
Performance Analysis of YOLO-NAS SOTA
Models on CAL Tool Detection

Muhammad Adil Raja, Róisı́n Loughran, Fergal McCaffery
Regulated Software Research Center (RSRC)

Dundalk Institute of Technology (DkIT)
Dundalk, Ireland

adil.raja, roisin.loughran, fergal.mccaffery@dkit.ie

Abstract—Every now and then, we witness significant improve-
ments in the performance of Deep Learning models. A typical
cycle of improvement involves enhanced accuracy followed by re-
duced computing time. As algorithms get better at their job, it is
worthwhile to try to evaluate their performance on problems that
are affected by them. Computationally intense problems, such as
object detection for Computer Aided Laparoscopy (CAL), can
benefit from such improvements in such technologies. Recently
a new set of variants of You Look Only Once (YOLO) models
based on Neural Architecture Search (NAS) technique have been
released. Deci, the enterprise behind this new development, touts
a much better performance both in terms of accuracy as well as
computational efficiency.

In this paper, we have analyzed the performance YOLO-NAS
on a well-known benchmark dataset related to CAL. We found
that the performance of all the NAS-based YOLO was inferior
as compared to other State-of-the-Art (SoTA) YOLO models. We
compare our results against the YOLOv7 model too.

Keywords—Computer-aided laparoscopy, cholecystectomy, ob-
ject detection, deep learning, convolutional neural networks.

I. INTRODUCTION

Computer Vision (CV) algorithms for object detection have
advanced significantly since the initial implementation of
Convolutional Neural Networks (CNNs). Inception of the You
Look Only Once (YOLO) algorithm was a significant stride
at object detection because of the way the algorithm works.
It substantially reduced the processing time for computing the
bounding boxes as well as the labels for objects present in
an image. Subsequent versions of the algorithm were aimed
at further enhancing the accuracy as well as computational
efficiency of the algorithm. Thus, amendments were made to
the structure of the model as well as to the central algorithm
over the years to address these issues. In 2022 and 2023
respectively, both version seven and version eight of the
algorithm were released. Most recently, Deci released new
models for the algorithm based on Neural Architecture Search
(NAS). They have released a small, a medium-sized, and a
large model that they developed using NAS. On their website,
as well as on other online outlets, they have reported a much
superior performance both in terms of accuracy as well as
computational efficiency of the NAS-based models. Fig. 1

This research was funded by the Technological University Transfer Fund
(TUTF) of the Higher Education Authority (HEA) and DkIT.

Fig. 1: Efficient frontier detection on COCO.

shows a snapshot of the performance of the model. This picture
was taken from the GitHub webpage of Deci-AI that they have
dedicated for the YOLO-NAS’s software repository [1]. It can
be seen that all variants of YOLO-NAS outperform all other
State-of-the-Art (SoTA) models both on accuracy as well as
latency.

However, when we compared the performance of all the
variants of YOLO-NAS (in this paper) on a custom dataset
related to Computer Aided Laparoscopy (CAL) of cholecys-
tectomy, we found that the performance of the models was
inferior as compared to other SoTA models.

This paper is part of a series of articles that explore the
efficiency of various SoTA CV algorithms and models at
predicting CAL instruments used in robotic surgical practices.
CAL can have many benefits for the future of surgery. And
CV algorithms have a central role to play in this as they can
allow for real-time and accurate tagging of surgical tools as
well as human anatomical structures in the operation theatre.

The rest of this paper is organized as follows: In section II,
we provide a brief background of object detection as well as
the YOLO algorithm. Section IV introduces CAL and the role
of CV in it. Section V presents our experimental details. In
section VI, we have reported the results of our study. Finally,
section VII concludes this paper.



II. OBJECT DETECTION AND THE YOLO ALGORITHM

Object detection is the craft of tagging objects in an image
and assigning labels to them depending on their class. The
difference between detection and classification is quite subtle
but distinct. In classification, the algorithm is only capable of
giving a prediction about the class or category of the objects
present in the image. The detection algorithm goes a step
further by providing the precise location of the object(s) in
the image.

Object detection was advanced significantly with the advent
of CNNs along with advancements in Graphical Processing
Unit (GPU) hardware. At the heart of these novel Artificial
Neural Networks (ANNs) lies the idea of convolution. Con-
volution by itself is not a new idea, it is well-established
in the field of signal processing. Convolution involves the
computation of a cross-correlation between two signals. One
among these is normally a signal under test. The other one
can be thought of as a template or a target signal that we seek
to find in the signal under test. When this cross-correlation is
performed over the entire gamut of the signal under test, using
the target signal, the operator is termed convolution. Although
convolution has been well-known to the signal processing
community for a long time, its adoption in CV was made
possible only due to the arrival of GPU hardware.

Initial detection algorithms, although inspiring, were quite
slow when compared with the real-time computation demands
of real-world CV applications. In recent years, a newer type of
object detection, YOLO, has appeared as an open-source soft-
ware [2]. This algorithm solves the problem of object detection
by treating it as a regression problem. It must be remembered
that the detection problem was mostly a classification problem
in a classical sense. The reason, as suggested earlier, is due
to the requirement on the algorithm to predict the class of the
objects present in the image.

In treating the detection problem as a regression problem,
the YOLO algorithm divides the image into a grid of cells. It
initially generates a certain number of bounding boxes in the
hope of finding something befitting for the bounding box of
the target image. From among these boxes, it chooses those
that closely overlap the boxes of the objects in the image. It
then attempts to figure out if an object is present in a given
grid cell. Once it has done that, it predicts the classes of the
objects in the bounding boxes. If this is the case, the generated
bounding boxes of this cell are matched to the target bounding
box of the image and a prediction about the class of object
present in the cell is made. Two things should be noted. One is
that it computes the discrepancy between the prediction of the
bounding box as well as the classes with the corresponding
value of the target in the sense of a regression problem. The
loss function is also defined in these terms. In simple terms, the
loss function measures the difference between the prediction
of the algorithm and the actual target. The second is that it
does both the prediction of the box as well as the class(es)
in one pass, and hence its name. In completing its whole job
in one pass, the algorithm saves a substantial amount of time

Fig. 2: High level architecture of the YOLO model.

as compared to its predecessors. Recent developments of the
algorithm have shown impressive computational efficiency [3].

YOLO has come a long way since its inception. Currently,
the algorithm has eight versions that are hosted at different
websites. The current architecture of the models is given in
Fig. 2 showing a high-level view of the architecture of a typical
YOLO model [4]. The whole architecture can be divided into
three different blocks. These are, namely, a backbone, a neck,
and a head. The backbone acts as a feature extractor and
computes feature maps to be processed by subsequent layers.
The neck connects the backbone to the head. It concatenates
feature maps from the various layers of the backbone and
sends them as inputs to the head. The head is responsible for
processing the input from the neck and to compute objectness
scores, bounding boxes, and class probabilities.

III. NEURAL ARCHITECTURE SEARCH – THE NEED AND
BENEFITS

ANNs were invented to solve formidable real-world prob-
lems, that do not lend solutions using simplistic techniques.
There are numerous practical problems of such a kind that their
solutions or mathematical formulations do not lend themselves
easily to human imagination. Hence, when it is impossible to
conceptualize a problem visually and it cannot be formalized
mathematically, ANNs lend themselves as handy tools to
solve them. The way ANNs work is that they dedicate ample
resources in terms of a large number of small non-linear
functions. By doing this, they try to capture the non-linear
trends that underlie the problem at hand.

In traditional ANN, structure of the network is generally
hand-picked. Normally it is a hit-and-trial pursuit in which
the practitioner experiments with a few randomly chosen
topologies until the results get better. Thus, there is limited
intuition or mathematical insight in designing the model.
The practitioner settles for what works best in terms of the
structure. The downside of this approach is that a possibly
wider search space involving neural structures is not explored
appropriately. The practitioners have to work with whatever
they find better in a limited period. Due to this, they can finally
end up with a model that produces sub-optimal results.

The quest for automating the process of finding an adequate
structure for an ANN, given a computational problem, is at



least three decades old. The earliest academic literature that
can be found about the enterprise of NAS is cited in [5], [6].
The central idea is to employ a meta-heuristic algorithm to
search for a structure that will lead to near-optimal results.
Commonly used meta-heuristics involve Evolutionary Algo-
rithms (EAs) and other nature-inspired schemes for developing
computational intelligence.

NAS was initially only extensively applied for the case of
conventional back-propagation shallow ANNs. In recent years,
owing to the rapid advancements in the GPU hardware, NAS
schemes have also been developed for deep learning ANNs,
including CNNs.

The YOLO algorithm, as well as any resulting models,
belong to the family of CNNs that treat object detection as
a regression problem [2].

In doing this, the algorithm assumes the availability of
ample computing resources at the practitioner’s end. Now
that the algorithm and the models have achieved considerable
maturity in object detection, the hope is to seek further
improvement through NAS.

Deci’s versions of YOLO-NAS models are based on their
proprietary Automated Neural Architecture Construction (au-
toNaC) technology. However, according to Deci’s own descrip-
tion of it, autoNaC is a very miniature version of the overall
NAS. In essence, autoNaC reduces an already trained model
to one of a certain discrete number of designs.

IV. CAL AND CV

Laparoscopy allows a surgeon to have access to operate on a
human body without making large incisions. For many surgical
purposes, laparoscopy can be preferred over open surgery. It
imparts a much smaller incision, decreases the recovery time,
reduces blood loss, and affects the healing nicely [7]. The
traumatic effects of traditional surgery are diminished due
to it. The chances of catching infections are also reduced.
However, with its numerous advantages certain challenges are
also associated. Poor hand-eye coordination and a narrow field
of view are major among these. Instrument detection, real-time
body part information, surgical phase revelation, and 3D pose
estimation can aid a surgeon tremendously while performing
CAL. These tasks can become extremely difficult because
of the presence of smoke, blockages, blood, shadows, reflec-
tions, blurring of movement, cleaning gauze, and complicated
background surfaces [8]. All of these challenges require the
development of more sophisticated CV systems for tracking
tools for CAL.

Deep learning and CNNs brought a revolution in CV during
the past decade [9]. The cheap availability of High Perfor-
mance Computing (HPC) devices and the widely available
GPU power have paved the way for agile development of CV
applications. Medical imaging and CAL have also benefited
from this. Once capable of solving classification problems
only, CNNs were later modified and enhanced to achieve the
capacity for object detection [10]. Due to the ability of object
detection CAL has come a long way. As algorithms get better,

TABLE I: The Number of Instances of Various Tools in the
Dataset

Instrument Training Validation Test
Grasper 707 420 293
Bipolar 215 120 95
Hook 165 79 64

Scissors 197 107 84
Clipper 220 116 64
Irrigator 228 173 84

Specimen Bag 241 138 96

in addition to detecting objects with increasing accuracy, their
computational efficiency also improves.

V. EXPERIMENTAL DETAILS

The well-known m2cai16-tool-locations dataset [11] was
employed in this research. The dataset contains 2,811 labeled
images of surgical tools. The names of these tools are grasper,
bipolar, hook, scissors, clipper, irrigator, and specimen bag.
Fig. ?? shows pictures of these tools including the bounding
boxes 1.

An average of 1.2 labels per frame are present in the dataset.
The dataset is split into 50%, 30%, and 20% for training,
validation and testing respectively. The overall distribution of
the data is shown in Table I.

All three variants of the YOLO-NAS algorithm were trained
using this data.

The training was conducted using the Kay supercom-
puter provided by the Irish Center for High end Computing
(ICHEC). The computer on which training was performed
has two NVIDIA Tesla V100 16GB PCIe (Volta architecture)
GPUs. There are 5,120 CUDA cores and 640 Tensor Cores
on each of the GPUs. Training of the smallest model (i.e.
YOLOv8n) was conducted using an NVIDIA GeForce RTX
2060 with Max-Q Design, having 5927MiB of on-chip mem-
ory. Inference results for all the models were carried out using
this later GPU.

Default values for the hyperparameters for training were
used. The number of training epochs was set to 200. Moreover,
since the image sizes in the dataset are 596×334 pixels, the
image size for training, validation, and inference was set to
596 pixels, as opposed to the default of 640.

VI. RESULTS

In this section, we report the results of our training of all
three variants of YOLO-NAS models, namely, small, medium,
and large. The results are related to object detection of surgical
tools used in CAL of cholecystectomy. Fig. 4 shows the
confusion matrix related to the trained model evaluated on
the unseen test data. The results are reported in terms of
percentages rounded to the nearest integer values.

Fig. 5 shows Precision (P)-Recall (R) curves. These curves
show the tradeoff between precision and recall for different
values of threshold. A high precision is related to a low false

1This figure was taken from the website of the original data repository:
https://ai.stanford.edu/ syyeung/tooldetection.html

https://ai.stanford.edu/~syyeung/tooldetection.html


Fig. 3: Different tools present in the dataset. Their bounding boxes are shown in the lower row.

positive rate. Whereas a high recall is related to a low false
negative rate. The area under the curve tells us about the degree
of precision and recall. A large area is reminiscent of high
precision and high recall.

Fig. 6 shows pictorial results for the curious reader. The
pictures in the left column show the ground truth labels of
different batches of data as well as the target bounding boxes.
Whereas the pictures in the right column show the labels as
well as the bounding boxes predicted by the model. These
figures are related to the unseen test data.

Table II shows the performance of various YOLO-NAS
models in terms of different metrics. The chosen metrics are
P, R, mean Average Precision (mAP), and F1 at a fifty percent
confidence level.

TABLE II: Performance of YOLOv8x on Unseen Test Data

Class P@0.5 R@0.5 mAP@0.50 F1@0.50
YOLO-NAS-s 0.107 0.973 0.915 0.192
YOLO-NAS-m 0.105 0.978 0.917 0.187
YOLO-NAS-l 0.089 0.972 0.915 0.163

Table III shows a comparison of different models in terms
of mAP@50 metric. Again, the results are related to the
unseen test data. This table shows results viz a viz each
tool separately. The table also shows the performance of the
YOLOv7 and YOLOv8n, which is the smallest variant of
YOLOv8. It is worth mentioning that all YOLO-NAS models
performed dismally in detecting the bipolar.

TABLE III: Comparison of Different Models in Terms of
mAP@50

Class NAS-s NAS-m NAS-l v7 v8n
All tools 0.915 0.917 0.915 0.957 0.959
Grasper 0.712 0.755 0.819 0.917 0.915
Bipolar 0.131 0.186 0.024 0.956 0.970
Hook 0.930 0.936 0.966 0.987 0.995

Scissors 0.913 0.906 0.921 0.936 0.972
Clipper 0.964 0.920 0.915 0.988 0.961
Irrigator 0.888 0.936 0.817 0.944 0.942

SpecimenBag 0.912 0.819 0.940 0.969 0.956

Finally, Figs. 7 and 8 show the confusion matrices for
YOLOv7 and YOLOv8n also, respectively.

VII. CONCLUSIONS

In this paper, we have presented results related to tool de-
tection of CAL instruments. Particularly, data related to chole-

cystectomy was used to train all three variants of YOLONAS.
Seven different types of instruments were present in the
data. Results of the trained object detection model have been
reported in this paper, which are dismal as compared with
other SoTA models. In particular, the models were compared
with YOLOv7 and YOLOv8n and it was found that these later
models had much better performance on the unseen test data.

REFERENCES

[1] S. Aharon, Louis-Dupont, Ofri Masad, K. Yurkova, Lotem Fridman,
Lkdci, E. Khvedchenya, R. Rubin, N. Bagrov, B. Tymchenko, T. Keren,
A. Zhilko, and Eran-Deci, “Super-gradients,” 2021. [Online]. Available:
https://zenodo.org/record/7789328

[2] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779–
788.

[3] J. Terven and D. Cordova-Esparza, “A comprehensive review of yolo:
From yolov1 and beyond. arxiv 2023,” arXiv preprint arXiv:2304.00501.

[4] H.-B. Le, T. D. Kim, M.-H. Ha, A. L. Q. Tran, D.-T. Nguyen, and X.-
M. Dinh, “Robust surgical tool detection in laparoscopic surgery using
yolov8 model,” in 2023 International Conference on System Science and
Engineering (ICSSE). IEEE, 2023, pp. 537–542.

[5] F. Gruau, “Automatic definition of modular neural networks,” Adaptive
behavior, vol. 3, no. 2, pp. 151–183, 1994.

[6] X. Yao, “A review of evolutionary artificial neural networks,” Interna-
tional journal of intelligent systems, vol. 8, no. 4, pp. 539–567, 1993.

[7] G. Ietto, F. Amico, G. Pettinato, V. Iori, and G. Carcano, “Laparoscopy
in emergency: why not? advantages of laparoscopy in major emergency:
a review,” Life, vol. 11, no. 9, p. 917, 2021.

[8] M. K. Hasan, L. Calvet, N. Rabbani, and A. Bartoli, “Detection, seg-
mentation, and 3d pose estimation of surgical tools using convolutional
neural networks and algebraic geometry,” Medical Image Analysis,
vol. 70, p. 101994, 2021.

[9] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu,
X. Wang, G. Wang, J. Cai et al., “Recent advances in convolutional
neural networks,” Pattern recognition, vol. 77, pp. 354–377, 2018.

[10] K. Ragland and P. Tharcis, “A survey on object detection, classification
and tracking methods,” Int. J. Eng. Res. Technol, vol. 3, no. 11, pp.
622–628, 2014.

[11] A. Jin, S. Yeung, J. Jopling, J. Krause, D. Azagury, A. Milstein, and
L. Fei-Fei, “Tool detection and operative skill assessment in surgical
videos using region-based convolutional neural networks,” IEEE Winter
Conference on Applications of Computer Vision, 2018.

https://zenodo.org/record/7789328


(a) Small

(b) Medium

(c) Large

Fig. 4: Confusion matrices related to the unseen test data for
small, medium, and large YOLO-NAS models.

(a) Small

(b) Medium

(c) Large

Fig. 5: Plots of P versus R on unseen test data for small,
medium and large YOLO-NAS models.



Fig. 6: Plots of annotations versus predictions on unseen test
data for YOLO-NAS-L model.

Fig. 7: Confusion matrix for YOLOv7 on unseen test data.

Fig. 8: Confusion matrix for YOLOv8n on unseen test data.


	Introduction
	Object Detection and the yolo Algorithm
	Neural Architecture Search – The Need and Benefits
	cal and cv
	Experimental Details
	Results
	Conclusions
	References

