8/8/24,3:51 PM tasks2D/notebooks_clean/KidnappedRobot.ipynb at main - probcomp/tasks2D

_ O probcomp /
- tasks2D

<> Code (©) Issues 19 Pull requests

a & 8

() Actions [Projects () Security |~ Insights

tasks2D / notebooks_clean [KidnappedRobot.ipynb
georgematheos clean messy print 4bacabb - last year 1)

6.22 MB

https://github.com/probcomp/tasks2D/blob/main/notebooks_clean/KidnappedRobot.ipynb 1/25

https://github.com/georgematheos
https://github.com/probcomp/tasks2D/commits?author=georgematheos
https://github.com/probcomp/tasks2D/commit/4baca6b617a2d99f5838bc6e9749c9de21783385
https://github.com/probcomp/tasks2D/commit/4baca6b617a2d99f5838bc6e9749c9de21783385
https://github.com/
https://github.com/notifications
https://github.com/probcomp/tasks2D
https://github.com/probcomp/tasks2D/issues
https://github.com/probcomp/tasks2D/pulls
https://github.com/probcomp/tasks2D/actions
https://github.com/probcomp/tasks2D/projects
https://github.com/probcomp/tasks2D/security
https://github.com/probcomp/tasks2D/pulse
https://github.com/probcomp/tasks2D/tree/main
https://github.com/probcomp/tasks2D/tree/main/notebooks_clean
https://github.com/probcomp/tasks2D/commits/main/notebooks_clean/KidnappedRobot.ipynb
https://github.com/probcomp/tasks2D/edit/main/notebooks_clean/KidnappedRobot.ipynb

8/8/24,3:51 PM

tasks2D/notebooks_clean/KidnappedRobot.ipynb at main - probcomp/tasks2D

import Pkg
Pkg.activate("../Tasks2D")

Activating project at “~/Developer/tasks2D/Tasks2D"

using Revise # For development; makes it so modifications
to imported modules are immediately reflected in this

import LineWorlds # Local module with code for 2D maps where
the primitive objects are line segments.

const L = LineWorlds
const Geo = L.Geometry;

using Gen

includet("KidnappedRobot/visualization.j1")

Define environment model

Initial state distribution #i#t#

mvuniform = L.ProductDistribution(uniform);
@gen function uniform_agent_pos(params)
mins, maxs = params.bounding_box
pos ~ mvuniform(mins, maxs)

return pos
end

DynamicDSLFunction{Any}(Dict{Symbol, Any}(), Dict{Symbol, Any}(), TypelAn
y], false, Union{Nothing, Some{Any}}[nothing]l, var"##uniform_agent_pos#31
4", Bool[0@], false)

Transition model #it#

Load: ‘det_next_pos’, which computes the determinized effect of actions
Load: “handle_wall_intersection™ to handle wall intersections
includet("KidnappedRobot/motion_model_utils.jl")

Motion model accepts the previous world state (the agent's previous pos
and an action in [:up, :down, :left, :right, :stay]
@gen function motion_model(prev_pos, action, params)

Move the agent up/down/left/right by params.step.A units.

np = det_next_pos(prev_pos, action, params.step.A)

Have an affordance in the model for the agent to randomly
re-locate to a new position.
is_kidnapped ~ bernoulli(params.p_kidnapped)

if 'is_kidnapped
In normal operation, the agent moves to ‘np°, plus

https://github.com/probcomp/tasks2D/blob/main/notebooks_clean/KidnappedRobot.ipynb 2/25

8/8/24,3:51 PM tasks2D/notebooks_clean/KidnappedRobot.ipynb at main - probcomp/tasks2D

a bit of stochastic noise.
pos ~ broadcasted_normal(np, params.step.o)

If "np’ plus the noise

would have the agent collide with a wall, the agent

halts preemptively.

next_pos = handle_wall_intersection(prev_pos, pos, params.map)

else
If the robot was kidnapped, it could appear anywhere.
{*x} syntax inlines the random choices (here, “:pos’) from the
‘uniform_agent_pos' generative function into this one.
next_pos = {x} ~ uniform_agent_pos(params)

end

return next_pos
end

DynamicDSLFunction{Any}(Dict{Symbol, Any}(), Dict{Symbol, Any}(), TypelAny,
Any, Any], false, Union{Nothing, Some{Any}}[nothing, nothing, nothingl, va
r"##motion_model#315", Bool[@, @, 0], false)

#it# Observation model #i##

Load: ‘get_sensor_args'; ‘sensordist_2dp3".
includet ("KidnappedRobot/sensor_model_utils.jl")

This observation model generates noisy LIDAR measurements
from the agent to the surrounding walls.
See the visuals below.
@gen function sensor_model(pos, params)
sensor_args = get_sensor_args(pos, params)
obs ~ L.sensordist_2dp3(sensor_args...)
return obs
end

DynamicDSLFunction{Any}(Dict{Symbol, Any}(), Dict{Symbol, Any}(), TypelAny,
Any], false, Union{Nothing, Some{Any}}[nothing, nothingl, var"##sensor_mode
1#316", Bool[@, 0], false)

Define POMDP

import GenPOMDPs

POMDP of this environment
pomdp = GenPOMDPs.GenPOMDP (

uniform_agent_pos, # INIT : params - Sta’
motion_model, # STEP : prev_state, action, params =~ sta
sensor_model, # 0BS ! state, params - 0bs
(state, action) -> -1. # UTILITY: state, action, params - uti

"»" denotes a Generative Function; "-" deni

)

GenPOMDPs.GenPOMDP (DynamicDSLFunction{Any}(Dict{Symbol, Any}(), Dict{Symbo

1, Any}(), TypelAny], false, Union{Nothing, Some{Any}}[nothing]l, var"##unif

nrm anent nnc#314" . Ranl1IA1_. falce). DvnamicNSI Function{Anv}(Dict{Svmhnl . A
https://github.com/probcomp/tasks2D/blob/main/notebooks_clean/KidnappedRobot.ipynb 3/25

8/8/24,3:51 PM tasks2D/notebooks_clean/KidnappedRobot.ipynb at main - probcomp/tasksZD

R N e L A e N / e e — g e gt — e — e e B R Y 4

ny}() Dict{Symbol, Any}(), TypelAny, Any, Anyl, false, Unlon{Nothlng, Some
{Any}}[nothing, nothing, nothingl, var"##motion_model#315", Booll[@, @, @],
false), DynamicDSLFunction{Any}(Dict{Symbol, Any}(), Dict{Symbol, Any}(), T
ype[Any, Anyl, false, Union{Nothing, Some{Any}}[nothing, nothingl, var"##se
nsor_model#316", Bool[0, 0], false), var"#35#36"())

Load an environment

Load function to construct a "hotel"™ map with a given number
of identical rooms.
includet ("KidnappedRobot/hotel_env.j1")

Construct a hotel environment with 4 rooms.

(walls, bounding_box) = construct_hotel_env(4);

plot(size=(250, 250), aspect_ratio=:equal, grid=false)
plot!(walls, c=:black, label="Walls")

20}
r_' —Walls
15} '
=
10 '
=
5| |
=
ok . L .
_5 0 5 10

Add goal object to environment

includet ("KidnappedRobot/box.j1") # get ‘box_segments’, which draws a box

Coordinates for where to place goal object in the map we loaded above
GOAL = [1., 7.]

goalobj = box_segments(GOAL);

plot(size=(250, 250), aspect_ratio=:equal, grid=false, legend=:bottomleft
plot!(walls, c=:black, label="Walls")
plot!(goalobj, c=:green, label="Goal object")

20

S

.

https://github.com/probcomp/tasks2D/blob/main/notebooks_clean/KidnappedRobot.ipynb 4/25

8/8/24,3:51 PM tasks2D/notebooks_clean/KidnappedRobot.ipynb at main - probcomp/tasks2D

10l 1
o]
5k I
—Walls |__
—Goal object
ok I
1 1 I |
-5 0 5 10

Ground truth world parameters

Ground truth world model parameters #i##

PARAMS = (;
map = vcat(walls, goalobj), # The map consists of the walls, and
p_kidnapped = 0., # Probability the agent is kidnapped
bounding_box = bounding_box, # Bounding box for the environment

step = (; A = 0.25, 0 = 0.005), # step model arguments
obs = (; fov = 2n, n_rays = 80, # obs model arguments
orientation=n/2,
sensor_args = (;
w =5, s_noise = 0.02,
outlier = 0.0001, outlier_vol = 100.0,
zmax = 100.0
)));

Construct a particle filter

Next, we'll construct a 1-particle particle filter we can use for state estimation in this
model. It will be based on a proposal distribution which uses a coarse-to-fine
sequence of grid scans over the 2D environment to precisely localize the agent.

Particle Filter args

pf.jl defines ‘@get_pf . This macro simply yields a call "GenPOMDPs.pf
grid proposal distribution.

"GenPOMDPs.pf' is a function which accepts a POMDP as input, and parame
behavior of a particle filter, and constructs a particle filter special.
of all POMDPs.

‘pf.jl" also defines some particle filtering proposal distributions bas:
coarse-to-fine grid scans.
includet("KidnappedRobot/pf.j1")

H R R R R HHFHHR

Also load a file where I defined some default arguments for the particl:
proposal distributions.
includet ("KidnappedRobot/default_pf_args.j1")

Construct the POMDP the agent will use as it's mental world model while
In this case, the mental-model GenPOMDP object will be the same as the

However, the exact distributions represented by the mental-model POMDP :
be different, since we will give the agent a different set of parameter:

https://github.com/probcomp/tasks2D/blob/main/notebooks_clean/KidnappedRobot.ipynb 5/25

8/8/24,3:51 PM

tasks2D/notebooks_clean/KidnappedRobot.ipynb at main - probcomp/tasks2D
(I could potentially refactor GenPOMDPs so that the GenPOMDP object con
rather than the user passing this in each time. That would also more p.
formal definition of a POMDP. However, I had in mind it may be convenit
to have an explicit ‘params’ argument which can control details of the
agent_mental_model = GenPOMDPs.GenPOMDP(uniform_agent_pos, motion_model,
[We could just set agent_mental_model = pomdp; I write this out for illi

We will have the agent's mental model suppose the
motion noise and observation noise are higher than
they truly are, and the agent will do particle filtering
assuming kidnapping is impossible. (The controller will handle
kidnapping by resetting the particle filter.)
MENTAL_MODEL_PARAMS = overwrite_params (

PARAMS;

p_kidnapped=0.,

step=(; o0 = 0.1),

sensor_args=(; s_noise=0.1)

)

Arguments for 1 particle SMC. [The resampling args don't do anything, s.
update_grid_args, initialization_grid_args, resampling_args = default_pf_:

Particle filter for inference in the mental world model
pf = @get_pf(agent_mental_model, MENTAL_MODEL_PARAMS, update_grid_args, i

The particle filter object returned by GenPOMDPs.pf is a pair of a func
which initializes a particle filter, "initial_pf_state = pf_init(observ:
which updates the filter, ‘new_pf_state = pf_update(pf_state, action, nt
(pf_init, pf_update) = pf;

In inference, we'll use this generative function by constructing a Cont
GenPOMDPs.RolloutModel (pomdp, controller)

ctm = GenPOMDPs.ControlledTrajectoryModel(agent_mental_model)

ctm isa Gen.GenerativeFunction

true

trace_of_mental_model = simulate(ctm,

(

3, # n timesteps to simulate
[:left, :left, :left], # action sequence
MENTAL_MODEL_PARAMS # parameters

)
)

get_choices(trace_of_mental_model) # uncomment this, and delete “nothin
nothing

Baseline controller

As a baseline, we'll implement a controller which does state estimation without a
particle filter; it will simply do a coarse-to-fine grid scan over the entire map to localize
globally at every timestep.

To implement this, we'll simply use the pf_init function we obtained above when

https://github.com/probcomp/tasks2D/blob/main/notebooks_clean/KidnappedRobot.ipynb

6/25

8/8/24,3:51 PM tasks2D/notebooks_clean/KidnappedRobot.ipynb at main - probcomp/tasks2D
constructing our particle filter. That is, we will construct a 1-particle filter at every
timestep, as though each new observation is the first observation.

For planning, we'll do A* search in a discretized version of the environment. To do this,
our first step will be to construct a "GridWorld" environment, by overlaying a cartesian
grid onto the continuous environment, and noting which squares in the grid are
occupied by walls.

includet ("KidnappedRobot/astar_planning.jl") # Loads: 'find_action_using

Generate a gridworld version of this environment, in which Ax planning
planning_params = get_planning_params(walls, bounding_box);

Then, we'll define the controller.

includet ("KidnappedRobot/handle_sticking.j1") # Loads: “handle_sticking’

@gen function _baseline_controller(controller_state, obs)
(prev_pf_state, prev_action) = controller_state

Do a global localization scan, based on the current timestep's obse
Ignore any past inferences.
pf_state = pf_init(choicemap((:obs, obs)))

Plan a trajectory to the goal in that grid contained in “planning_p:
Return the first action of that plan.

action = find_action_using_grid_search(planning_params, currentpos(pf.

Sometimes, the details of the motion model and the Ax planning

can cause the agent to "stick" on the walls.

This “handle_sticking® function checks if the agent has been trying
to perform the same action for multiple timesteps, but its belief s
has not changed; if so, it takes a random action orthogonal to the
action that is causing sticking.

action = handle_sticking(prev_pf_state, prev_action, pf_state, action

H R R HHRH

return (action, (pf_state, prev_action)) # (action, next_controller_s:
end

baseline_controller = GenPOMDPs.Controller(
_baseline_controller, # Controller state, observation - action, next
(nothing, nothing) # Initial controller state

)

GenPOMDPs.Controller(DynamicDSLFunction{Any}(Dict{Symbol, Any}(), Dict{Symb
ol, Any}(), TypelAny, Anyl, false, Union{Nothing, Some{Any}}[nothing, nothi
ngl, var"## baseline_controller#709", Bool[@, 0], false), (nothing, nothin
g))
Now that we have defined the controller, we can get a Generative Function over
trajectories from rolling out the true world model, using this controller to choose

actions.

The arguments to this generative function are T , the number of timesteps to roll out,
https://github.com/probcomp/tasks2D/blob/main/notebooks_clean/KidnappedRobot.ipynb 7/25

8/8/24,3:51 PM tasks2D/notebooks_clean/KidnappedRobot.ipynb at main - probcomp/tasks2D

and the POMDP parameters.

baseline_rollout_model = GenPOMDPs.RolloutModel(pomdp, baseline_controlle

GenPOMDPs.var"##StaticGenFunction__RolloutModel#778" (Dict{Symbol, Any}(), D
ict{Symbol, Any}())

Now let's simulate from this model.

First, we'll generate just the initial timestep.

Start the agent off in a hallway.
INITIAL_POS = [6.5, 4x5 - 2];

baseline_rollout_tr = Gen.generate(baseline_rollout_model, # Generate a |
(0, PARAMS), # ...up to tii
choicemap((GenPOMDPs.state_addr(@, :pos), INITIAL_POS)) # ...and cons:
) [11;

trace_to_gif(baseline_rollout_tr; goalobj=goalobj) # Visualize the rollou

r Info: Saved animation to /tmp/jl_kdcr6dutcD.gif
L @ Plots /home/ubuntu/.julia/packages/Plots/rz1WP/src/animation.j1:156

True World State Agent Beliefs

m y

I

| |

I |
@ Observed distances from LIDAR LIDAR dists rel. to belief
B True agent position M EBelief: possible agent location
— Goal —Goal

Now, we'll have the model simulate behavior for 100 timesteps.

baseline_rollout_tr, _ = Gen.update(baseline_rollout_tr, # Update the re:
(100, PARAMS), # ...updating i
(UnknownChange(), NoChange()), # ...noting tha

(so Gen knu

https://github.com/probcomp/tasks2D/blob/main/notebooks_clean/KidnappedRobot.ipynb 8/25

8/8/24,3:51 PM tasks2D/notebooks_clean/KidnappedRobot.ipynb at main - probcomp/tasks2D
EmptyChoiceMap() # Don't constra.
(In principle,
randomness, o,

)

Visualize the path the agent took.
trace_to_path_image(baseline_rollout_tr; goalobj=goalobj)

Agent's path

20
15 | |
10| |
—"
[]
u |
ot |—— Walls
— Goal
—— Agent path
1 1 1 1 1 1]

-2 0 2 4 6 8 10

Here's a video of the agent's position and belief, over time.

trace_to_gif(baseline_rollout_tr; goalobj=goalobj, fps=10)

[Info: Saved animation to /tmp/jl_gb41MBsPWp.gif
@ Plots /home/ubuntu/.julia/packages/Plots/rz1WP/src/animation.jl:156

True World State Agent Beliefs

n |

1 1
https://github.com/probcomp/tasks2D/blob/main/notebooks_clean/KidnappedRobot.ipynb 9/25

8/8/24,3:51 PM tasks2D/notebooks_clean/KidnappedRobot.ipynb at main - probcomp/tasks2D

| |

I |
@ Observed distances from LIDAR LIDAR dists rel. to belief
B True agent position M Belief: possible agent location
— Goal —Goal

The issue with this controller is that it does not remember its belief from the last
timestep; it tries to fully relocalize at every step just using its current observations.

The result is that when the agent moves into a hallway into one of the rooms (which
looks just like the hallways that lead into each other room), the agent gets confused
about where it is. The issue is that the observed data from that timestep alone does
not dis-ambiguate where the object is. At each timestep it thinks it is in the hallway
toward the goal, it takes a step into the room; at each timestep it thinks it is in another
hallway, it takes a step out from the room. As a result, it keeps going back and forth,
and is stuck!

Baseline particle-filtering controller

To fix this, let's use a controller which uses a 1-particle particle filter, rather than re-
localizing at each timestep.

@gen function _baseline_pf_controller(controller_state, obs)
(prev_pf_state, prev_action) = controller_state

if isnothing(prev_pf_state)
pf_state = pf_init(choicemap((:obs, obs)))
else
pf_state = pf_update(prev_pf_state, prev_action, choicemap((:obs,

end
action = find_action_using_grid_search(planning_params, currentpos(pf.
action = handle_sticking(prev_pf_state, prev_action, pf_state, action

return (action, (pf_state, action)) # (action, next_controller_state)
end

baseline_pf_controller = GenPOMDPs.Controller(
_baseline_pf_controller, # Controller state, observation - action, ne
(nothing, nothing) # Initial controller state

)

GenPOMDPs. Controller(DynamicDSLFunction{Any}(Dict{Symbol, Any}(), Dict{Symb
ol, Any}(), TypelAny, Anyl, false, Union{Nothing, Some{Any}}[nothing, nothi
ngl, var"##_baseline_pf_controller#1208", Bool[@, 0], false), (nothing, not
hing))

https://github.com/probcomp/tasks2D/blob/main/notebooks_clean/KidnappedRobot.ipynb 10/25

8/8/24,3:51 PM tasks2D/notebooks_clean/KidnappedRobot.ipynb at main - probcomp/tasks2D

baseline_pf_rollout_model = GenPOMDPs.RolloutModel(pomdp, baseline_pf_con-

GenPOMDPs.var"##StaticGenFunction__RolloutModel#1277" (Dict{Symbol, Any}(),
Dict{Symbol, Any}())

baseline_pf_rollout_tr = Gen.generate(baseline_pf_rollout_model, (@, PARAI
choicemap((GenPOMDPs.state_addr(0, :pos), INITIAL_POS))
) [1]

trace_to_gif(baseline_pf_rollout_tr; goalobj=goalobj, title="First timest

[Info: Saved animation to /tmp/j1_STW54HgPQ5.gif
@ Plots /home/ubuntu/.julia/packages/Plots/rz1WP/src/animation.jl:156

First timestep First timestep

3 !

5 b 01
B

0 Observed distances from LIDAR LIDAR dists rel. to belief
B True agent position M Eclief: possible agent location
—Goal —Goal

baseline_pf_rollout_tr, = Gen.update(baseline_pf_rollout_tr, (100, PARAI

trace_to_path_image(baseline_pf_rollout_tr; goalobj=goalobj)

Agent's path

20

—

15 ¢ |

—

https://github.com/probcomp/tasks2D/blob/main/notebooks_clean/KidnappedRobot.ipynb

11/25

8/8/24,3:51 PM tasks2D/notebooks_clean/KidnappedRobot.ipynb at main - probcomp/tasks2D

10 | | ,
| |
ot |—— Walls
— Goal
—— Agent path
1 1 1 1 1 1]

-2 0 2 4 6 8 10

trace_to_gif(baseline_pf_rollout_tr; goalobj=goalobj, fps=10)
r Info: Saved animation to /tmp/jl_etGps5Klq7.gif

L @ Plots /home/ubuntu/.julia/packages/Plots/rz1WP/src/animation.j1:156
True World State Agent Beliefs

T .

[] []
| |
| |
Observed distances from LIDAR LIDAR dists rel. to belief
B True agent position M Eclief: possible agent location
—Goal —Goal

"Kidnap the robot"

Now, we'll give the robot the same task: navigate to the green square.

But, after 40 timesteps, we'll imagine the robot comes across a well-meaning hotel
employee who sees the robot, and doesn't realize we roboticists have it doing an
important task for us. The employee turns off the employee and brings it to a storage
closet in one of the unoccupied hotel rooms. Eventually, we notice this issue, and we

tiirn the rahot hack nn The rahnt controller then tries to nick 1in where it left aff and
https://github.com/probcomp/tasks2D/blob/main/notebooks_clean/KidnappedRobot.ipynb 12/25

8/8/24,3:51 PM tasks2D/notebooks_clean/KidnappedRobot.ipynb at main - probcomp/tasks2D

St mrr— o — e == e —a = e ot m e — . —— e = —— fe e e e e e = s —re — e

find a path to the goal. But with the basic PF controller we defined above, the robot
cannot re-localize after it is moved to a new place!

baseline_rollout_tr_KR = Gen.generate(baseline_pf_rollout_model, (@, PARAI
choicemap((GenPOMDPs.state_addr(0, :pos), INITIAL_POS))
) [1]

trace_to_gif(baseline_rollout_tr_KR; goalobj=goalobj, title="First timest

[Info: Saved animation to /tmp/jl1_AVcZWFY9KF.gif
@ Plots /home/ubuntu/.julia/packages/Plots/rz1WP/src/animation.j1:156

First timestep First timestep

| |

| |
0 Ohserved distances from LIDAR LIDAR dists rel. to belief
B True agent position M EBelief: possible agent location
—Goal —Goal

Extend rollout to 40 steps...
baseline_rollout_tr_KR, _ = Gen.update(baseline_rollout_tr_KR, (40, PARAM!

trace_to_path_image(baseline_rollout_tr_KR; goalobj=goalobj)

Agent's path

20

—

15 | |

—

https://github.com/probcomp/tasks2D/blob/main/notebooks_clean/KidnappedRobot.ipynb

13/25

8/8/24,3:51 PM

tasks2D/notebooks_clean/KidnappedRobot.ipynb at main - probcomp/tasks2D

10 —

5 |

ot |— Walls
— Goal
—— Agent path

-2 0 2 4 6 8 10

Kidnap the robot!

baseline_rollout_tr_KR, _ = Gen.update(baseline_rollout_tr_KR, (41, PARAM!
choicemap((GenPOMDPs.state_addr(41, :is_kidnapped), true), (GenPOMDPs

);

trace_to_path_image(baseline_rollout_tr_KR; goalobj=goalobj, kidnapped_at:

Agent's path

20
15 | |
10| |
H
[]
. |
ot [—— Walls
— Goal
—— Agent path
1 1 1 1 1 1]

-2 0 2 4 6 8 10

Roll out the trace another 100 steps, after the robot is re-activated.
baseline_rollout_tr_KR, _ = Gen.update(baseline_rollout_tr_KR, (140, PARAI

+rarA A nath dimAanAalhAacATinAa rATTAnd 4+ D AaAanTAhdi—~Aa~TARA LiaAdnannAa A A+

https://github.com/probcomp/tasks2D/blob/main/notebooks_clean/KidnappedRobot.ipynb

14/25

8/8/24,3:51 PM tasks2D/notebooks_clean/KidnappedRobot.ipynb at main - probcomp/tasks2D

LIGL.C_LU_HGLII_J.IIIG_.’C\UGDC LLIIT_1TULLUUL_ LI _ I\, BUG LUUJ_HUG LUUJ’ r\J-UIlG'JlJCU_GL'

Agent's path

20
15 I_I
10 e
| |
ot |—— Walls
— Goal
—— Agent path
1 1 1 1 1 1]
-2 0 2 4 6 8 10

trace_to_gif(baseline_rollout_tr_KR; goalobj=goalobj, fps=10, kidnapped_a-

[Info: Saved animation to /tmp/jl_obmH4JotW9.gif
@ Plots /home/ubuntu/.julia/packages/Plots/rz1WP/src/animation.jl:156

True World State Agent Beliefs

Ta m

I .

I
5 b 5 b
I
[] [
I |
LIDAR dists rel. to belief

W Calinf nacciblae amant laeratinm

Observed distances from LIDAR

Tria msmant Aocitioem

https://github.com/probcomp/tasks2D/blob/main/notebooks_clean/KidnappedRobot.ipynb 15/25

8/8/24,3:51 PM tasks2D/notebooks_clean/KidnappedRobot.ipynb at main - probcomp/tasks2D

IR TL == LY L= Ry FLEE TN

—Goal

[REL=lI =T TR PPl =g - VL [N LTI - LRl

—Goal

The particle filter can't handle the robot kidnapping.

One solution would be to have the agent do expensive MCMC rejuvenation at every
step, to check if it might have been moved elsewhere.

But we don't need to take on this computational cost. Instead, we can have the
controller make intelligent decisions about on which steps we should spend more
computation to re-localize globally.

Below, we'll implement a simple version of this, which resets the particle filter
whenever the marginal likelihood estimate from the particle filter (the average particle
weight -- and in this case the only particle weight) falls too low.

Robust controller: particle filtering + reset particle
filter when the likelihood falls too low

@dist labeled _categorical(labels, probs) = labels[categorical(probs)]

@gen function _controller(controller_state, obs)
prev_pf_state, prev_action = controller_state

Create l-particle belief state

if isnothing(prev_action) # First timestep
pf_state = pf_init(choicemap((:obs, obs)))

else
Log marginal likelihood estimate from the particle filter
prev_lml_est = GenParticleFilters.get_lml_est(prev_pf_state)

Try updating the PF belief state
pf_state = pf_update(prev_pf_state, prev_action, choicemap((:obs,
new_lml_est = GenParticleFilters.get_lml_est(pf_state)

We will define and tune this check below
if incremental_log_likelihood_est_is_too_low(new_lml_est - prev_u
Reset the particle filter!
The new pf_state will be over trajectories of length 1.
pf_state = pf_init(choicemap((:obs, obs)))
end
end

Choose action
action = find_action_using_grid_search(planning_params, currentpos(pf.
action = handle_sticking(prev_pf_state, prev_action, pf_state, action

Choose the action to take.

is_viable_onehot = [a in viable_actions ? 1. : @ for a in [:left,

action_probs = is_viable_onehot / sum(is_viable_onehot)

action ~ labeled_categorical([:left, :right, :up, :down, :stay], ac
https://github.com/probcomp/tasks2D/blob/main/notebooks_clean/KidnappedRobot.ipynb 16/25

8/8/24,3:51 PM

latent)

tasks2D/notebooks_clean/KidnappedRobot.ipynb at main - probcomp/tasks2D

return (action, (pf_state, action)) # (action, next_controller_state)
end

controller = GenPOMDPs.Controller(
_controller, # Controller state, observation - ac
(nothing, nothing) # Initial controller state

)

GenPOMDPs.Controller(DynamicDSLFunction{Any}(Dict{Symbol, Any}(), Dict{Symb
ol, Any}(), TypelAny, Any], false, Union{Nothing, Some{Any}}[nothing, nothi
ngl, var"## controller#1901", Bool[@, 0], false), (nothing, nothing))

Tuning the particle filter log marginal likelihood threshold.

Now, we need to define incremental_log_likelihood_est_is_too_low , which
we used in the controller above. This will be a simple threshold on the estimated value
of P(obs | latent_{t-1}) from the particle filter.

Note that the expected value of P(obs) is P(obs | latent) .Based on this
observation, we will set our threshold by generating 1000 random (latent, obs) pairs
from the model, and setting the threshold to be the minimum value of P(obs |

latent) which arises.

This is currently just a heuristic | quickly thought of to set this threshold, which | have
observed works well in this environment. One of my research TODOs is to think more

carefully about about whether this method of tuning the threshold can be expected to
work well across environments.

logpy_values = []

for _=1:1000
state = uniform_agent_pos(MENTAL_MODEL_PARAMS)
obs_tr = simulate(sensor_model, (state, MENTAL_MODEL_PARAMS))
push!(logpy_values, get_score(obs_tr))

end

logpy_threshold = minimum(logpy_values)
function incremental_log_likelihood_est_is_too_low(incremental_logpy_estii
return incremental_logpy_estimate < logpy_threshold

end

scatter(1:1000, logpy_values, ylabel="Log P(obs | latent)", xlabel="sampl(
plot!(1:1000, [logpy_threshold for _=1:1000], label="1log marginal likelih

100 - @] Sa.mple of P(obs | latent)
® o log marginal likelihood estimate threshold
o0 ® ® (<]
80 ‘ ° ~. .. .0‘
.‘.‘ ®° 00 ‘.oo.J.Q.‘ %

60 ". ® S
m 245,3" et B g g T

https://github.com/probcomp/tasks2D/blob/main/notebooks_clean/KidnappedRobot.ipynb

17/25

8/8/24,3:51 PM

ol B W3 T IR
Lot »'?

Log P(obs |

n } .
| {3& '.‘."'.’I.*".""a&

tasks2D/notebooks_clean/KidnappedRobot. ipynb at main - probcomp/tasksZD

..a" !-: X
z& “"xﬁ

°
0 .‘?. 0%1...‘. 00 e .). ﬁ
® % o 0o
20 %0 © ® "% ©° oo o®e %
—20 I o ®
e e
0 250 500 750 1000

sample index

Simulating the robust controller, in an environment with no robot kidnapping.

rollout_model = GenPOMDPs.Rollou

GenPOMDPs.var"##StaticGenFunction
Dict{Symbol, Any}())

rollout_tr = Gen.generate(rollout_model,
choicemap((GenPOMDPs.state_addr(0,

) [1]
trace_to_gif(rollout_tr; goalobj

r Info: Saved animation to /tmp/jl

tModel(pomdp, controller)

__RolloutModel#1971" (Dict{Symbol, Any}(),

(0, PARAMS),
:pos), INITIAL_POS))

=goalobj, title="First timestep")

_1iNgF4v0X21.gif

L @ Plots /home/ubuntu/.julia/packages/Plots/rz1WP/src/animation.j1:156

First timestep
[

First timestep

Iy

—

@ Observed distances from LIDAR
B True agent position
—Goal

LIDAR dists rel. to belief

M Eclief: possible agent location
—Goal

https://github.com/probcomp/tasks2D/blob/main/notebooks_clean/KidnappedRobot.ipynb

18/25

8/8/24,3:51 PM tasks2D/notebooks_clean/KidnappedRobot.ipynb at main - probcomp/tasks2D

Extend rollout...
rollout_tr, _ = Gen.update(rollout_tr, (80, PARAMS), (UnknownChange(), No

trace_to_path_image(rollout_tr; goalobj=goalobj)

Agent's path

20
15 |
10} |
—
a |
L |—— Walls
0 — Goal
— Agent path
1 1 1 1 1 1]

-2 0 2 4 6 8 10

trace_to_gif(rollout_tr; goalobj=goalobj, fps=10)

r Info: Saved animation to /tmp/jl_8BI1lKn81lcP.gif
L @ Plots /home/ubuntu/.julia/packages/Plots/rz1WP/src/animation.j1:156

True World State Agent Beliefs

_lpl - m

[[]
I I

1 1

https://github.com/probcomp/tasks2D/blob/main/notebooks_clean/KidnappedRobot.ipynb 19/25

8/8/24,3:51 PM tasks2D/notebooks_clean/KidnappedRobot.ipynb at main - probcomp/tasks2D

@ Observed distances from LIDAR LIDAR dists rel. to belief
B True agent position M Eclief: possible agent location
—Goal —Goal

Kidnapped robot with the robust controller

robust_rollout_tr_KR = Gen.generate(rollout_model, (@, PARAMS),
choicemap((GenPOMDPs.state_addr(0, :pos), INITIAL_POS))
) [1]

trace_to_gif(robust_rollout_tr_KR; goalobj=goalobj, title="First timestep

I: Info: Saved animation to /tmp/jl_wfaZwnYxep.gif
@ Plots /home/ubuntu/.julia/packages/Plots/rz1WP/src/animation.j1:156

First timestep First timestep

| |

I |
0 Observed distances from LIDAR LIDAR dists rel. to belief
B True agent position B Eclief: possible agent location
— Goal —Goal

Extend rollout to 40 steps...
robust_rollout_tr_KR, _ = Gen.update(robust_rollout_tr_KR, (40, PARAMS),

trace_to_path_image(robust_rollout_tr_KR; goalobj=goalobj)

Agent's path

20

T

https://github.com/probcomp/tasks2D/blob/main/notebooks_clean/KidnappedRobot.ipynb

20/25

8/8/24,3:51 PM

tasks2D/notebooks_clean/KidnappedRobot.ipynb at main - probcomp/tasks2D

15 ¢

LIl

10

]

ot |— Walls
— Goal
—— Agent path

-2 0 2 4 6 8 10

Kidnap the robot!

robust_rollout_tr_KR, _ = Gen.update(robust_rollout_tr_KR, (41, PARAMS),
choicemap((GenPOMDPs.state_addr(41, :is_kidnapped), true), (GenPOMDPs

);

trace_to_path_image(robust_rollout_tr_KR; goalobj=goalobj, kidnapped_at=[:

Agent's path

20

15 ¢

j_\

gk

10

]

ot |—— Walls
— Goal
—— Agent path

https://github.com/probcomp/tasks2D/blob/main/notebooks_clean/KidnappedRobot.ipynb

21/25

8/8/24,3:51 PM

tasks2D/notebooks_clean/KidnappedRobot.ipynb at main - probcomp/tasks2D

-2 0 2 4 6 8 10

Roll out the trace another 100 steps
robust_rollout_tr_KR, _ = Gen.update(robust_rollout_tr_KR, (140, PARAMS),
trace_to_path_image(robust_rollout_tr_KR; goalobj=goalobj, kidnapped_at=I[

Agent's path

20
15 |
10 t | I
_ s
[+
| |
ot |— Walls
— Goal
—— Agent path
| | | | | | |

-2 0 2 4 6 8 10

trace_to_gif(robust_rollout_tr_KR; goalobj=goalobj, fps=10, kidnapped_at=

r Info: Saved animation to /home/ubuntu/Developer/tasks2D/notebooks_clean/k
idnapping_recovery.gif.gif
L @ Plots /home/ubuntu/.julia/packages/Plots/rz1WP/src/animation.j1:156

True World State Agent Beliefs

_l-i - ul

I |
1 1

https://github.com/probcomp/tasks2D/blob/main/notebooks_clean/KidnappedRobot.ipynb

22/25

8/8/24,3:51 PM

A[Log marginal likelihood est.] from SMC

tasks2D/notebooks_clean/KidnappedRobot.ipynb at main - probcomp/tasks2D

| |
| |
Observed distances from LIDAR LIDAR dists rel. to belief
B True agent position M Eclief: possible agent location
— Goal —Goal

Plotting the log marginal likelihood estimates from each timestep:

Iml_ests = [GenParticleFilters.get_lml_est(pfst)

for (pfst, _) in GenPOMDPs.controllerstate_sequence(robust_rollout_tr.
]
println(length(lml_ests))
deltas = [x — y for (x, y) in zip(lml_ests[2:end], 1ml_ests[1l:end-1])]
p = plot(1l:length(deltas), deltas, label="Log marginal likelihood estimat
plot!(1l:length(deltas), [logpy_threshold for _ in 1:length(deltas)], labe
plot!([41, 41], [minimum(deltas)-.1, maximum(deltas)+.1], label="Kidnappi

141

- T Y Y — T
0 -
—1000
—2000
—3000
Log marginal likelihood estimate increment
log marginal likelihood estimate threshold
—— Kidnapping event
1 1 1 1 1 1

0 25 50 75 100 125
Timestep

Plotting the runtime and effectiveness of each
controller

https://github.com/probcomp/tasks2D/blob/main/notebooks_clean/KidnappedRobot.ipynb

23/25

8/8/24,3:51 PM

tasks2D/notebooks_clean/KidnappedRobot.ipynb at main - probcomp/tasks2D

includet ("KidnappedRobot/measure_performance.jl") # Loads "take_measuremei

robust_costs_runtimes = [take _measurement(rollout_model) for _=1:10];

baselinel_costs_runtimes = [take_measurement(baseline_rollout_model) for _

baselinepf_costs_runtimes = [take_measurement(baseline_pf_rollout_model)

plot(;

title="Controller performance comparison [no kidnappingl",
ylabel="Steps to reach goal (truncated at 500)",
xlabel="ms per step",

ylims=(0, 510),

xlims=(0@,15)

)

scatter!(map(x->x[2]1%1000, robust_costs_runtimes), map(x->x[1], robust_co:
scatter!(map(x->x[2]1%1000, baselinepf_costs_runtimes), map(x—>x[1], basel
scatter!(map(x—>x[2]*1000, baselinel_costs_runtimes), map(x—->x[1], baseli

Controller performance comparison [no kidnapping]

500

400

300

200

100

Steps to reach goal (truncated at 500)

Robust controller: 1-Particle SMC w/ re-initialization
Baseline: 1-Particle SMC

@
Baseline: global relocalization at every step ©

@ o oB oo

ms per step

robust_costs_runtimes_KR = [take_measurement_KR(rollout_model) for _=1:10

baselinel_costs_runtimes_KR = [take_measurement_KR(baseline_ rollout_model

baselinepf_costs_runtimes_KR = [take_measurement_KR(baseline_pf_rollout_ms

plot(;

i+ T Al CAant rAaTlTAr nAarfarmanca ~amnarican ludi+h Lidnanninalll

https://github.com/probcomp/tasks2D/blob/main/notebooks_clean/KidnappedRobot.ipynb

24/25

