically occurs in GenSQL queries
when scalar expressions 𝑒1 and 𝑒2 in an event reduce to the same value. To see why, let Γ ⊢ 𝑐1 := 𝑐′∧
(id, 𝑖) op 𝑒1 and Γ ⊢ 𝑐2 := 𝑐′∧(id, 𝑖) op 𝑒2 be two lowered events that differ only in the expressions 𝑒1
and 𝑒2. Let Γ ⊢ probid (𝑐0, 𝑐1, 𝑐1) and Γ ⊢ probid (𝑐0, 𝑐1, 𝑐2) both be well-typed programs. Also assume
𝐶 [] is a given program with a hole such that Γ ⊢ 𝐶 [probid (𝑐0, 𝑐1, 𝑐1)] and Γ ⊢ 𝐶 [probid (𝑐0, 𝑐1, 𝑐2)]
are well-typed. Finally, suppose that for some evaluation 𝛾 of the context Γ, ⟦𝑒1⟧exact (𝛾) =

⟦𝑒2⟧exact (𝛾). Then, we will have ⟦probid (𝑐0, 𝑐1, 𝑐1)⟧exact (𝛾) = ⟦probid (𝑐0, 𝑐1, 𝑐2)⟧exact (𝛾). There-
fore, we can cache the result of probid (𝑐0, 𝑐1, 𝑐1) and reuse it instead of doing the full computation
of probid (𝑐0, 𝑐1, 𝑐2). More generally, the following proposition justifies the correctness of caching
in GenSQL.

Proposition B.1 (Correctness of caching (exact computations)). Let 𝑃 be either probid
or logpdf id. Let 𝐶 [] be a program with a hole such that Γ ⊢ 𝐶 [𝑃 (𝑐0, 𝑐1, 𝑐)] is well-typed. Let 𝛾
be an evaluation of the context Γ, and let 𝑣 := ⟦𝑐⟧exact (𝛾). Then, Γ ⊢ 𝐶 [𝑣] is well-typed and

⟦𝐶 [𝑃 (𝑐0, 𝑐1, 𝑐)]⟧exact (𝛾) = ⟦𝐶 [𝑣]⟧exact (𝛾).

Proof. This follows by a straightforward induction on the structure of the program with a hole
𝐶 []. If 𝐶 [] := [], then the result follows by the definition of the semantics and the fact that reals
constants 𝑣 are in the language. Otherwise, 𝐶 [] is obtained using a rule from the type system in
Fig. 20. By induction hypothesis, all the subprograms of 𝐶 [] are well-typed and the result holds for
them. Therefore, the typing result holds for 𝐶 []. In addition, by compositionality of the semantics,
the semantic equality also holds for 𝐶 []. □

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

179:32 Huot, Ghavami, Lew, Schaechtle, Freer, Shelby, Rinard, Saad, Mansinghka

If we take 𝑣 := ⟦𝑃 (𝑐0, 𝑐1, 𝑐1)⟧exact (𝛾) = ⟦𝑃 (𝑐0, 𝑐1, 𝑐2)⟧exact (𝛾) in the above proposition, then

⟦𝐶 [𝑃 (𝑐0, 𝑐1, 𝑐1)]⟧exact (𝛾) = ⟦𝐶 [𝑣]⟧exact (𝛾) = ⟦𝐶 [𝑃 (𝑐0, 𝑐1, 𝑐2)]⟧exact (𝛾)

and we have formally recovered the example from above with events differing in a scalar 𝑒1 and 𝑒2.
This is a view on caching as partial evaluation.
Caching of approximate prob and logpdf computations. In the case where prob or logpdf are
approximated, the argument using the reduction to a value 𝑣 above does not directly hold. Indeed,
in general we can have ⟦𝑐1⟧exact (𝛾) = ⟦𝑐2⟧exact (𝛾) but ⟦𝑐1⟧approx (𝛾) ≠ ⟦𝑐2⟧approx (𝛾). Caching in
this case does change the semantics of the program, but it will not change the asymptotic guarantees
of the program.

The key intuition that makes it hold is that if two sequences of random variables (𝑥𝑛)𝑛 and
(𝑦𝑛)𝑛 converge to the same 𝑥 , then for every continuous function 𝑓 , both sequences (𝑓 (𝑥𝑛, 𝑦𝑛))𝑛
and (𝑓 (𝑥𝑛, 𝑥𝑛))𝑛 will converge to 𝑓 (𝑥, 𝑥). Here, 𝑥𝑛 and 𝑦𝑛 are two approximations of the same
quantity that appears twice in a program. The value 𝑥 is the true value of the quantity under
consideration, and the denotation of the program is 𝑓 (𝑥𝑛, 𝑦𝑛). With this view, caching consists of
using the same approximation 𝑥𝑛 twice instead of independently recomputing an approximation
𝑦𝑛 . This operation is then valid as long as programs are continuous at (𝑥, 𝑥), which is the case
for safe (see Appendix D.4) programs in GenSQL. In other words, the caching operation may
change the approximate semantics but not the asymptotic guarantees of the program, as long as
the replaced approximation sequence converges to the same value, and that the query using these
approximations is safe.

Proposition B.2 (Correctness of caching (approximate computations)). Suppose that the

following four queries are safe: Γ;Δ ⊢ 𝑡1, Γ;Δ ⊢ 𝑡2, Γ; [] ⊢ 𝐶 [𝑡1, 𝑡2] and Γ; [] ⊢ 𝐶 [𝑡1, 𝑡1]. Let 𝛾 be an

evaluation context for Γ, and 𝛿, 𝛿 ′ the
obtained evaluations of Δ for 𝑡1, 𝑡2 when evaluating 𝐶 [𝑡1, 𝑡2] in 𝛾 . Further assume that 𝛿 = 𝛿 ′, and

that almost surely

lim
𝑛→∞

⟦T𝛿 {𝑡1}⟧approx (𝛾)𝑛 = lim
𝑛→∞

⟦T𝛿 {𝑡2}⟧approx (𝛾).

Then, almost surely

lim
𝑛→∞

⟦T[] {𝐶 [𝑡1, 𝑡2]}⟧approx (𝛾)𝑛 = lim
𝑛→∞

⟦T[] {𝐶 [𝑡1, 𝑡1]}⟧approx (𝛾)𝑛

Proof. Almost surely,

lim
𝑛

⟦T[] {𝐶 [𝑡1, 𝑡2]}⟧approx (𝛾)𝑛
= ⟦𝐶 [𝑡1, 𝑡2]⟧(𝛾, []) Theorem 4.3 as 𝐶 [𝑡1, 𝑡2] safe
= ⟦𝐶⟧[⟦𝑡1⟧(𝛾, 𝛿), ⟦𝑡2⟧(𝛾, 𝛿)] Compositionality of ⟦−⟧
= ⟦𝐶⟧[⟦𝑡1⟧(𝛾, 𝛿), lim

𝑛→∞
⟦T𝛿 {𝑡2}⟧approx (𝛾)] Theorem 4.3 as 𝑡2 safe

= ⟦𝐶⟧[⟦𝑡1⟧(𝛾, 𝛿), lim
𝑛→∞

⟦T𝛿 {𝑡1}⟧approx (𝛾)] Hypothesis on 𝑡1, 𝑡2

= ⟦𝐶⟧(𝛾, []) [⟦𝑡1⟧(𝛾, 𝛿), ⟦𝑡1⟧(𝛾, 𝛿)] Theorem 4.3 as 𝑡1 safe
= ⟦𝐶 [𝑡1, 𝑡1]⟧(𝛾, []) Compositionality of ⟦−⟧
= lim

𝑛
⟦T[] {𝐶 [𝑡1, 𝑡1]}⟧approx (𝛾)𝑛 Theorem 4.3 as 𝐶 [𝑡1, 𝑡1] safe

□

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

GenSQL: A Probabilistic Programming System for Querying Generative Models of Database Tables 179:33

B.2 Independence simplification
The formal correctness of independence simplification hinges on the repeated application of the
following proposition. For ease of expression, we use the following notation in the statement and
proof of the proposition.

• The symbols 𝑖 and 𝑗 are respectively syntactic sugar for the sequences 𝑖1, . . . , 𝑖𝑘 and 𝑗1, . . . , 𝑗𝑘 .
Similarly, 𝑥𝑖 is sugar for the sequence 𝑥𝑖1 , . . . , 𝑥𝑖𝑘 , and 𝜋𝑖 is sugar for 𝜋𝑖1 ⊗ · · · ⊗ 𝜋𝑖𝑘 . We also
take ⟦𝜎𝑖⟧ as sugar for the product ⟦𝜎𝑖1⟧× · · · ×⟦𝜎𝑖𝑘⟧ and ⟦𝑡𝑖⟧(𝛾, 𝛿) as sugar for the sequence
⟦𝑡1⟧(𝛾, 𝛿), . . . , ⟦𝑡𝑘⟧(𝛾, 𝛿).

• Given𝑚 ∈ ⟦𝑀 [id]{cols}⟧, we let
𝑝𝑖 | 𝑗 (𝑥𝑖 |𝑥 𝑗) = Dis(𝑚, 𝜋 𝑗 , 𝑥 𝑗).pdf(𝑥𝑖).

• As in Section 3.1, cols is sugar for col1 : 𝜎1, . . . , col𝑛 : 𝜎𝑛 . We additionally use cols𝑖 as sugar
for col𝑖1 : 𝜎𝑖1 , . . . , col𝑖𝑘 : 𝜎𝑖𝑘 .

Proposition B.3 (Correctness of independence simplification). Suppose𝑚 ∈ ⟦𝑀 [id]{cols}⟧
and that under𝑚.meas the distributions of cols𝑖 and col𝑗 are conditionally independent given cols𝑗 ;

i.e. 𝑝𝑖, 𝑗 | 𝑗 (𝑥𝑖 , 𝑥 𝑗 |𝑥 𝑗) = 𝑝𝑖 | 𝑗 (𝑥𝑖 |𝑥 𝑗), or equivalently, for all measurable functions 𝑓 : ⟦𝜎𝑖⟧ → R and

𝑔 : ⟦𝜎 𝑗⟧ → R, we have∫
𝑓 (𝑥𝑖)𝑔(𝑥 𝑗)𝑝𝑖, 𝑗 | 𝑗 (𝑥𝑖 , 𝑥 𝑗 |𝑥 𝑗)𝑑𝑥𝑖𝑑𝑥 𝑗 =

(∫
𝑓 (𝑥𝑖)𝑝𝑖 | 𝑗 (𝑥𝑖 |𝑥 𝑗)𝑑𝑥𝑖

) (∫
𝑔(𝑥)𝑝 𝑗 | 𝑗 (𝑥 |𝑥 𝑗)𝑑𝑥

)
.

Let 𝑐 = id.col𝑖1op1𝑡1 ∧ · · · ∧ id.col𝑖𝑘 op𝑘𝑡𝑘 , and let (Γ,Δ) be a pair of contexts such that Γ;Δ ⊢ 𝑐0 :
𝐶0{cols𝑗 }, and Γ,Δ ⊢ 𝑐1 : 𝐶1{cols}. Further, let (𝛾, 𝛿) ∈ ⟦Γ⟧ × ⟦Δ⟧ such that ⟦id⟧(𝛾, 𝛿) = 𝜇. If

col𝑗 ∉ vars(𝑐0) ∪ vars(𝑐1) and
Γ;Δ ⊢ (PROBABILITY OF 𝑐 UNDER id GIVEN (id.col𝑗 op′ 𝑡 ′) ∧ 𝑐0 GIVEN 𝑐1) : 𝜏

for some 𝜏 ∈ {PosReal,Ranged(0, 1)}, then
⟦ PROBABILITY OF 𝑐 UNDER id GIVEN (id.col𝑗 op′ 𝑡 ′) ∧ 𝑐0 GIVEN 𝑐1⟧(𝛾, 𝛿) =

⟦ PROBABILITY OF 𝑐 UNDER id GIVEN 𝑐0 GIVEN 𝑐1⟧(𝛾, 𝛿).

Proof. For ease of notation suppose 𝑐0 = id.col𝑗1 = 𝑡 ′1 ∧ · · · ∧ id.col𝑗𝑙 = 𝑡 ′
𝑙
. We have two cases:

Case I: 𝑐 : 𝐶0. In this case we have
⟦ PROBABILITY OF 𝑐 UNDER id GIVEN (id.col𝑗 op′ 𝑡 ′) ∧ 𝑐0 GIVEN 𝑐1⟧(𝛾, 𝛿)

=
1

𝜇 (⟦𝑐1⟧(𝛾, 𝛿))

𝑘∏
𝛼=1

1𝜋𝑖𝛼 (⟦𝑐1⟧(𝛾,𝛿)) (⟦𝑡𝛼⟧(𝛾, 𝛿))
𝑙∏

𝛽=1
1𝜋 𝑗𝛽

(⟦𝑐1⟧(𝛾,𝛿)) (⟦𝑡
′
𝛽
⟧(𝛾, 𝛿))

× 𝑝𝑖 | 𝑗, 𝑗 (⟦𝑡𝑖⟧(𝛾, 𝛿) |⟦𝑡
′⟧(𝛾, 𝛿), ⟦𝑡 ′

𝑗
⟧(𝛾, 𝛿))

=
1

𝜇 (⟦𝑐1⟧(𝛾, 𝛿))

𝑘∏
𝛼=1

1𝜋𝑖𝛼 (⟦𝑐1⟧(𝛾,𝛿)) (⟦𝑡𝛼⟧(𝛾, 𝛿))
𝑙∏

𝛽=1
1𝜋 𝑗𝛽

(⟦𝑐1⟧(𝛾,𝛿)) (⟦𝑡
′
𝛽
⟧(𝛾, 𝛿))

× 𝑝𝑖 | 𝑗 (⟦𝑡𝑖⟧(𝛾, 𝛿) |⟦𝑡
′
𝑗
⟧(𝛾, 𝛿)) by conditional independence

= ⟦ PROBABILITY OF 𝑐 UNDER id GIVEN 𝑐0 GIVEN 𝑐1⟧(𝛾, 𝛿).
Case II: 𝑐 : 𝐶1. Let

𝐴𝛼 :=
{
𝑥 ∈ ⟦𝜎𝑖𝛼⟧

��⟦op𝛼⟧(𝛾, 𝛿) (𝑥, ⟦𝑡𝛼⟧(𝛾, 𝛿)) = true
}

1 ≤ 𝛼 ≤ 𝑘

𝐴 := 𝐴1 × · · · ×𝐴𝑘 .

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

179:34 Huot, Ghavami, Lew, Schaechtle, Freer, Shelby, Rinard, Saad, Mansinghka

We have
⟦ PROBABILITY OF 𝑐 UNDER id GIVEN (id.col𝑗 op′ 𝑡 ′) ∧ 𝑐0 GIVEN 𝑐1⟧(𝛾, 𝛿)

=
1

𝜇 (⟦𝑐1⟧(𝛾, 𝛿))

∫ 𝑘∏
𝛼=1

1𝜋𝑖𝛼 (⟦𝑐1⟧(𝛾,𝛿)) (⟦𝑡𝛼⟧(𝛾, 𝛿))
𝑙∏

𝛽=1
1𝜋 𝑗𝛽

(⟦𝑐1⟧(𝛾,𝛿)) (⟦𝑡
′
𝛽
⟧(𝛾, 𝛿))

× 1𝐴 (𝑥𝑖)𝑝𝑖 | 𝑗, 𝑗 (𝑥𝑖 |⟦𝑡
′⟧(𝛾, 𝛿), ⟦𝑡 ′

𝑗
⟧(𝛾, 𝛿))𝑑𝑥𝑖

=
1

𝜇 (⟦𝑐1⟧(𝛾, 𝛿))

∫ 𝑘∏
𝛼=1

1𝜋𝑖𝛼 (⟦𝑐1⟧(𝛾,𝛿)) (⟦𝑡𝛼⟧(𝛾, 𝛿))
𝑙∏

𝛽=1
1𝜋 𝑗𝛽

(⟦𝑐1⟧(𝛾,𝛿)) (⟦𝑡
′
𝛽
⟧(𝛾, 𝛿))

× 1𝐴 (𝑥𝑖)𝑝𝑖 | 𝑗 (𝑥𝑖 |⟦𝑡
′
𝑗
⟧(𝛾, 𝛿))𝑑𝑥𝑖 by conditional independence

= ⟦ PROBABILITY OF 𝑐 UNDER id GIVEN 𝑐0 GIVEN 𝑐1⟧(𝛾, 𝛿).
□

C IMPLEMENTATIONS OF THE AMI
C.1 AMI in terms of sum-product expressions
Sum-product networks (SPNs) are a useful family of distributions that are closed under marginal-
ization and conditioning. Sum-product expressions (SPEs) [73] generalize SPNs to gain more
expressivity while still allowing for exact marginalization and conditioning. The idea is that if
finitely many distributions are closed under marginalization and conditioning, so are their inde-
pendent products and weighted mixtures. On top of having an API method for sampling, SPEs also
have the API methods prob for computing the probability of an event and logpdf for computing
the (marginal) log-density of the distribution represented by the SPE. SPEs also have access to the
following functions, which are typically implemented as program transforms:

cond0 : 𝐶0{cols′} → SPE → SPE
cond1 : 𝐶1{cols} → SPE → SPE

marginalizecols′ : SPE → SPE.
The functions cond0 and cond1 take in an SPE and an event-0 or event, respectively, and return
a new SPE representing the conditional distribution of the input SPE given the provided event
or event-0. The family of methods marginalizecols′ take an SPE and return a new SPE whose
distribution is the marginal distribution of cols′ under the input SPE. They can for instance be
used to implement marginal densities in terms of densities.

With these, we can implement the AMI methods as follows:
simulateid (𝑐0, 𝑐1) = sample $ cond0 𝑐

0 $ cond1 𝑐
1 𝑀id

logpdf id (𝑐0, 𝑐1, 𝑐0
2) = logpdf 𝑐0

2 $ cond0 𝑐
0 $ cond1 𝑐

1 𝑀id

probid (𝑐0, 𝑐1, 𝑐1
2) = prob 𝑐1

2 $ cond0 𝑐
0 $ cond1 𝑐

1 𝑀id.

C.2 AMI in terms of truncated multivariate Gaussians
It is well-known that the family of multivariate Gaussian distributions is closed under conditioning
on a subset of the Gaussian variates. Moreover, if x ∼ N(𝜇, Σ) is a 𝑑-dimensional multivariate
Gaussian random variable, 𝐴 is a 𝑚 × 𝑑 matrix, and u, l ∈ R𝑚 , then conditional on the event
{l ≤ 𝐴x ≤ u} the random variable x follows a truncated multivariate Gaussian distribution.

If we focus on the set of events of the form {l ≤ 𝐴x ≤ u}, then similar to sum-product expressions,
the family of truncated multivariate Gaussians will be closed under conditioning. This results from

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

GenSQL: A Probabilistic Programming System for Querying Generative Models of Database Tables 179:35

the fact that multivariate Gaussians are closed under conditioning on event-0s and conditioning a
truncated multivariate Gaussian on an event of the above form is equivalent to truncating it further.
That is, if we represent a truncated multivariate Gaussian by the tuple (𝜇, Σ, 𝐴, l, u), we can define
the events

cond : 𝐶0{cols′} → TMVG → TMVG
truncate : 𝐶1{cols} → TMVG → TMVG,

where TMVG denotes the type of truncated multivariate Gaussian terms.
Moreover, it is possible to define distribution functions for multivariate Gaussians distributions

allowing us to calculate the probability mass assigned to hyperrectangles in the domain of the
distribution. We note that such calculations require the evaluation of the distribution function
at every corner of the hyperrectangles, and the number of these corners can be exponential in
the dimension of the hyperrectangle. Furthermore, there are several exact methods for exactly
calculating the normalizing constant of truncated multivariate Gaussian variables. We refer the
reader to the textbook [31] for the details, and assume access to methods logpdf and prob for
calculating log-marginal densities and probabilities, respectively.

Using the functions truncate, cond, logpdf , and prob the implementation of the AMI methods
for truncated multivariate Gaussians is almost identical to that of SPEs, as follows.

simulateid (𝑐0, 𝑐1) = sample $ cond0 𝑐
0 $ truncate 𝑐1 𝑀id

logpdf id (𝑐0, 𝑐1, 𝑐0
2) = logpdf 𝑐0

2 $ cond 𝑐0 $ truncate 𝑐1 𝑀id

probid (𝑐0, 𝑐1, 𝑐1
2) = prob 𝑐1

2 $ cond 𝑐0 $ truncate 𝑐1 𝑀id.

C.3 AMI in terms of ancestral sampling
In general, exact Bayesian inference in probabilistic models is intractable. As such, practitioners
often rely on variational or Monte Carlo methods for approximate inference. Probabilistic program-
ming languages that support programmable inference allow their users to seamlessly incorporate
approximate inference methods into their workflow. We now describe how GenSQL’s AMI can be
implemented in such probabilistic programming languages. As a simple representative example of
an approximate inference algorithm we chose ancestral sampling, a simple sequential Monte Carlo
method.

We do not introduce ancestral sampling in detail here, and refer the unfamiliar reader to [64]. As
in the previous sections, we describe our implementation in a superset of the lowered language.
We assume the implementation language contains a parametric type Model{cols} representing a
probabilistic model describing a joint distribution on the columns cols. Given this type, the type
signature of the ancestral sampling algorithm is given by

ancestral : Model{cols} → 𝐶0{cols′} → 𝐶1{cols} → ((𝜎1, . . . , 𝜎𝑛),Real).
In the above type signature, the first argument denotes the probabilistic model under consideration.
The remaining arguments denote the event-0 and event on which the model is being conditioned.
The algorithm returns a weighted sample (𝑥,𝑤), where 𝑤 is the log-importance weight of 𝑥 .

Recall that the approximate implementations of the AMI methods are indexed by a “compute
budget” 𝑛. Here, 𝑛 will denote the number of independent ancestral samples we will generate to
perform the desired computation.

Throughout, we suppose 𝑀id is a probabilistic model in the host language implementing the row
model specified by id.

To implement simulateid (𝑐0, 𝑐1), we first generate 𝑛 independent ancestral samples by calling
ancestral 𝑀id 𝑐0 𝑐1 for 𝑛 times. If the importance weights of all the generated particles are zero

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

179:36 Huot, Ghavami, Lew, Schaechtle, Freer, Shelby, Rinard, Saad, Mansinghka

(i.e. the return second element of all the returned tuples are −∞) then the generated sample is
incompatible with the event described by 𝑐1. As such, in this case we return a null sample (★, . . . ,★).
Note that as the number of particles 𝑛 increases, the probability of generating such a collection
of particles goes to zero, and so the implementation of simulate will generate a non-null sample
almost surely. On the other hand, if at least one importance weight is non-zero, we re-sample
one of the generated particles based on its weight and return it. The sampling distribution of the
return value of this procedure converges to the conditioned row model by an elementary statistical
argument [64]. The Haskell-style pseudo-code of the simulate method is given below.

simulateid (𝑐0, 𝑐1) = let particles = replicate 𝑛 $ ancestral𝑀id 𝑐
0 𝑐1 in

let logits = map 𝜋2 particles in
if all (== −∞) logits then (★, . . . ,★)else

let 𝑖 = Categorical $ logitsToProbs logits in
𝜋1 particles𝑖

To implement logpdf (𝑐0, 𝑐1, 𝑐0
2) we rely on the fact that the expected value of an importance

weight is equal to the joint density of the variables whose values are given [47]. Using this fact,
we first define a helper function logmarginal which estimates the log marginal density of a given
assignment of variables to values expressed as an event-0. That is, we define

logmarginal : Model{cols} → 𝐶0{cols′} → 𝐶1{cols} → Real,

logmarginal𝑀 𝑐0 𝑐1 = logmeanexp $ map 𝜋2 (replicate 𝑛 $ ancestral𝑀 𝑐0 𝑐1)

where logmeanexp xs := (logsumexp xs) − (log $ length xs). Now, as conditional densities are
given as a ratio of marginal densities we will have the implementation of logpdf id (𝑐0, 𝑐1, 𝑐0

2) as
follows

logpdf id (𝑐0, 𝑐1, 𝑐0
2) = (logmarginal𝑀id (𝑐0 ∧ 𝑐0

2) 𝑐1) − (logmarginal𝑀id 𝑐
0 𝑐1).

Note that as 𝑛 → ∞, the return value of this implementation will almost surely converge to the
correct value. This is because by the strong law of large numbers the results of logmarginal will
almost surely converge to the correct value, and as division and logarithm are continuous functions
the value of logpdf id (𝑐0, 𝑐1, 𝑐0

2) will converge to the correct value.
Lastly, to implement the prob method we rely on the fact that we can perform Monte Carlo

integration using importance samples. Note that the probability of an event under a probability
measure is given by the integral of the indicator function of that event under the same measure.
We have the implementation

probid (𝑐0, 𝑐1, 𝑐1
2) = let particles = replicate 𝑛 $ ancestral𝑀id 𝑐

0 𝑐1 in

exp
(
logmeanexp [𝑤 × (logindicator 𝑐1 𝑥) | (𝑥,𝑤) ∈ particles]
− logmarginal𝑀id 𝑐

0 𝑐1) ,
where logindicator 𝑐1 𝑥 := if 𝑥 ∈ 𝑐1 then 0 else −∞.

Note that we need the correction term logmarginal𝑀id 𝑐
0 𝑐1, as Monte Carlo integral estimators

obtained via ancestral sampling estimate the integral under consideration up to a constant factor
which is the joint density of the given variables.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

GenSQL: A Probabilistic Programming System for Querying Generative Models of Database Tables 179:37

D LOWERING DETAILS
D.1 Normalization of GenSQLQueries
Our implementation allows arbitrary nested conditionings on events and event-0 which do not
fit the restriction from the type system presented in Section 3. Our normalization has two stages
(Figs. 18 and 19), which rewrite queries so they satisfy the formalization presented in Section 3,
and simplifies the queries to a normal form.

The first part of the normalization does three things.
(1) It partially evaluates RENAME clauses on models.
(2) It aggregates events in GIVEN clauses.
(3) It removes self-contradictory statements. For instance, PROBABILITY OF id.𝑥 = 7 ∧ id.𝑦 =

8 UNDER id GIVEN id.𝑦 = 4 should technically return 0 as the event is impossible, but the
normalization will return PROBABILITY OF id.𝑥 = 7 UNDER id GIVEN id.𝑦 = 4 instead. These
can also appear through nested GIVEN clauses, e.g. (id GIVEN id.col1 = 7) GIVEN id.col1 = 8.
In this case, the normalization pass will remove the second GIVEN clause. In other words,
variables which are conditioned by a 0-event behave in the density of the model like variables
which have been marginalized-out and are not present in the model anymore. The same logic
applies to the probability of an event under a model, but this case does not need a special
treatment. Ideally, an implementation should issue a warning to the user letting them know
that there was probably a mistake in the query.

The second part of the normalization pass is only needed for the implementation and ensures
that we do not evaluate a density at a point where some of the indices have been conditioned on.
This avoids another subtle issue when conditioning on event-0. Briefly, when conditioning on an
event-0 such as id.col = 7, we are changing the base measure on col to be a Dirac 𝛿 measure at 7,
and the density evaluation would incorrectly assume that it is still the original base measure. In the
second part of the normalization, a temporary name true is used which is not part of the language
syntax. It gets eliminated during the normalization. After applying the normalization passes, we
obtain the following normal forms:

Proposition D.1. The rewrites from Fig. 18 are confluent, terminating, and lead to the following

normal forms, where RENAME and GIVEN clauses are optional:

• rowModels: RENAME (id GIVEN 𝑐0 GIVEN 𝑐1) AS id′.
• Probability queries: PROBABILITY OF 𝑐𝑖1 UNDER (id GIVEN 𝑐0 GIVEN 𝑐1).
• Generate queries: GENERATE UNDER (id GIVEN 𝑐0 GIVEN 𝑐1) LIMIT 𝑒 and

𝑡 GENERATIVE JOIN (id GIVEN 𝑐0 GIVEN 𝑐1).
After the rewrites from Fig. 19, we can further assume that the variables in 𝑐0

1 and 𝑐
0
are disjoint.

Proof. Termination: we define the following valuation function val on expressions:
• val (id) = 1
• val (RENAME𝑚 AS id′) = 1 + val (𝑚)
• val (𝑚 GIVEN 𝑐0) = 2 ∗ val (𝑚)
• val (𝑚 GIVEN 𝑐1) = 2 ∗ val (𝑚) + 1
• val (PROBABILITY OF 𝑐𝑖 UNDER𝑚) = val (𝑚)
• val (GENERATE UNDER𝑚 LIMIT 𝑒) = val (𝑚)
• val (𝑡 GENERATIVE JOIN𝑚) = val (𝑚)

Every rewrite rule strictly decreases the valuation of the expression, and thus the rewrite system
terminates.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

179:38 Huot, Ghavami, Lew, Schaechtle, Freer, Shelby, Rinard, Saad, Mansinghka

(RENAME𝑚 AS id′) GIVEN 𝑐𝑖 { RENAME (𝑚 GIVEN 𝑐𝑖 [id′/id]) AS id′
RENAME (RENAME𝑚 AS id′) AS id′′ { RENAME𝑚 AS id′′
(𝑚 GIVEN 𝑐0) GIVEN 𝑐0′ { 𝑚 GIVEN 𝑆 (𝑐0, 𝑐0′)
(𝑚 GIVEN 𝑐1) GIVEN 𝑐1′ { 𝑚 GIVEN 𝑐1 ∧ 𝑐1′

(𝑚 GIVEN 𝑐1) GIVEN 𝑐0 { (𝑚 GIVEN 𝑐0) GIVEN 𝑐1

PROBABILITY OF 𝑐𝑖 UNDER (RENAME𝑚 AS id′) { PROBABILITY OF 𝑐𝑖 [id′/id] UNDER𝑚

GENERATE UNDER (RENAME𝑚 AS id) LIMIT 𝑒 { GENERATE UNDER𝑚 LIMIT 𝑒

𝑡 GENERATIVE JOIN (RENAME𝑚 AS id) { 𝑡 GENERATIVE JOIN𝑚

𝑆 (𝑐0, []) { 𝑐0

𝑆 (𝑐0 : 𝐶0{cols}, (id.col = 𝑒) ∧ 𝑐0′) { 𝑆 (𝑐0 ∧ (id.col = 𝑒), 𝑐0′) if col ∉ cols
𝑆 (𝑐0, 𝑐0′) otherwise

Fig. 18. Normalization rules for rowModels (first phase).

PROBABILITY OF 𝑐0
2 UNDER (id GIVEN 𝑐0 GIVEN 𝑐1) { PROBABILITY OF 𝑃 (𝑐0

2, 𝑐
0) UNDER

id GIVEN 𝑐0 GIVEN 𝑐1

𝑃 (𝑐0
2 ∧ (id.col = 𝑒), 𝑐0 : 𝐶0{cols}) { 𝑃 (𝑐0

2, 𝑐
0) if col ∈ cols

𝑃 (𝑐0
2, 𝑐

0) ∧ (id.col = 𝑒) otherwise
𝑃 ([], 𝑐0) { true
true ∧ 𝑐0 { 𝑐0

PROBABILITY OF true UNDER𝑚 { 1

Fig. 19. Normalization rules for rowModels (second phase).

Confluence (sketch): this stems from the fact that the rewrites are generated from all critical
pairs and the rules for the self-critical pairs are associative, which can be checked by inspection.

Disjointness (sketch): a straightforward induction on the normalization rules including 𝑃 show
that the variables in 𝑐0

1 and 𝑐0 are disjoint after 𝑃 is applied. □

Figure 20 shows the full syntax of the lowered language. Figure 21 shows the measure semantics
of the lowered language for rowModels satisfying the exact AMI.

D.2 Lowered language
Fig. 21 shows the full syntax of the lowered language. Compared to the abbrieviated syntax in
Fig. 6, we have added the builtin functions. Fig. 21 presents the exact semantics of the lowered
language. The map 𝑙 : PBag 𝑋 → Bag P𝑋 in the semantics of mapreduce is the distributive law
for the point process monad [21]. The semantics of builtin functions is their standard mathematical
counterpart.

D.3 Proof of the exact guarantee theorem
First note that the interpretation of the contexts Γ in GenSQL and the lowered language for closed
expressions Γ, [] ⊢ 𝑡 : 𝜏 are the same, i.e. ⟦T {Γ}⟧exact = ⟦Γ⟧. This is checked by direct inspection.
Given a local context Δ and an evaluation 𝛿 of that context, we write 𝛿 ′ = T {𝛿} to denote the
corresponding evaluation of the lowered context T {Δ}. T {𝛿} is defined as the identity on the table
keys, and removes model keys. For general expressions Γ;Δ ⊢ 𝑡 : 𝜏 , the context Γ of the lowered and
GenSQL program is not necessarily the same. In this case, T𝛿1 {𝑡} will be in a context Γ′ that consists
of T {Γ} as well as a new variable for each table in Δ. That is, Γ′ adds a renamed version of each
table type in Δ to T {Γ}. Likewise, an evaluation context 𝛾, 𝛿 will translate to an evaluation context

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

GenSQL: A Probabilistic Programming System for Querying Generative Models of Database Tables 179:39

base type 𝜎 ::= 𝜎𝑐 | 𝜎𝑑 ground type 𝜎𝑔 ::= 𝜎 | (𝜎1, . . . , 𝜎𝑛) event type E ::= 𝐶1 [𝜎𝑔] | 𝐶0 [𝜎𝑔]
type 𝜏 ::= Bag[𝜎𝑔] operator op ::= + | − | × | ÷ | ∧ | ∨ | = rowModel M ::= 𝑀 [𝜎𝑔]

builtin function 𝑓 ::= mapreduce | map | filter | replicate | exp | singleton | join
special primitives ::= simulate | prob | logpdf

term 𝑡 ::= 𝑐 | id | 𝑓 (𝑡1, . . . , 𝑡𝑛) | 𝑥 | (𝑡1, . . . , 𝑡𝑛) | 𝜋𝑖 𝑡 | 𝑡1 𝑜𝑝 𝑡2

Γ ⊢ 𝑡 : 𝜎𝑖
Γ, id : 𝑀 [(𝜎1, . . . , 𝜎𝑛)] ⊢ (id, 𝑖) = 𝑡 : 𝐶0 [𝜎𝑖]

Γ ⊢ 𝑡1 : 𝐶0 [𝜎1
𝑔] Γ ⊢ 𝑡2 : 𝐶0 [𝜎2

𝑔]
Γ ⊢ 𝑡1 ∧ 𝑡2 : 𝐶0 [𝜎1

𝑔 , 𝜎
2
𝑔]

Γ ⊢ 𝑡 : 𝜎𝑖 op ∈ {=, <, >} (𝜎𝑖 , op) ≠ (𝜎𝑐 ,=)
Γ, id : 𝑀 [(𝜎1, . . . , 𝜎𝑛)] ⊢ (id, 𝑖) op 𝑡 : 𝐶1 [(𝜎1, . . . , 𝜎𝑛)]

Γ ⊢ 𝑡1 : 𝐶1 [𝜎𝑔] Γ ⊢ 𝑡2 : 𝐶1 [𝜎𝑔] op ∈ {∧,∨}
Γ ⊢ 𝑡1 op 𝑡2 : 𝐶1 [𝜎𝑔]

Γ ⊢ 𝑡1 : Nat Γ ⊢ 𝑡2 : Bag[𝜎𝑔]
Γ ⊢ replicate (𝑡1, 𝑡2) : Bag[𝜎𝑔]

Γ ⊢ 𝑡1 : Bag[(𝜎1, . . . , 𝜎𝑛)] Γ ⊢ 𝑡2 : Bag[(𝜎𝑛+1, . . . , 𝜎𝑛+𝑚)]
Γ ⊢ join(𝑡1, 𝑡2) : Bag[(𝜎1, . . . , 𝜎𝑛+𝑚)]

Γ, 𝑥 : 𝜎2
𝑔 ⊢ 𝑡1 : 𝜎1

𝑔 Γ ⊢ 𝑡2 : Bag[𝜎2
𝑔]

Γ ⊢ map (𝑥 .𝑡1) 𝑡2 : Bag[𝜎1
𝑔]

Γ, id : 𝑀 [𝜎𝑔] ⊢ 𝑐𝑖 : 𝐶𝑖 [(𝜎1, . . . , 𝜎𝑛)]
Γ, id : 𝑀 [𝜎𝑔] ⊢ simulateid (𝑐0, 𝑐1) : Bag[𝜎𝑔]

Γ, id : Bag[𝜎𝑔] ⊢ id : Bag[𝜎𝑔]
Γ, id : 𝑀 [𝜎𝑔] ⊢ 𝑐𝑖 : 𝐶𝑖 [𝜎𝑔] Γ, id : 𝑀 [𝜎𝑔] ⊢ 𝑐0

1 : 𝐶0 [𝜎𝑔]
Γ, id : 𝑀 [𝜎𝑔] ⊢ logpdf id (𝑐0, 𝑐1, 𝑐0

1) : Real
Γ, id : 𝑀 [𝜎𝑔] ⊢ 𝑐𝑖 : 𝐶𝑖 [𝜎𝑔] Γ, id : 𝑀 [𝜎𝑔] ⊢ 𝑐1

1 : 𝐶1 [𝜎𝑔]
Γ, id : 𝑀 [𝜎𝑔] ⊢ probid (𝑐0, 𝑐1, 𝑐1

1) : Ranged(0, 1)
Γ, 𝑥 : 𝜎𝑔 ⊢ 𝑡1 : Bool Γ ⊢ 𝑡2 : Bag[𝜎𝑔]

Γ ⊢ filter (𝑥 .𝑡1) 𝑡2 : Bag[𝜎𝑔]
Γ ⊢ 𝑡 : 𝜎𝑔

Γ ⊢ singleton(𝑡) : Bag[𝜎𝑔]
Γ, 𝑥 : 𝜎2

𝑔 ⊢ 𝑡1 : Bag[𝜎1
𝑔] Γ ⊢ 𝑡2 : Bag[𝜎2

𝑔]
Γ ⊢ mapreduce (𝑥 .𝑡1) 𝑡2 : Bag[𝜎1

𝑔]
Γ ⊢ 𝑡𝑖 : 𝜎

Γ ⊢ 𝑡1 op 𝑡2 : 𝜎 (op : 𝜎, 𝜎 → 𝜎)

Γ ⊢ 𝑐 : 𝜎 Γ, 𝑥 : 𝜏 ⊢ 𝑥 : 𝜏
Γ ⊢ 𝑥 : Real

Γ ⊢ exp(𝑥) : PosReal
Γ ⊢ 𝑡 : (𝜎1, . . . , 𝜎𝑛)

Γ ⊢ 𝜋𝑖 (𝑡) : 𝜎𝑖
Γ ⊢ 𝑡𝑖 : 𝜎𝑖 𝑖 = 1..𝑛

Γ ⊢ (𝑡1, . . . , 𝑡𝑛) : (𝜎1, . . . , 𝜎𝑛)

Fig. 20. Full syntax and type system of the lowered language.

𝛾 ′ in the lowered language, where 𝛾 ′ is the same as 𝛾 on the variables in Γ, and for every key 𝑘 at
position 𝑖 in 𝛿1, 𝛾 ′ (𝑘) = 𝛿 (𝛿.key[𝑖]). Then, the proof of the theorem is by induction on the structure
of the GenSQL program. More precisely, we show the following. Let Γ;Δ ⊢ 𝑡 : 𝜏 be a GenSQL
program. Then, for all evaluation of the context 𝛾, 𝛿 , we have that ⟦𝑡⟧(𝛾, 𝛿) = ⟦T𝛿 ′ {𝑡}⟧(𝛾 ′), where
𝛿 ′ = T {𝛿}. With no loss of generality, we simplify the problem by assuming that the queries are
normalized, i.e. models𝑚 can be assumed to be of the form id GIVEN 𝑐0 GIVEN 𝑐1, where GIVEN clauses
are optional. In addition, we will only cover the case where these clauses are present, as the other
cases are immediate simplifications.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

179:40 Huot, Ghavami, Lew, Schaechtle, Freer, Shelby, Rinard, Saad, Mansinghka

Semantics of types and contexts

⟦𝜎⟧exact = ⟦𝜎⟧ ⟦(𝜎1, . . . , 𝜎𝑛)⟧exact = ⟦𝜎1⟧exact × . . . × ⟦𝜎𝑛⟧exact ⟦Bag[𝜎𝑔]⟧exact = PBag(⟦𝜎𝑔⟧)
⟦𝑀 [𝜎𝑔]⟧exact = Padm

(
⟦𝜎𝑔⟧exact

)
⟦Γ, 𝑥 : 𝜏⟧exact = ⟦Γ⟧exact × ⟦𝜏⟧exact ⟦[]⟧exact = 1

Semantics of terms

⟦(𝑡1, . . . , 𝑡𝑛)⟧exact (𝛾) = (⟦𝑡1⟧exact (𝛾), . . . , ⟦𝑡𝑛⟧exact (𝛾))
⟦𝜋𝑖 𝑡⟧exact (𝛾) = 𝜋𝑖 (⟦𝑡⟧exact (𝛾))

⟦op(𝑡1, 𝑡2)⟧exact (𝛾) = op(⟦𝑡1⟧exact (𝛾), ⟦𝑡2⟧exact (𝛾))
⟦id⟧exact (𝛾) = 𝛾 (id)

⟦simulateid (𝑐0, 𝑐1)⟧exact (𝛾) = let (𝜋, 𝑣) = ⟦𝑐0⟧exact (𝛾) in let𝑚 = Dis(𝛾 (id), 𝜋, 𝑣) in
let 𝐸 = ⟦𝑐1⟧exact (𝛾) in cond(𝑚, 𝐸)

⟦logpdf id (𝑐0, 𝑐1, 𝑐0
2)⟧exact (𝛾) = let (𝜋, 𝑣) = ⟦𝑐0

2⟧exact (𝛾) in log(⟦simulateid (𝑐0, 𝑐1)⟧exact (𝛾).pdf(𝑣))
⟦probid (𝑐0, 𝑐1, 𝑐1

2)⟧exact (𝛾) = ⟦simulateid (𝑐0, 𝑐1)⟧exact (𝛾).meas(⟦𝑐1
2⟧exact (𝛾))

⟦(id, 𝑖) op 𝑡 : C1 [𝜎𝑔]⟧exact (𝛾) = {(𝑥1, . . . , 𝑥𝑛) ∈ ⟦𝜎𝑔⟧exact | 𝑥𝑖 op𝑙 ⟦𝑡⟧exact (𝛾)}
⟦(id, 𝑖) = 𝑡 : C0 [𝜎𝑔]⟧exact (𝛾) = (𝜋𝑖 , ⟦𝑡⟧exact (𝛾))

⟦𝑐1
1 ∧ 𝑐1

2⟧exact (𝛾) = ⟦𝑐1
1⟧exact (𝛾) ∩ ⟦𝑐1

2⟧exact (𝛾)
⟦𝑐1

1 ∨ 𝑐1
2⟧exact (𝛾) = ⟦𝑐1

1⟧exact (𝛾) ∪ ⟦𝑐1
2⟧exact (𝛾)

⟦𝑐0
1 ∧ 𝑐0

2⟧exact (𝛾) = let 1≤𝑖≤2 (𝑓𝑖 , 𝑣𝑖) = ⟦𝑐0
𝑖 ⟧exact (𝛾) in

(
𝜆𝑥.(𝑓1 (𝑥), 𝑓2 (𝑥)), (𝑣1, 𝑣2)

)
⟦mapreduce (𝑥 .𝑡1) 𝑡2⟧exact (𝛾) = 𝑙

[
⟦𝑡2⟧exact (𝛾) ≫=

(
𝜆𝑆.

{
𝜆𝑥 ′ .⟦𝑡1⟧exact (𝛾 [𝑥 ↦→ 𝑥 ′]) 𝑦

�� 𝑦 ∈ 𝑆
})]

⟦map (𝑥 .𝑡1) 𝑡2⟧exact (𝛾) = ⟦𝑡2⟧exact (𝛾) ≫=
(
𝜆𝑆.return

{
𝜆𝑥 ′ .⟦𝑡1⟧exact (𝛾 [𝑥 ↦→ 𝑥 ′]) 𝑦

�� 𝑦 ∈ 𝑆
})

⟦filter (𝑥 .𝑡1) 𝑡2⟧exact (𝛾) = ⟦𝑡2⟧exact (𝛾) ≫=
(
𝜆𝑆.return

{
𝑦 ∈ 𝑆

��𝜆𝑥 ′ .⟦𝑡1⟧exact (𝛾 [𝑥 ↦→ 𝑥 ′]) 𝑦
})

⟦replicate (𝑡1, 𝑡2)⟧exact (𝛾) = let𝑚 = ⟦𝑡1⟧exact (𝛾) in

⟦𝑡2⟧exact (𝛾) ≫= 𝜆𝜇.
⊗𝑚

𝑖=1 𝜇≫=
(
𝜆(𝐴1, . . . , 𝐴𝑚) .return ∪𝑚

𝑖=1 𝐴𝑖

)
⟦exp(𝑡1)⟧exact (𝛾) = exp (⟦𝑡1⟧exact (𝛾))

⟦singleton(𝑡1)⟧exact (𝛾) = return {⟦𝑡1⟧exact (𝛾)}
⟦join(𝑡1, 𝑡2)⟧exact (𝛾) = ⟦𝑡1⟧exact (𝛾) ⊗ ⟦𝑡2⟧exact (𝛾) ≫=

(
𝜆𝑆, 𝑆 ′ .return (map2 splat 𝑆 𝑆′)

)

Fig. 21. Exact semantics of the lowered language.

• 𝑡 ≡ GENERATE UNDER (id GIVEN 𝑐0 GIVEN 𝑐1) LIMIT 𝑒

⟦T𝛿 ′
{

GENERATE UNDER (id GIVEN 𝑐0 GIVEN 𝑐1) LIMIT 𝑒
}
⟧exact (𝛾 ′)

= ⟦replicate (T𝛿 ′ {𝑒} , simulateid (T𝛿 ′
{
𝑐0} ,T𝛿 ′ {𝑐1}))⟧exact (𝛾 ′) def T {−}

= let𝑚 = ⟦T𝛿 ′ {𝑒}⟧exact (𝛾 ′) in def ⟦replicate ⟧exact

⟦simulateid (T𝛿 ′
{
𝑐0} ,T𝛿 ′ {𝑐1})⟧exact (𝛾 ′) ≫= 𝜆𝜇.

⊗𝑚

𝑖=1 𝜇≫=
(
𝜆(𝐴1, . . . , 𝐴𝑚).return ∪𝑚

𝑖=1 𝐴𝑖

)
= let𝑚 = ⟦𝑒⟧(𝛾, 𝛿) in I.H.
⟦id GIVEN 𝑐0 GIVEN 𝑐1⟧(𝛾, 𝛿) ≫= 𝜆𝜇.

⊗𝑚

𝑖=1 𝜇≫=
(
𝜆(𝐴1, . . . , 𝐴𝑚).return ∪𝑚

𝑖=1 𝐴𝑖

)
= ⟦ GENERATE UNDER (id GIVEN 𝑐0 GIVEN 𝑐1) LIMIT 𝑒⟧(𝛾, 𝛿) def ⟦ GENERATE UNDER ⟧

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

GenSQL: A Probabilistic Programming System for Querying Generative Models of Database Tables 179:41

• 𝑡 ≡ 𝑡1 WHERE 𝑒 .

⟦T𝛿 ′ {𝑡1 WHERE 𝑒}⟧exact (𝛾 ′)
=
(
𝜆𝑥 .filter (𝜆𝑟 .⟦T𝛿 ′ [id→𝑟] {𝑒}⟧exact (𝛾 ′), 𝑥)

)
∗⟦T𝛿 ′ {𝑡1}⟧exact (𝛾 ′) def ⟦−⟧exact,T {−}

=
(
𝜆𝑥 .filter (𝜆𝑟 .⟦𝑒⟧(𝛾, 𝛿 [id → 𝑟]), 𝑥)

)
∗⟦𝑡1⟧(𝛾, 𝛿) I.H.

= ⟦𝑡1 WHERE 𝑒⟧(𝛾, 𝛿) def ⟦−⟧

• 𝑡 ≡ SELECT 𝑒 FROM 𝑡1

⟦T𝛿 ′ { SELECT 𝑒 FROM 𝑡1}⟧exact (𝛾 ′)
= ⟦map (𝜆𝑟 .T𝛿 ′ [id ↦→𝑟] {𝑒} ,T𝛿 ′ {𝑡})⟧exact (𝛾 ′) def T {}
= ⟦T𝛿 {𝑡1}⟧exact (𝛾 ′) ≫=

(𝜆𝑆.return {𝜆𝑥 ′ .⟦T𝛿 ′ {𝑒}⟧exact (𝛾 ′ [𝑥 ↦→ 𝑥 ′]) 𝑦 | 𝑦 ∈ 𝑆})
def ⟦map ⟧exact

= ⟦𝑡1⟧(𝛾, 𝛿) ≫= (𝜆𝑆.return {𝜆𝑥 ′ .⟦𝑒⟧(𝛾, 𝛿 [𝑥 ↦→ 𝑥 ′]) 𝑦 | 𝑦 ∈ 𝑆}) I.H.
= ⟦ SELECT 𝑒 FROM 𝑡1⟧(𝛾, 𝛿) def ⟦ SELECT ⟧

• 𝑡 ≡ 𝑡1 GENERATIVE JOIN𝑚 is similar to the GENERATE UNDER case, and is omitted for brevity.
• 𝑡 ≡ id : 𝑇 [id]{cols} is immediate from the definition of 𝛾 and of the id rules in GenSQL and

the lowered language.
• 𝑡 ≡ id GIVEN 𝑐0 GIVEN 𝑐1. y induction hypothesis, we have that ⟦𝑐0⟧(𝛾, 𝛿) = ⟦T𝛿 ′

{
𝑐0}⟧exact (𝛾 ′),

and similarly for 𝑐1. Then, by inspection of the semantics of GenSQL and the lowered language,
we conclude that the semantics are the same.

• 𝑡 ≡ PROBABILITY OF 𝑐𝑖1 UNDER id GIVEN 𝑐0 GIVEN 𝑐1. By induction hypothesis, we have that
⟦𝑐𝑖1⟧(𝛾, 𝛿) = ⟦T𝛿 ′

{
𝑐𝑖1
}
⟧exact (𝛾 ′), and similarly for 𝑐0 and 𝑐1. Then, by inspection of the

semantics of GenSQL and the lowered language, we conclude that the semantics are the
same.

• 𝑡 ≡ 𝑡1 ∧ 𝑡2, 𝑡1 ∨ 𝑡2, id.col = 𝑒, id.col op 𝑒, 𝑜𝑝 (𝑡1, . . . , 𝑡𝑛), RENAME 𝑚 AS id′, RENAME 𝑡 AS id′.
These cases are straightforward and immediately follow from the induction hypothesis.

• 𝑡 ≡ 𝑡1 JOIN 𝑡2. This case also simply follow from the induction hypothesis, as the join operator
mimics the behavior of the JOIN operator.

D.4 Guarantee for approximate backend
In this section we describe assumptions on approximate rowModels and the approximate semantics
of the lowered language. We then state and prove a soundness guarantee for the lowering transform
with respect to the approximate semantics. As discussed in Section 4.4, queries with WHERE clauses
that use approximate values do not necessarily converge to the correct limit even as the approxi-
mations converge to the correct value. In this section, we present modifications to the GenSQL and
lowered language semantics that detect the types of queries for which this type of behavior can
happen. We then give a proof by logical relations for a guarantee that precisely captures the notion
of correctness in this setting.
Key insights in the proof. The proof of the guarantee for the approximate backend is based on
the following key points:

(1) A safe query (safe? macro defined in Fig. 22 returns true) is one for which the approximate
semantics of the lowered language converges to the exact semantics almost surely.

(2) A query will be safe if its approximations are used in a continuous way. The key theorem
is the continuous mapping theorem for random variables which states that if a sequence of

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

179:42 Huot, Ghavami, Lew, Schaechtle, Freer, Shelby, Rinard, Saad, Mansinghka

random variables 𝑥𝑛 converges to 𝑥 , then for every continuous function 𝑓 , 𝑓 (𝑥𝑛) converges
to 𝑓 (𝑥).

(3) To ensure this, we define macros safe?, continuous?, exact? (Fig. 22) that track sufficient
restrictions on queries to ensure the above. We also define appropriate topologies and metrics
on the various spaces of random variables to ensure that the continuous mapping theorem
holds.

Topological preliminaries. To apply the continuous mapping theorem, we need to define topolo-
gies on the different spaces on which the random variables take values. For the discrete spaces B,
Z, N, and Str, we use the discrete topology. For the real spaces R and R+, we use the usual metric
topology. As the spaces also interpret Null, we use the discrete topology on Null, and the coproduct
topology for interpreting base types. For the space of bags, we use the topology of symmetric
products [37]. For the product spaces, we use the product topology. All these spaces are metrizable.
This is known to be sufficient for the continuous mapping theorem to hold [7][Chapter 5, Section
26]. More precisely, we take the usual metric on base types, extend each of these metrics 𝑑 to Null
by defining 𝑑 (Null,Null) = 0, and 𝑑 (Null, 𝑥) = 1 for 𝑥 ≠ Null. We then take the product metric on
product spaces, and the metric on bags as the symmetric product metric. The space of bags with
topology of symmetric products on a metric space is known to be metrizable [37]. With these topolo-
gies, scalar functions on continuous types are continuous if they’re continuous in the usual way.
All operations on discrete types are continuous. The extended scalar operations op𝑠 are continuous
if the corresponding scalar operation op is continuous (suffices to check that the preimage of the
open {Null} is the open {Null}). Likewise, the extended scalar operations op𝑙 are continuous if the
corresponding scalar operation op is continuous (suffices to check that preimage of the open {Null}
is the open {}). Projections on the 𝑖-th component id.col𝑖 are continuous. It remains to show that
the operations on bags are continuous. Using the universal property of the bag construction as
a colimit in the category of topological spaces and continuous maps, we can show that the bag
construction is an endofunctor on the category of topological spaces and continuous maps. This
directly implies that map is continuous. singleton is one of the cocone injection and is therefore
continuous by construction. mapreduce is the composition of a map and a reduce operation, and
is therefore continuous if union is continuous. Likewise, for every 𝑛, replicate 𝑛 is simply an 𝑛-fold
union of the input and is continuous if union is continuous. To show that union is continuous,
first note that bag is the countable coproduct of the bags of size 𝑛 for all 𝑛. As finite products
distribute over coproducts in the category of topological spaces and continuous maps, we will have
a map Bag(𝑋) ×Bag(𝑋) → Bag(𝑋) if we have a map Bag𝑛 (𝑋) ×Bag𝑚 (𝑋) → Bag𝑛+𝑚 (𝑋) by the
universal property of colimits, and where Bag𝑛 (𝑋) are bags of size 𝑛 of elements of 𝑋 . In addition,
there’s a natural isomorphism between Bag𝑛 (𝑋) ×Bag𝑚 (𝑋) and Bag𝑛+𝑚 (𝑋), coming from the iso-
morphism𝑋𝑛×𝑋𝑚 ≃ 𝑋𝑛+𝑚 , which therefore extends to a map from Bag𝑛 (𝑋) ×Bag𝑚 (𝑋) → Bag𝑋 ,
and we are done.

The map splat defined by
splat : (𝑋1 × . . . × 𝑋𝑛) × (𝑌1 × . . . × 𝑌𝑚) → (𝑋1 × . . . × 𝑋𝑛 × 𝑌1 × . . . × 𝑌𝑚)

(𝑥1, . . . , 𝑥𝑛), (𝑦1, . . . , 𝑦𝑚) ↦→ (𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚)
is used to give the semantics of join. This map is a composition of the product of the identity maps
id𝑋1×···×𝑋𝑛

and id𝑌1×···×𝑌𝑚 and the isomorphism
(𝑋1 × · · · × 𝑋𝑛) × (𝑌1 × · · · × 𝑌𝑚) ≃ 𝑋1 × · · · × 𝑋𝑛 × 𝑌1 × · · · × 𝑌𝑚 .

Hence, it is continuous. More generally, given natural numbers 𝑛,𝑚, there is a function 𝑋𝑛 ×𝑌𝑚 →
(𝑋 × 𝑌)𝑛×𝑚 which returns all possible combinations of the elements of 𝑋 and 𝑌 in the 𝑛 ×𝑚-
tuple. This function is continuous as a composition of identity, duplication, and permutation

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

GenSQL: A Probabilistic Programming System for Querying Generative Models of Database Tables 179:43

(a) Safeness of Scalar Expressions

exact?(𝑐) = continuous?(𝑐) = safe?(𝑐) = true

exact?(op(𝑒1, . . . , 𝑒𝑛)) = exact?(𝑒1) ∧ . . . ∧ exact?(𝑒𝑛)
safe?(op(𝑒1, . . . , 𝑒𝑛)) = safe?(𝑒1) ∧ . . . ∧ safe?(𝑒𝑛)

continuous?(op(𝑒1, . . . , 𝑒𝑛)) = continuous?(op) ∧
∧

1≤𝑖≤𝑛
continuous?(𝑒𝑖)

exact?(id.col) = false

continuous?(id.col) = safe?(id.col) = true

exact?(PROBABILITY OF 𝑐 UNDER id GIVEN 𝑐0 GIVEN 𝑐1) = false

safe?(PROBABILITY OF 𝑐 UNDER id GIVEN 𝑐0 GIVEN 𝑐1) = safe?(𝑐) ∧ safe?(𝑐0) ∧ safe?(𝑐1)
continuous?(PROBABILITY OF 𝑐 UNDER id GIVEN 𝑐0 GIVEN 𝑐1) = safe?(𝑐) ∧ safe?(𝑐0) ∧ safe?(𝑐1)

(b) Safeness of Event and Event-0 Expressions

safe?(id.col𝑖 op 𝑒) = exact?(𝑒)
safe?(𝑐 op 𝑐′) = safe?(𝑐) ∧ safe?(𝑐′)

(c) Safeness of Table Expressions

safe?(id) = true

safe?(RENAME 𝑡 AS id) = safe?(𝑡)
safe?(𝑡1 JOIN 𝑡2) = safe?(𝑡1) ∧ safe?(𝑡2)

safe?(𝑡 GENERATIVE JOIN id GIVEN 𝑐0 GIVEN 𝑐1) = safe?(𝑡) ∧ safe?(𝑐0) ∧ safe?(𝑐1)
safe?(𝑡 WHERE 𝑒) = false

safe?(SELECT 𝑒 AS col FROM 𝑡) = safe?(𝑡) ∧ continuous?(𝑒1) ∧ . . . ∧ continuous?(𝑒𝑛)

Fig. 22. Macros for detecting safe terms for the approximate AMI guarantee

maps. Post-composing with the injection (𝑋 × 𝑌)𝑛×𝑚 → Bag(𝑋 × 𝑌), we get a continuous map
𝑋𝑛 × 𝑌𝑚 → Bag(𝑋 × 𝑌) which respects the symmetric quotient and therefore extends to a map
Bag𝑛 (𝑋) × Bag𝑚 (𝑌) → Bag(𝑋 ×𝑌). We conclude as in the case for union that this extends to the
continuous map join : Bag(𝑋) × Bag(𝑌) → Bag(𝑋 × 𝑌).
Static analysis for detecting safe terms Fig. 22. The safe? macro detects safe terms for which
the correctness guarantee for the approximate AMI holds. The exact? macro detects those scalar
terms whose value does not depend on the approximation used to implement the AMI method. As
we formalize below, for such terms the exact and approximate semantics should be almost surely
the same. The continuous? macro detects those scalar terms that are continuous functions of the
results of prob or logpdf methods.
Random variable semantics. The random variable semantics for the approximate case is given
in Fig. 23. If (X, Σ) is a measurable space, then by StochSeq(X) we denote the set of sequences of
X-valued random variables.

For the case of the AMI methods, we assume that the sequences of random variables denoting
each method converge to the correct value in the following sense.

Definition D.2 (Asymptotically Sound Approximate AMI Implementation). We say that an im-
plementation of the AMI is asymptotically sound, if for all environments Γ, terms Γ ⊢ 𝑐𝑖𝑗 :

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

179:44 Huot, Ghavami, Lew, Schaechtle, Freer, Shelby, Rinard, Saad, Mansinghka

(a) Semantics of Types and Contexts

⟦Γ, 𝑥 : 𝜏⟧approx = ⟦Γ⟧approx × ⟦𝜏⟧approx ⟦𝜎𝑔⟧approx = StochSeq(⟦𝜎𝑔⟧)
⟦Bag[𝜎𝑔]⟧approx = StochSeq(PBag ⟦𝜎𝑔⟧) ⟦𝑀 [𝜎𝑔]⟧approx = Papprox

adm ⟦𝜎𝑔⟧

(b) Semantics of Terms

⟦(𝑡1, . . . , 𝑡𝑛)⟧approx (𝛾,𝜔)𝑛 = (⟦𝑡1⟧approx (𝛾,𝜔)𝑛, . . . , ⟦𝑡𝑛⟧approx (𝛾,𝜔)𝑛) ⟦𝑐⟧approx (𝛾,𝜔)𝑛 = 𝑐

⟦𝜋𝑖 𝑡⟧approx (𝛾,𝜔)𝑛 = 𝜋𝑖 (⟦𝑡⟧approx (𝛾,𝜔)𝑛) ⟦𝑥⟧approx (𝛾,𝜔)𝑛 = 𝛾 (𝑥) (𝜔)𝑛
⟦op(𝑡1, 𝑡2)⟧approx (𝛾,𝜔)𝑛 = op(⟦𝑡1⟧approx (𝛾,𝜔)𝑛, ⟦𝑡2⟧approx (𝛾,𝜔)𝑛)

⟦mapreduce (𝑥.𝑡1) 𝑡2⟧approx (𝛾,𝜔)𝑛 = 𝑙
[
⟦𝑡2⟧approx (𝛾,𝜔)𝑛 ≫=

(
𝜆𝑆.

{
𝜆𝑥 ′ .⟦𝑡1⟧approx (𝛾 [𝑥 ↦→ 𝑥 ′], 𝜔)𝑛 𝑦

�� 𝑦 ∈ 𝑆
})]

⟦map (𝑥.𝑡1) 𝑡2⟧approx (𝛾,𝜔)𝑛 = ⟦𝑡2⟧approx (𝛾,𝜔)𝑛 ≫=
(
𝜆𝑆.return

{
𝜆𝑥 ′ .⟦𝑡1⟧approx (𝛾 [𝑥 ↦→ 𝑥 ′], 𝜔)𝑛 𝑦

�� 𝑦 ∈ 𝑆
})

⟦filter (𝑥.𝑡1) 𝑡2⟧approx (𝛾,𝜔)𝑛 = ⟦𝑡2⟧approx (𝛾,𝜔)𝑛 ≫=
(
𝜆𝑆.return

{
𝑦 ∈ 𝑆

��𝜆𝑥 ′ .⟦𝑡1⟧approx (𝛾 [𝑥 ↦→ 𝑥 ′], 𝜔)𝑛 𝑦
})

⟦replicate (𝑡1, 𝑡2)⟧approx (𝛾,𝜔)𝑛 = let𝑚 = ⟦𝑡1⟧approx (𝛾,𝜔)𝑛 in

⟦𝑡2⟧approx (𝛾,𝜔)𝑛 ≫=𝜆𝜇.
⊗𝑚

𝑖=1 𝜇 ≫=
(
𝜆 (𝐴1, . . . , 𝐴𝑚) .return ∪𝑚

𝑖=1 𝐴𝑖

)
⟦exp(𝑡1)⟧approx (𝛾,𝜔)𝑛 = exp

(
⟦𝑡1⟧approx (𝛾,𝜔)𝑛

)
⟦singleton(𝑡1)⟧approx (𝛾,𝜔)𝑛 = return

{
⟦𝑡1⟧approx (𝛾,𝜔)𝑛

}
⟦join(𝑡1, 𝑡2)⟧approx (𝛾,𝜔)𝑛 = ⟦𝑡1⟧approx (𝛾,𝜔)𝑛 ⊗ ⟦𝑡2⟧approx (𝛾,𝜔)𝑛 ≫=

(
𝜆𝑆, 𝑆 ′ .return (map2 splat 𝑆 𝑆 ′)

)
⟦(id, 𝑖) op 𝑡 : C1 [𝜎𝑔]⟧approx (𝛾,𝜔)𝑛 = { (𝑥1, . . . , 𝑥𝑛) ∈ ⟦𝜎𝑔⟧ | 𝑥𝑖 op𝑙 ⟦𝑡⟧approx (𝛾,𝜔)𝑛 }
⟦(id, 𝑖) = 𝑡 : C0 [𝜎𝑔]⟧approx (𝛾,𝜔)𝑛 = (𝜋𝑖 , ⟦𝑡⟧approx (𝛾,𝜔)𝑛)

⟦𝑐1
1 ∧ 𝑐1

2⟧approx (𝛾,𝜔)𝑛 = ⟦𝑐1
1⟧approx (𝛾,𝜔)𝑛 ∩ ⟦𝑐1

2⟧approx (𝛾,𝜔)𝑛
⟦𝑐1

1 ∨ 𝑐1
2⟧approx (𝛾,𝜔)𝑛 = ⟦𝑐1

1⟧approx (𝛾,𝜔)𝑛 ∪ ⟦𝑐1
2⟧approx (𝛾,𝜔)𝑛

⟦𝑐0
1 ∧ 𝑐0

2⟧approx (𝛾,𝜔)𝑛 = let 1≤𝑖≤2 (𝑓𝑖 , 𝑣𝑖) = ⟦𝑐0
𝑖 ⟧approx (𝛾,𝜔)𝑛 in

(
𝜆𝑥.(𝑓1 (𝑥), 𝑓2 (𝑥)), (𝑣1, 𝑣2)

)
⟦simulateid (𝑐0, 𝑐1)⟧approx (𝛾,𝜔) =

{
𝜇𝑛id;⟦𝑐0⟧approx (𝛾)𝑛 ,⟦𝑐1⟧approx (𝛾)𝑛

(𝜔)
}

⟦logpdf id (𝑐0, 𝑐1, 𝑐0
2)⟧approx (𝛾,𝜔) =

{
𝐿𝑛id;⟦𝑐0⟧approx (𝛾)𝑛 ,⟦𝑐1⟧approx (𝛾)𝑛 ,⟦𝑐0

2⟧approx (𝛾)𝑛
(𝜔)

}
⟦probid (𝑐1

2, 𝑐
0, 𝑐1)⟧approx (𝛾,𝜔) =

{
𝑃𝑛

id;⟦𝑐0⟧approx (𝛾)𝑛 ,⟦𝑐1⟧approx (𝛾)𝑛 ,⟦𝑐1
2⟧approx (𝛾)𝑛

(𝜔)
}

Fig. 23. Approximate semantics of the lowered language.

𝐶𝑖 [(𝜎1, . . . , 𝜎𝑛)], and all 𝛾 ∈ ⟦Γ⟧, we have
⟦logpdf id (𝑐0

1, 𝑐
1
1, 𝑐

0
2)⟧approx (𝛾)𝑛 → ⟦logpdf id (𝑐0

1, 𝑐
1
1, 𝑐

0
2)⟧exact (𝛾)

⟦probid (𝑐0
1, 𝑐

1
1, 𝑐

1
2)⟧approx (𝛾)𝑛 → ⟦probid (𝑐0

1, 𝑐
1
1, 𝑐

1
2)⟧exact (𝛾)

⟦simulateid (𝑐0
1, 𝑐

1
1)⟧approx (𝛾)𝑛 → ⟦simulateid (𝑐0

1, 𝑐
1
1)⟧exact (𝛾),

P-almost surely.

The implementation of such asymptotically sound estimators in presence of nested conditioning
is considered in the Bayesian inference literature [47, 62]. We denote by Papprox

adm 𝑋 the set of
asymptotically sound approximate AMI implementation where id is a model on 𝑋 . Given an
evaluation context 𝛾 , we denote by 𝛾𝑛 the following mapping. If 𝛾 = {id1 ↦→ 𝑎1, . . . , id𝑚 ↦→ 𝑎𝑚},
then 𝛾𝑛 := {id1 ↦→ 𝑎1

𝑛, . . . , id𝑚 ↦→ 𝑎𝑚𝑛 . . .}, where 𝑎𝑖𝑛 is 𝑎𝑖 if id𝑖 is a table type, and the 𝑛-th element
of the sequence 𝑎𝑖 if id𝑖 is a model type. We can then prove the following lemma by simple induction
on the structure of the term.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

GenSQL: A Probabilistic Programming System for Querying Generative Models of Database Tables 179:45

Logical Relations

(𝑥, {𝑋𝑛}) ∈ 𝑅𝜎 ⇐⇒ 𝑛 → 𝑥 a.s.
((𝑓 , 𝑣), (𝑔, {𝑋𝑛})) ∈ 𝑅𝐶0 [cols] ⇐⇒ 𝑓 = 𝑔 ∧ (𝑣 = 𝑋𝑛 almost surely for all 𝑛 ∈ N)

(𝐸, {𝐸𝑛}) ∈ 𝑅𝐶1 [cols] ⇐⇒ 𝐸 = 𝐸𝑛 almost surely for all 𝑛 ∈ N
(𝜇, {𝜇𝑛}) ∈ 𝑅T ⇐⇒ 𝜇𝑛 (𝜔) ⇒ 𝜇 for P-almost all 𝜔

Fig. 24. Logical relations used for the proof of soundness of T {·} with respect to the approximate semantics.

Lemma D.3. If a term Γ;Δ ⊢ 𝑡 : 𝜏 is exact thenP-almost surely ⟦T𝛿 {𝑡}⟧approx (𝛾)𝑛 = ⟦T𝛿 {𝑡}⟧exact (𝛾𝑛)
for all 𝑛 and all evaluation contexts 𝛾 , 𝛿 .

The proof of soundness of the translation T {·} relies on logical relations given in Fig. 24. The
logical relations are in terms of convergence of sequences taking values in ⟦𝜏⟧ for different types
𝜏 . We assume B, Z, N, and Str have the discrete topology and R and R+ have their usual metric
topology. Product spaces are endowed with the usual product topology and the space of bags is
endowed with the topology of symmetric products [37]. The fundamental lemma of logical relations,
which implies the soundness of our translation, is as follows.

Lemma D.4 (Fundamental lemma of logical relations). Suppose

Γ := 𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛 Δ := 𝑥 ′1 : 𝜏 ′1, . . . , 𝑥 ′𝑚 : 𝜏 ′𝑚

and Γ;Δ ⊢ 𝑡 : 𝜏 where 𝑡 is a normalized GenSQL term which is safe (continuous for a scalar type,

safe for a table, event or event-0 type). Take any 𝑎𝑖 ∈ ⟦𝜏𝑖⟧, 𝑎′𝑖 ∈ ⟦𝜏 ′𝑖 ⟧, 𝑏𝑖 ∈ ⟦T {𝜏𝑖 }⟧approx, and 𝑏′𝑖 ∈
⟦T

{
𝜏 ′𝑖
}
⟧approx, such that (𝑎𝑖 , 𝑏𝑖) ∈ 𝑅𝜏𝑖 and (𝑎′𝑖 , 𝑏′𝑖) ∈ 𝑅𝜏 ′

𝑖
. Moreover, suppose that the implementation

of the AMI methods are asymptotically sound. Then, for all 𝛿T of the form

𝛿T = {𝑥 ′𝑖 ↦→ 𝑟𝑖 |1 ≤ 𝑖 ≤ 𝑚}

where the 𝑟𝑖s are variable names in the lowered language, if we let

𝛾 := {𝑥𝑖 ↦→ 𝑎𝑖 |1 ≤ 𝑖 ≤ 𝑛} 𝛿 := {𝑥 ′𝑖 ↦→ 𝑎′𝑖 |1 ≤ 𝑖 ≤ 𝑚} 𝛿 ′ := {𝑟𝑖 ↦→ 𝑏′𝑖 |1 ≤ 𝑖 ≤ 𝑚}

we will have

(⟦𝑡⟧(𝛾, 𝛿), ⟦T𝛿T {𝑡}⟧approx (T {𝛾} ∪ 𝛿 ′)) ∈ 𝑅𝜏 .

proof sketch. We prove the lemma case by case for normalized GenSQL queries.
Scalar Expressions

constants If 𝑡 is a constant of type 𝜎 , then then T𝛿T {𝑡} = 𝑡 by the lowering rules and so

⟦𝑡⟧(𝛾, 𝛿) = 𝑡 = ⟦𝑡⟧approx (T {𝛾}) = ⟦T𝛿T {𝑡}⟧approx .

As constant sequences are almost surely convergent to their value, we can conclude that
(⟦𝑡⟧(𝛾, 𝛿), ⟦T𝛿T {𝑡}⟧approx (T {𝛾} ∪ 𝛿 ′)) ∈ 𝑅𝜎 .

column values If 𝑡 is of the form id.col, then by the typing rules of GenSQL the local context Δ
should contain𝑇 [id]{cols} as its last entry. Hence, either by our assumption on the context,
or by the induction hypothesis, id is a safe term. As projection is a continuous operation, we

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

179:46 Huot, Ghavami, Lew, Schaechtle, Freer, Shelby, Rinard, Saad, Mansinghka

have that

⟦T𝛿T {id.col𝑖 }⟧approx (T {𝛾})𝑛
= 𝜋𝑖 (⟦T𝛿T {id}⟧approx (T {𝛾})(T {𝛾}))𝑛
a.s.−−→ 𝜋𝑖 (⟦id⟧(𝛾, 𝛿))
= ⟦id.col𝑖⟧(𝛾, 𝛿)

mathematical operations If 𝑡 is of the form op(𝑒1, . . . , 𝑒𝑛) where Γ;Δ ⊢ 𝑒𝑖 : 𝜎𝑖 and continuous?(op),
by definition of 𝑅𝜎𝑖 and our assumption we must have ⟦T𝛿T {𝑒𝑖 }⟧approx (T {𝛾})𝑛

a.s.−−→ ⟦𝑒𝑖⟧.
By the lowering rules we have

⟦T𝛿T {op(𝑒1, . . . , 𝑒𝑛)}⟧approx (T {𝛾}) = op(⟦T𝛿T {𝑒1}⟧approx (T {𝛾}), . . . , ⟦T𝛿T {𝑒𝑛}⟧approx (T {𝛾})),
As op is continuous, we can conclude that

⟦T𝛿T {op(𝑒1, . . . , 𝑒𝑛)}⟧approx (T {𝛾})𝑛
a.s.−−→ ⟦op(𝑒1, . . . , 𝑒𝑛)⟧(𝛾, 𝛿).

Hence, by definition of 𝑅𝜎 our claim holds.
probability of an event If 𝑡 is of the form PROBABILITY OF 𝑐 UNDER 𝑚 with Γ,Δ ⊢ 𝑐 : 𝐶1{cols},

then by normalization assumption 𝑡 must necessarily be in the normal form

PROBABILITY OF 𝑐 UNDER id GIVEN 𝑐0 GIVEN 𝑐1 .

Now,
⟦T𝛿T

{
PROBABILITY OF 𝑐 UNDER id GIVEN 𝑐0 GIVEN 𝑐1}⟧approx (T {𝛾})𝑛

= ⟦probT𝛿T
{
𝑐0} T𝛿T {

𝑐1} T𝛿T {𝑐}⟧approx (T {𝛾})𝑛 (lowering rules)
a.s.−−−→ ⟦probT𝛿T

{
𝑐0} T𝛿T {

𝑐1} T𝛿T {𝑐}⟧exact (T {𝛾}) (sound AMI implementation)

= ⟦T𝛿T
{
PROBABILITY OF 𝑐 UNDER id GIVEN 𝑐0 GIVEN 𝑐1}⟧exact (T {𝛾}) (lowering rules)

= ⟦ PROBABILITY OF 𝑐 UNDER id GIVEN 𝑐0 GIVEN 𝑐1⟧(𝛾). (exact guarantee)

This is a base case for the induction.
likelihood of an event-0 If 𝑡 is of the form PROBABILITY OF 𝑐 UNDER𝑚 with Γ,Δ ⊢ 𝑐 : 𝐶0{cols′},

then the proof is almost identical to the case where Γ,Δ ⊢ 𝑐 : 𝐶1{cols}.
Event Expressions

primitive events Suppose Γ;Δ ⊢ 𝑡 : 𝐶1{cols} is of the form id.col𝑖 op 𝑒 where

cols = col1 : 𝜎1, . . . , col𝑚 : 𝜎𝑚 .

For ease of notation we let 𝜎𝑔 := (𝜎1, . . . , 𝜎𝑚). By our safety assumption and the defini-
tion of the safe? macro, the subterm 𝑒 must be exact. By Lemma D.3, we must then have
⟦T𝛿T {𝑒}⟧approx (T {𝛾})𝑛 = ⟦T𝛿T {𝑒}⟧exact (T {𝛾}) for all 𝑛 almost surely. Hence, by definition
of the lowering rules and the approximate semantics

⟦T𝛿T {id.col𝑖 op 𝑒}⟧approx (T {𝛾})𝑛 = ⟦(id, 𝑖) op T𝛿T {𝑒}⟧approx (T {𝛾})𝑛
= {(𝑥1, . . . , 𝑥𝑚) ∈ ⟦𝜎𝑔⟧|𝑥𝑖 op ⟦T𝛿T {𝑒}⟧approx (T {𝛾})𝑛}
= {(𝑥1, . . . , 𝑥𝑚) ∈ ⟦𝜎𝑔⟧|𝑥𝑖 op ⟦T𝛿T {𝑒}⟧exact (T {𝛾})}
= ⟦(id, 𝑖) op T𝛿T {𝑒}⟧exact (T {𝛾})
= ⟦T𝛿T {id.col𝑖 op 𝑒}⟧exact (T {𝛾}),

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

GenSQL: A Probabilistic Programming System for Querying Generative Models of Database Tables 179:47

almost surely. Applying the soundness theorem for the exact AMI implementations, we are
done.

conjunctions and disjunctions If Γ;Δ ⊢ 𝑡 : 𝐶1{cols} is of the form 𝑐1
1 ∧𝑐1

2 , then by our inductive
assumption we must have

⟦𝑐1
𝑖 ⟧(𝛾, 𝛿) = ⟦T𝛿T

{
𝑐1
𝑖

}
⟧approx (T {𝛾})𝑛

almost surely for all 𝑛. Hence,
⟦T𝛿T

{
𝑐1

1 ∧ 𝑐2
2
}
⟧approx (T {𝛾})𝑛 = ⟦T𝛿T

{
𝑐1

1
}
∧ T𝛿T

{
𝑐1

2
}
⟧approx (T {𝛾})𝑛

= ⟦T𝛿T
{
𝑐1

1
}
⟧approx (T {𝛾})𝑛 ∩ ⟦T𝛿T

{
𝑐1

2
}
⟧approx (T {𝛾})𝑛

= ⟦𝑐1
1⟧(𝛾, 𝛿) ∩ ⟦𝑐1

2⟧(𝛾, 𝛿)
= ⟦𝑐1

1 ∧ 𝑐1
2⟧(𝛾, 𝛿)

The proof is almost identical when Γ;Δ ⊢ 𝑡 : 𝐶1{cols} is of the form 𝑐1
1 ∨ 𝑐1

2.
Event-0 Expressions

primitive event-0s Suppose Γ;Δ ⊢ 𝑡 : 𝐶0{col𝑖 } is of the form id.col𝑖 = 𝑒 where col𝑖 : 𝜎 . By
our safety assumption and the definition of the safe? macro, the subterm 𝑒 must be exact.
By Lemma D.3, we must then have ⟦T𝛿T {𝑒}⟧approx (T {𝛾})𝑛 = ⟦T𝛿T {𝑒}⟧exact (T {𝛾}) for all
𝑛 almost surely. Hence, by definition of the lowering rules and the approximate semantics

⟦T𝛿T {id.col𝑖 = 𝑒}⟧approx (T {𝛾})𝑛 = ⟦(id, 𝑖) = T𝛿T {𝑒}⟧approx (T {𝛾})𝑛
= (𝜋𝑖 , ⟦T𝛿T {𝑒}⟧approx (T {𝛾})𝑛)
= (𝜋𝑖 , ⟦T𝛿T {𝑒}⟧exact (T {𝛾}))
= ⟦(id, 𝑖) = T𝛿T {𝑒}⟧exact (T {𝛾})
= ⟦T𝛿T {id.col𝑖 op 𝑒}⟧exact (T {𝛾}),

almost surely. By the soundness theorem for the exact AMI implementations, we are done.
conjunctions If Γ;Δ ⊢ 𝑡 : 𝐶0{cols} is of the form 𝑐1

0 ∧ 𝑐1
0, then by our inductive assumption we

must have
⟦𝑐0

𝑖 ⟧(𝛾, 𝛿) = ⟦T𝛿T
{
𝑐0
𝑖

}
⟧approx (T {𝛾})𝑛

almost surely for all 𝑛. Hence,
⟦T𝛿T

{
𝑐0

1 ∧ 𝑐0
2
}
⟧approx (T {𝛾})𝑛 = ⟦T𝛿T

{
𝑐0

1
}
∧ T𝛿T

{
𝑐0

2
}
⟧approx (T {𝛾})𝑛

= let 1≤𝑖≤2 (𝑓𝑖 , 𝑣𝑖) = ⟦T𝛿T
{
𝑐0
𝑖

}
⟧approx (T {𝛾})𝑛 in(

𝜆𝑥 .(𝑓1 (𝑥), 𝑓2 (𝑥)), (𝑣1, 𝑣2)
)

= let 1≤𝑖≤2 (𝑓𝑖 , 𝑣𝑖) = ⟦𝑐0
𝑖 ⟧(𝛾, 𝛿) in(

𝜆𝑥 .(𝑓1 (𝑥), 𝑓2 (𝑥)), (𝑣1, 𝑣2)
)

= ⟦𝑐0
1 ∧ 𝑐0

2⟧(𝛾, 𝛿),
almost surely.

Table Expressions
loaded tables If Γ;Δ ⊢ id : 𝑇 [id]{cols}, then by assumption id is safe and there’s nothing to

show.
renamed tables If 𝑡 is of the form RENAME 𝑡 ′ AS id′ then by the typing rules of GenSQL we must

have Γ;Δ ⊢ 𝑡 ′ : 𝑇 [?id]{cols}, and so by our inductive assumption

⟦T𝛿T {𝑡 ′}⟧approx (T {𝛾})𝑛
a.s.−−→ ⟦𝑡 ′⟧(𝛾, 𝛿).

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

179:48 Huot, Ghavami, Lew, Schaechtle, Freer, Shelby, Rinard, Saad, Mansinghka

By definition of T𝛿T {−} we have
⟦T𝛿T { RENAME 𝑡 ′ AS id′}⟧approx (T {𝛾})𝑛 = ⟦T𝛿T {𝑡 ′}⟧approx (T {𝛾})𝑛

a.s.−−→ ⟦𝑡 ′⟧(𝛾, 𝛿)
= ⟦ RENAME 𝑡 ′ AS id′⟧(𝛾, 𝛿).

joins If 𝑡 is of the form 𝑡1 JOIN 𝑡2 then by the typing rules of GenSQL we must have Γ;Δ ⊢ 𝑡𝑖 :
𝑇 [?id𝑖]{cols𝑖 }, and so by our inductive assumption

⟦T𝛿T {𝑡𝑖 }⟧approx (T {𝛾})𝑛
a.s.−−→ ⟦𝑡⟧(𝛾, 𝛿).

For ease of notation, we let 𝜎𝑔 = (𝜎1, . . . , 𝜎𝑛) and 𝜎 ′
𝑔 = (𝜎 ′

1, . . . , 𝜎
′
𝑚) where Now,

⟦T𝛿T {𝑡1 JOIN 𝑡2}⟧approx (T {𝛾})𝑛 = ⟦join(T𝛿T {𝑡1} ,T𝛿T {𝑡2})⟧approx (T {𝛾})𝑛
= ⟦𝑡1⟧approx (T {𝛾})𝑛 ⊗ ⟦𝑡2⟧approx (T {𝛾})𝑛 ≫=

(𝜆𝑆, 𝑆 ′ .return (map2 splat 𝑆 𝑆 ′))
As described in our topological preliminaries above, the mappings splat , join and map2
are continuous. Using the continuous mapping theorem and the basic properties of weak
convergence of measures we can pass the above to the limit and apply our inductive hypothesis
to get

⟦T𝛿T {𝑡1 JOIN 𝑡2}⟧approx (T {𝛾})𝑛 ⇒ ⟦𝑡1⟧(𝛾, 𝛿) ⊗ ⟦𝑡2⟧(𝛾, 𝛿) ≫=
(𝜆𝑆, 𝑆 ′ .return (map2 splat 𝑆 𝑆 ′))

= ⟦𝑡1 JOIN 𝑡2⟧(𝛾, 𝛿) .
filtered tables If 𝑡 is of the form 𝑡 WHERE 𝑒 then by definition of the safe? macro 𝑡 has to be unsafe.

Hence, there is nothing to show in this case.
generated tables If 𝑡 is of the form GENERATE UNDER𝑚 LIMIT 𝑒 , by the normalization assumption

𝑡 must be of the form GENERATE UNDER id GIVEN 𝑐0 GIVEN 𝑐1 LIMIT 𝑒 . By the lowering rules,
⟦T𝛿T

{
GENERATE UNDER id GIVEN 𝑐0 GIVEN 𝑐1 LIMIT 𝑒

}
⟧approx (T {𝛾})𝑛 =

⟦replicate T𝛿T {𝑒} , simulateid (T𝛿T
{
𝑐0} ,T𝛿T {

𝑐1})⟧approx (T {𝛾})𝑛
Now, by definition of safe? and exact? and Lemma D.3 we must have

⟦T𝛿T
{
𝑐0}⟧approx (T {𝛾})𝑛 = ⟦T𝛿T

{
𝑐0}⟧exact (T {𝛾})

⟦T𝛿T
{
𝑐1}⟧approx (T {𝛾})𝑛 = ⟦T𝛿T

{
𝑐1}⟧exact (T {𝛾})

⟦T𝛿T {𝑒}⟧approx (T {𝛾})𝑛 = ⟦T𝛿T {𝑒}⟧exact (T {𝛾}),
almost surely for all 𝑛. Hence, using the definition of the approximate semantics we can see
that

⟦replicate T𝛿T {𝑒} , simulateid (T𝛿T
{
𝑐0} ,T𝛿T {

𝑐1})⟧approx (T {𝛾})
= ⟦replicate T𝛿T {𝑒} , simulateid (T𝛿T

{
𝑐0} ,T𝛿T {

𝑐1})⟧exact (T {𝛾})𝑛
almost surely for all 𝑛. Applying the correctness result of the exact AMI we are done.

selects By assumption, the term 𝑒 in the select is continuous, and by assumption the term 𝑡 is safe.
Hence, the continuous mapping theorem directly applies as the semantics of select is the
pushforward by the semantics of 𝑒 of the semantics of 𝑡 .

generative joins by assumption, simulateid converges to the exact semantics almost surely. Sin-
gleton and pairing are continuous, as well as join and mapreduce, and so the whole translation
of the generative join is continuous and converges to the exact semantics almost surely.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

GenSQL: A Probabilistic Programming System for Querying Generative Models of Database Tables 179:49

RowModel Expressions As the lowering is defined on normalized queries, all rowModel terms
are of the form id GIVEN 𝑐0 GIVEN 𝑐1, where the GIVEN clause are optional. Therefore, these terms are
never directly returned by the lowering transformation, and are only used in PROBABILITY OF and
GENERATE UNDER expressions. Hence, the proof is complete. □

Using the fundamental lemma, we can prove the following result on the soundness of the lowering
transformation in presence of approximate semantics.

Theorem D.5 (Consistent AMI Guarantee). Let Γ, [] ⊢ 𝑡 : 𝑇 [?id]{cols} be a safe query and

suppose the AMI methods have asymptotically sound implementations. Then, for all evaluation context

𝛾 , we have

lim
𝑛
(⟦T[] {𝑡}⟧approx (T {𝛾})) = ⟦𝑡⟧(lim

𝑛
𝛾)

P-almost surely.

Proof. Since the AMI methods are assumed to have asymptotically sound implementations and
the queyr safe, by the fundamental lemma we must have, for all 𝛾 and 𝛿 = [], that

(⟦𝑡⟧(𝛾, []), ⟦T[] {𝑡}⟧approx (T {𝛾} , [])) ∈ 𝑅𝑇 [?id] {cols}

By the second part of the definition of the logical relation for table types, we have that almost
surely lim𝑛 (⟦T[] {𝑡}⟧approx (𝛾)) = ⟦𝑡⟧(lim𝑛 𝛾), as required. □

We finally note that we gave a sufficient but not necessary condition for the soundness of the
approximate semantics of the lowered language, and leave the development of a more permissive
safe macro for future work.

E FULL LANGUAGE
Our implementation of GenSQL contains several more primitives and operations than the core
language described in the main text. Here, we present a fuller language more representative of the
implementation. Yet, we still omit several constructs such as SQL’s LEFT JOIN, RIGHT JOIN, and
OUTER JOIN which can be expressed with the primitives we present. These constructs are omitted
for brevity and because they are not essential to the core functionality of the language, but they
can of course be convenient and have optimized implementations in practice.

We assume given a set of aggregates 𝐴 ∈ A. For aggregates 𝐴, we write 𝐴 : 𝜎1 → 𝜎2 to indicate
that the aggregate operates on elements on type 𝜎1 and returns elements of type 𝜎2. Figure 25
shows a list of common aggregates and their types. DEDUP removes duplicates rows in a table,
while DUPLICATE creates copies of each row in a table. WITH 𝑡1 AS id′ : 𝑡2 is a convenient notation
for introducing a new table name id′ bound to the value of 𝑡1 in the context of a table expression
𝑡2. It is a SQL equivalent of a let binding. It can be used jointly with GENERATIVE JOIN to generate
multiple possible completions of a row under a model. MUTUAL INFO computes the conditional
mutual information between two sets of columns in a table, conditioned on an event or event-0
𝑐𝑖 under a model𝑚. In general, event if marginal densities can be computed exactly for a model
𝑚, the (conditional) mutual information may not be computable in closed form, and is typically
approximated using Monte Carlo methods [67]. We can for instance use MUTUAL INFO as a compact
way to express the computation presented in Fig. 2.

The example in Fig. 2 uses a syntax closer to SQL in its use of GROUP BY . It is possible
to express the same query using the syntax in Fig. 26 by using its GROUP BY operator, as fol-
lows. Let 𝑡 be the query from lines 2-17 in Fig. 2. Then the query in Fig. 2 can be expressed as
GROUP 𝑡 BY [table.weight AS weight] AGGREGATING Avg(table.log_pxy_div_px_py) AS mutual_info.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

179:50 Huot, Ghavami, Lew, Schaechtle, Freer, Shelby, Rinard, Saad, Mansinghka

Aggregate Types
Sum 𝜎𝑐 → Real, Int → Int, Nat → Nat
Avg Int → Real, Nat → Real, 𝜎𝑐 → 𝜎𝑐

Max,Min 𝜎𝑐 → 𝜎𝑐 , Int → Int, Nat → Nat, Bool → Bool
Count,CountDistinct 𝜎 → Nat

Concat Str → Str

Fig. 25. Supported types of aggregate operators.

Continuous base types 𝜎𝑐 ::= Real | PosReal | Ranged(𝑎, 𝑏)
Discrete base types 𝜎𝑑 ::= Int | Str | Nat | Bool | Cat(n1, . . . ,n𝑘)

Base Types 𝜎 ::= 𝜎𝑐 | 𝜎𝑑
Table Types T ::= 𝑇 [?id]{col1 : 𝜎1, . . . , col𝑛 : 𝜎𝑛}

rowModel Types M ::= 𝑀 [?id]{col1 : 𝜎1, . . . , col𝑛 : 𝜎𝑛}
Event Types E ::= 𝐶1{col1 : 𝜎1, . . . , col𝑛 : 𝜎𝑛} | 𝐶0{col1 : 𝜎1, . . . , col𝑛 : 𝜎𝑛}
Aggregates 𝐴 ::= Sum | Avg | Max | Min | Count | Concat | CountDistinct
Operations op ::= + | ∗ | ÷ | log | exp | √· | > | < | = | . . .

Table Expressions 𝑡 ::= id | 𝑡1 UNION 𝑡2 | 𝑡1 JOIN 𝑡2 | RENAME 𝑡 AS id
| DEDUP 𝑡 | 𝑡 DUPLICATE 𝑒 TIMES | 𝑡 WHERE 𝑒 | WITH 𝑡1 AS id′ : 𝑡2
| SELECT 𝑒1 AS col1, . . . , 𝑒𝑛 AS col𝑛 FROM 𝑡

| GROUP 𝑡 BY [𝑒1 AS col1, . . . , 𝑒𝑛 AS col𝑛]
AGGREGATING 𝐴1 (𝑒′1) AS col′1, . . . , 𝐴𝑚 (𝑒′𝑚) AS col′𝑚

| GENERATE UNDER𝑚 LIMIT 𝑒 | 𝑡 GENERATIVE JOIN𝑚 GIVEN 𝑐𝑖

rowModel Expressions𝑚 ::= id | 𝑚 GIVEN 𝑐𝑖 | RENAME𝑚 AS id
Scalar Expressions 𝑒 ::= id.col | op(𝑒1, . . . , 𝑒𝑛) | PROBABILITY OF 𝑐𝑖 UNDER𝑚

| MUTUAL INFO (id.cols, id.cols′, 𝑐𝑖) UNDER𝑚

Event Expressions 𝑐1 ::=
∧

1≤𝑖≤2
𝑐1
𝑖 |

∨
1≤𝑖≤2

𝑐1
𝑖 | id.col op 𝑒

Event-0 Expressions 𝑐0 ::=
∧

1≤𝑖≤2
𝑐0
𝑖 | id.col = 𝑒

Fig. 26. Full syntax of GenSQL.

F LIST OF GENSQL QUERIES
Figure 29 showcases the modelling capabilities of GenSQL on a variety of data analysis examples.
Figure 30 shows the queries used from the benchmark in Table 1.

Received 2023-11-16; accepted 2024-03-31

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

GenSQL: A Probabilistic Programming System for Querying Generative Models of Database Tables 179:51

Γ;Δ ⊢ 𝑡 : 𝑇 [?id]{cols}
Γ;Δ ⊢ DEDUP 𝑡 : 𝑇 [?id]{cols}

Γ;Δ ⊢ 𝑡1 : 𝑇 [id1]{cols} Γ;Δ ⊢ 𝑡2 : 𝑇 [id2]{cols}
Γ;Δ ⊢ 𝑡1 UNION 𝑡2 : 𝑇 []{cols}

Γ;Δ ⊢ 𝑡 : 𝑇 [?id]{cols} Γ;Δ ⊢ 𝑒 : Nat
Γ;Δ ⊢ 𝑡 DUPLICATE 𝑒 TIMES : 𝑇 [?id]{cols}

Γ;Δ ⊢ 𝑡1 : 𝑇 [?id]{cols} Γ,𝑇 [id′′]{cols};Δ ⊢ 𝑡2 : 𝑇 [?id′]{cols} id′′ fresh
Γ;Δ ⊢ WITH 𝑡1 AS id′′ : 𝑡2 : 𝑇 [?id′]{cols}

Γ;Δ ⊢ 𝑡 : 𝑇 [?id]{cols} Γ;Δ,𝑇 [?id]{cols} ⊢ 𝑒𝑖 : 𝜎𝑖 for 1 ≤ 𝑖 ≤ 𝑛

Γ;Δ,𝑇 [?id]{cols} ⊢ 𝑒′𝑗 : 𝜎 ′
𝑗 𝐴 𝑗 : 𝜎 ′

𝑗 → 𝜎 ′′
𝑗 for 1 ≤ 𝑗 ≤ 𝑚

𝑒 AS col := [𝑒1 AS col1, . . . , 𝑒𝑛 AS col𝑛] col ∩ col′ = ∅
𝐴(𝑒′) AS col′ := 𝐴1 (𝑒′1) AS col′1, . . . , 𝐴𝑚 (𝑒′𝑚) AS col′𝑚
Γ;Δ ⊢ GROUP 𝑡 BY 𝑒 AS col AGGREGATING 𝐴(𝑒′) AS col′

: 𝑇 []{col1 : 𝜎1, . . . , col𝑛 : 𝜎𝑛, col′1 : 𝜎 ′′
1 , . . . , col′𝑚 : 𝜎 ′′

𝑚}
Γ;Δ ⊢𝑚 : 𝑀 [?id]{cols} Γ;Δ, 𝑀 [?id]{cols} ⊢ 𝑐𝑖 : E cols′, cols′′ ⊆ cols

Γ;Δ ⊢ MUTUAL INFO (id.cols′, id.cols′′, 𝑐𝑖) UNDER𝑚 : Real

Fig. 27. Type system for the GenSQL expressions omitted in the main text.

⟦ DEDUP 𝑡⟧(𝛾, 𝛿) =
(
𝜆𝑥.fold

(
𝜆𝑟,𝑦.{𝑟 } ∪ filter (𝜆𝑟 ′ .𝑟 = 𝑟 ′) 𝑦

)
∅ 𝑥

)
∗
⟦𝑡⟧(𝛾, 𝛿)

⟦𝑡1 UNION 𝑡2⟧(𝛾, 𝛿) = (𝜆𝑥,𝑦. 𝑥 ∪ 𝑦)∗ (⟦𝑡1⟧(𝛾, 𝛿) ⊗ ⟦𝑡2⟧(𝛾, 𝛿))

⟦𝑡 DUPLICATE 𝑒 TIMES ⟧(𝛾, 𝛿) = let 𝑛 = ⟦𝑒⟧(𝛾, 𝛿) in
(
𝜆𝑦.

⋃
1≤𝑖≤𝑛

𝑦

)
∗
⟦𝑡⟧(𝛾, 𝛿)

⟦ WITH 𝑡1 AS id′′ : 𝑡2⟧(𝛾, 𝛿) = ⟦𝑡1⟧(𝛾, 𝛿) ≫=(𝜆𝑥 .⟦𝑡2⟧(𝛾 [id′′ ↦→ 𝑥], 𝛿))

⟦ GROUP 𝑡 : 𝑇 [?id]{cols} BY 𝑒 AS col AGGREGATING 𝐴(𝑒′) AS col′⟧(𝛾, 𝛿) =(
𝜆𝑥 .let 𝑦 = map (𝜆𝑟 .

(
⟦𝑒⟧(𝛾, 𝛿 [id ↦→ 𝑟]), ⟦𝑒′⟧(𝛾, 𝛿 [id ↦→ 𝑟])

)
) 𝑥

let 𝑘𝑒𝑦𝑠 = map (𝜆(𝑎, 𝑏) .𝑏) 𝑦
let 𝑏𝑎𝑔𝑠 = map (𝜆𝑎.(𝑎, fold (𝜆(𝑎′, 𝑏′).if 𝑎 = 𝑎′then {𝑏′} else {}) {} 𝑦)) 𝑘𝑒𝑦𝑠

map (𝜆(𝑎, 𝑠) .(𝑎,𝐴(𝑠))) 𝑏𝑎𝑔𝑠
)
∗
⟦𝑡⟧(𝛾, 𝛿)

where ⟦𝑒⟧(𝛾, 𝛿) = (⟦𝑒1⟧(𝛾, 𝛿), . . . , ⟦𝑒𝑛⟧(𝛾, 𝛿)) and ⟦𝑒′⟧(𝛾, 𝛿) = (⟦𝑒′1⟧(𝛾, 𝛿), . . . , ⟦𝑒′𝑚⟧(𝛾, 𝛿))

Fig. 28. Denotational semantics for the GenSQL expressions omitted in the main text.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

179:52 Huot, Ghavami, Lew, Schaechtle, Freer, Shelby, Rinard, Saad, Mansinghka

WITH model GIVEN Period_minutes > 2000 AS conditional_model:
SELECT

AVG(log_p) AS entropy
FROM (

SELECT - LOG(p) AS log_p FROM (
SELECT
PROBABILITY OF Perigee_km AND Apogee_km UNDER

conditional_model AS p
FROM
(GENERATE UNDER conditional_model LIMIT 1000)))

(a) Entropy on conditioned model

SELECT
AVG(log_p_over_log_q) AS kl_p_q_estimate

FROM (
SELECT LOG(p) - LOG(q) AS log_p_over_log_q FROM (
SELECT
PROBABILITY OF * UNDER model_p AS p,
PROBABILITY OF * UNDER model_q AS q,

FROM
GENERATE UNDER model_p
LIMIT 1000))

(b) Kullback-Leibler divergence

GENERATE
UNDER model_a

GIVEN (x > 10 * PROBABILITY OF y > 0.9 UNDER model_b)
LIMIT 100

GENERATE
UNDER model_a
LIMIT 100
GENERATIVE JOIN model_b GIVEN *

(c) Conditioning a model on output of another

SELECT
PROBABILITY OF Purpose AND Country_of_Operator UNDER model
GIVEN Apogee_km > 35000 AND Period_miutes = 1440 AS p
Purpose,
Country_of_Operator,

FROM (
SELECT
Purpose,
Country_of_Operator,

FROM data
GROUP BY Purpose AND Country_of_Operator)

ORDER BY p DESC LIMIT 1

(d) Maxiumum-a-posteriori

SELECT
*

FROM data
WHERE

(PROBABILITY OF bmi UNDER model) >
(PROBABILITY OF bmi UNDER model GIVEN * EXCEPT bmi)

(e) Anomaly detection

SELECT
test_data.apogee,
test_data.perigee,
model.period

FROM test_data
GENERATIVE JOIN
model.period GIVEN Perigee_km, Apogee_km

(f) Prediction

SELECT
PROBABILITY OF * UNDER model AS p,
*

FROM
GENERATE UNDER model LIMIT 1000

ORDER BY p
LIMIT 5

(g) Likely synthetic data

GENERATE
UNDER model
GIVEN IPTG = "added" AND Arabinose = "added" AND yfp > 100
LIMIT 10000

(h) Conditional synthetic data generation

SELECT
experience,
PROBABILITY OF experience UNDER model
GIVEN * EXCEPT experience

AS probability_experience
FROM data
GENERATIVE JOIN

model GIVEN *
WHERE probability_experience > 0.95

(i) Imputation

WITH model GIVEN Period_minutes > 2000 AS conditional_model:
SELECT
AVG(log_pxy_div_px_py) AS mutual_information

FROM (
SELECT LOG(pxy) - LOG(px) - LOG(py) AS log_pxy_div_px_py FROM

(
SELECT
PROBABILITY OF Perigee_km AND Apogee_km UNDER
conditional_model AS pxy,
PROBABILITY OF Perigee_km UNDER conditional_model AS px,
PROBABILITY OF Apogee_km UNDER conditional_model AS py

FROM
(GENERATE UNDER conditional_model LIMIT 1000)))

(j) Conditional mutual information

Fig. 29. Example queries in GenSQL for a variety of data analysis tasks.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

GenSQL: A Probabilistic Programming System for Querying Generative Models of Database Tables 179:53

logpdf 1

SELECT
PROBABILITY OF Period_minutes = 98.6
UNDER model GIVEN Country_of_Operator

FROM data

logpdf 2

SELECT
PROBABILITY OF Period_minutes = 98.6 AND

Type_of_Orbit = \"Sun-Synchronous\"
UNDER model GIVEN Country_of_Operator AND

Launch_Mass_kg
FROM data

logpdf 3

SELECT
PROBABILITY OF Period_minutes = 98.6 AND

Type_of_Orbit = \"Sun-Synchronous\" AND
Contractor = \"Lockheed Martin\"

UNDER model GIVEN Country_of_Operator AND
Launch_Mass_kg AND
Inclination_radians

FROM data

logpdf 4

SELECT
PROBABILITY OF Period_minutes = 98.6 AND

Type_of_Orbit = \"Sun-Synchronous\" AND
Contractor = \"Lockheed Martin\" AND
Eccentricity = 0.001

UNDER model GIVEN Country_of_Operator AND
Launch_Mass_kg AND
Inclination_radians AND
Apogee_km

FROM data

logpdf 5

SELECT
PROBABILITY OF Period_minutes = 98.6 AND

Type_of_Orbit = \"Sun-Synchronous\" AND
Contractor = \"Lockheed Martin\" AND
Eccentricity = 0.001 AND
Purpose = \"Communications\"

UNDER model GIVEN Country_of_Operator AND
Launch_Mass_kg AND
Inclination_radians AND
Apogee_km AND
Power_watts

FROM data

Fig. 30. Queries from Table 1 in GenSQL.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

179:54 Huot, Ghavami, Lew, Schaechtle, Freer, Shelby, Rinard, Saad, Mansinghka

logpdf 6

SELECT
PROBABILITY OF

Contractor = \"Microsat Systems Canada Inc\"
UNDER model GIVEN

Country_of_Contractor
FROM data

logpdf 7

SELECT
PROBABILITY OF

Inclination_radians = 5.52 AND
Operator_Owner = \"AMSAT-UK\"

UNDER model GIVEN
Launch_Vehicle AND
Eccentricity

FROM data

logpdf 8

SELECT
PROBABILITY OF

Purpose = \"Earth Observation/Research\" AND
Period_minutes = 5512.43 AND
Launch_Vehicle = \"Tsyklon 3\"

UNDER model GIVEN
Eccentricity AND
Dry_Mass_kg AND
Launch_Mass_kg

FROM data

logpdf 9

SELECT
PROBABILITY OF

longitude_radians_of_geo = 2.19 AND
Eccentricity = 0.00319 AND
Inclination_radians = 20.67 AND
Type_of_Orbit = \"Molniya\"

UNDER model GIVEN
Launch_Mass_kg AND
Launch_Vehicle AND
Purpose AND
Launch_Site

FROM data

logpdf 10

SELECT
PROBABILITY OF

Period_minutes = 19529.87 AND
Type_of_Orbit = \"Deep Highly Eccentric\" AND
Launch_Site = \"Kodiak Launch Complex\" AND
Dry_Mass_kg = 5093.73 AND
Inclination_radians = 8.17

UNDER model GIVEN
Contractor AND
Launch_Mass_kg AND
Purpose AND
Perigee_km AND
Power_watts

FROM data

Fig. 30. Queries from Table 1 in GenSQL (continued).

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 179. Publication date: June 2024.

	Abstract
	1 Introduction
	2 Example
	3 Syntax and Semantics
	3.1 Language
	3.2 Semantics

	4 Abstract Model Interface and Query Planner
	4.1 Abstract Model Interface (AMI)
	4.2 Lowering GenSQL to Queries on the AMI
	4.3 Lowering Guarantees for Exact Backend
	4.4 Approximate Backend Guarantee

	5 Evaluation
	5.1 Performance and Usability
	5.2 Case Studies on Real World Data

	6 Related Work
	7 Contributions
	Acknowledgments
	References
	A Further experiments and comparisons
	A.1 Code comparison with Scikit-learn
	A.2 Comparison against a baseline using approximate inference
	A.3 Gen.clj code for emission functions

	B Details of the optimizations
	B.1 Caching
	B.2 Independence simplification

	C Implementations of the AMI
	C.1 AMI in terms of sum-product expressions
	C.2 AMI in terms of truncated multivariate Gaussians
	C.3 AMI in terms of ancestral sampling

	D Lowering Details
	D.1 Normalization of GenSQL Queries
	D.2 Lowered language
	D.3 Proof of the exact guarantee theorem
	D.4 Guarantee for approximate backend

	E Full language
	F List of GenSQL queries

