Louisiana State University Shreveport

Course: CSC 625 — Database Implementation

Team Project: Student Admissions
Portal (SAP)

Mentor: Group members:
Dr. Subhajit Chakrabarty Aleksandra Ristic
Tvissha Goel

Chethana Kota

July 2023

Content

TN o Yo ¥ T o3 1 o o I 2
USer REQUITEMENTS ...t et e et eeean e 2
Back-End (Database) DeSignccoeeviiiiiiiiieieieeeee e 3
Database Creationc.iiiiiiiie e 3
TaBIES CrealiON e 3
Stored Procedures Creationvveviiiie i 5
SQL Server AuthentiCationccciiiiiiiiii e 12
Database RepliCationcoouuiiiiiiii e 14
Front-End Design and Database Connectivity.........cccceeveveviieeveiiineeennnn. 14
SECUIILY PlaN oo e e e 17
Hashed PassSWOrdsccouuiiiiiiii e 17
SQL Server AuthentiCationcciiiiii i 18
T T = L0 18
FUTUIE WOTK oot e e e 19
USEr INSTIUCTIONS ..oveeiiiii e e e e e eaaaas 20

Introduction

The purpose of this project was to create a student admissions portal
that allows students to efficiently and quickly submit a college application.
Students can easily create an account, log in, and submit an application on
a website. The front-end application connects to a back-end database
system in SQL Server 2022.

The database stores all of the crucial information like the semester, the
major, and the high school attended. Personal information such as first
name, last name, gender, mailing address, and student email address is also
stored in the database.

User Requirements

1. Web server: Operating System - Windows, Mac OS Linux, or any
other supported server

2. Database Server - SQL Server and SSMS

3. Programming languages - C++

4. Frameworks and libraries - .net

5. Internet connectivity - stable, reliable internet connection
6. Backup

7. Security Measures

Back-End (Database) Design
(GitHub link contains both Application code and SQL queries.
https://github.com/aaleksandraristic/ProjectSAP)

Database Creation

The initial step involved creating the database "ProjectSAP" using SQL
Server Management Studio. The database was created with default settings
and collation, and it will serve as the backend storage for the web application.

Project SAP querie...HPSFUTU\alexr (56)) ® X |

--Create a database ProjectSAP
create database ProjectSAP
go

use ProjectSAP
g0

Figure 1: Create and use the database “ProjectSAP” (SQL Server)

Tables Creation

The database schema comprises several tables, each serving a specific
purpose related to student application data. Below is an overview of the
major tables that are created.

e Student - This table stores information about individual students who
apply to the college. Whenever a student creates an account or
submits an application, personal data will be stored in the “Student”
table.

e High school - The "High_school" table contains details about high
schools attended by students.

e Major - The "Major" table stores information about the majors offered
by the college.

https://github.com/aaleksandraristic/ProjectSAP

e Semester - This table holds data regarding the semesters for which
students can apply.

e ApplicationSAP - This table manages student applications and their
statuses. It stores all the data from the front-end application, whenever
it's submitted.

e LoglnHistory - This table stores the data whenever the student login to
the application. It keeps records of the login time, status and student

email.
Object Explorer W Bl Project SAP querie.. HPSFUTWNalexr (56)) & >
Connect = * X* O s go
= @ LAPTOP-5HPSFUTU (SQL Server 16.0.1000.6 - LAPT --Create tables
= Databases —lcreate table Semester
System Databases (SemID int identity(1,1) PRIMARY KEY,
Database Snapshots Sem_name varchar(28))
W dbnew ge
= dbPra.ctlceParameters —lcreate table Admissions
W Exercise! (AdmID int identity(1,1) PRIMARY KEY,
@ MIDTERM Adm_name varchar(58))
= i ProjectSAP go
Database Diagrams
= Tables —lcreate table Major
System Tables (MajorID varchar(1@8) PRIMARY KEY,
FileTables Major_name varchar(5@),
Department_name varchar(58))
External Tables o —
Graph Tables g
fH dbo.Admissions Slcreate table High_school
B dbo.Admitted_students (High_SchoolID int identity(1,1) PRIMARY KEY,
B dbo.ApplicationSAP High_Scheol_Name varchar(5@),
FR dbo.High_school High_School_Address varchar(max),
EE dbo.LoglnHistory Phene_number int)
R dbo.Major go
BB dbo.Semester -lcreate table Student
i dbo.Student (StudentEmail varchar(188) PRIMARY KEY,
EH dboWaitlisted_students PasswordHash varchar(255),
] LTOppEd CEUTET TaiE First_name varchar(5@),

Figure 2: Create tables (SQL Server)

Tables are connected through foreign keys to establish meaningful
relationships between data. The "Student” table has foreign key references
to "High_schoolID" (from the High_school table), and "MajorID" (from Major
table). Similarly, the "ApplicationSAP" table has foreign key references to
"StudentEmail" (from the Student table), "SemesterID" (from the Semester
table), and "MajorID" (from the Major table). There is also a foreign key
reference to “AdmissionID” (from the Admissions table), which is not used in
the current version of the application.

The next step was inserting some sample data which will be used for testing

our stored procedures and triggers. Here is an example of inserting sample
data into the “Student” table.

Einsert into dbo.S5tudent (StudentEmail, First_name, Last_name, Gender, Date_birth, Mailing address, GPA, SAT, High_SchoolID, MajorID, AppID, LoginID
values('risticaleksandrag@lsus.edu', 'Aleksandra', 'Ristic', 'Female', '1999-85-28', '5483 Hector Drive', 4.8, 1688, 'GvM', 'C5', 1, 1),

'tygoeld2@gmail.com’, 'Tvissha', 'Goel', 'Femals', '1992-12-83', '2381 Colonel Street’, 4.8, 1688, 'LSHS', 'ENG', 2, 2),
'ladygaga@gmail.com', 'Stephanie', 'Germanotta', 'Female', '1986-83-28', '97@1 Wilshire Blvd', 3.5, 1389, 'GvM', 'C5', 3, 3),
'selenagomez@gmail.com', 'Selena', 'Gomez', 'Female', '1992-87-22', '468@ Vincent Plaza', 3.8, 1188, 'LSHS', 'ENG', 4, 4),

'dualipa@gmail.com’, 'Dua’, 'Lipa’, 'Female’, '1992-87-22', '3585 Hollywood Avenue', 2.8, 1278, 'LSHS', 'HUM', 5, 5
g

Flselect * from Student

11 % -

ER Resuts ¥ Messages

Student Email First_name Last_name Gender Date_bith Mailing_address GPA SAT High_SchoollD MajorlD DoclD ApplD LoginlD

1 ' Dua Lipa Femde 19920722 3535Holywood Averue 280 1270 LSHS HMM NUL 5 5

2 ladygaga@gmail com Stephanie Gemmanotta Female 19860328 9701 Wilshire Blvd 350 1380 GYM Cs NULL 3 3

3 risticaleksandra@lsus edu Aleksandra Ristic Female 19930526 5483 Hector Drive 400 1600 GYM cs NULL 1 1

4 selenagomez@gmailcom Selena Gomez Female 1992-07-22 4600 Vincent Plaza 300 1180 LSHS ENG NULL 4 4

5 tvgoel32@gmail.com Tvissha Goel Female 1992-12403 2301 Colonel Strest 400 1600 LSHS ENG NULL 2 2

Figure 3: Insert data into all tables (e.g. “Student” table)

Stored Procedures Creation

e Create a stored procedure for creating a new student user called
“‘NewStudent” which will update the “Student” table with new student
information by clicking on the application button “Register”. Since we
already have some sample data in a table, our stored procedure will
check if there is an existing student email address, and if there is then
it will update the following columns: First name, Last name. If the
student email does not exist, then our procedure will insert a new row

with new student data (First name, Last name, StudentEmail,
PasswordHash).

--Create a procedure for inserting new student user
=|CREATE PROCEDURE NewStudent
@FirstName VARCHAR(S5@),
{@LastName WARCHAR(5@),
@Email VARCHAR(18@),
@Password WARCHAR(255)

AS
—IBEGIN
= IF EXISTS (SELECT 1 FROM Student WHERE StudentEmail = @Email)
] BEGIN
-- Email already exists, perform an update
] UPDATE Student
SET First_name = @FirstName,
Last_name = (@LastName
WHERE StudentEmail = @Email
END
ELSE
= BEGIN
-- Email does not exist, insert a new record
= INSERT INTO Student (First_name, Last_name, StudentEmail, PasswordHash)
VALUES (@FirstName, @LastName, @Email, @Password)
END
END
G0

—|EXEC NewStudent @FirstName = 'Alexandra’, @LastName = 'Ristic’, @Email = 'alexandraristic@lsus.edu’, @Password = "alex’

select * from Student
go

Figure 4: Stored Procedure “NewStudent”

Here is the test example of executing the stored procedure, where we
specified some new data to see if the procedure works. We can clearly see
that new data is inserted by calling the stored procedure.

BE Resuts [l Messages

StudentEmail PasswordHash First_name Last_name Gender Mailing_address GPA High_Schoolll MajorlD

1 aleksristic@gmail .com aleks Aleksandra Ristic MULL WULL MULL NULL NULL
2 aleksnsticc @amail.com MNULL Aleksandra Ristic Female Majora Marka 2 50 1 C5

5 asd@asd.com asd asd asd MULL NULL MNULL 10 NULL
6 chrak @gmail com MNULL Chakra Chakrabarty Male West 400 2 Cs

7 dualipa@gmail .com dua Dua Lipa Female 3585 Holywood Avenue 3.00 1 PHT

8 kikir@gmail com kiki Kiki Ristic MULL NULL MNULL NULL NULL
9 kiikiri@gmail.com NULL Kiki Ristic Female West 200 2 Ccs

Figure 5: Execution of the Stored Procedure “New Student”

e Create a procedure “uspAddUse” which will hash the user's password
and show it as a hash value, not as a simple text, which is part of the
security plan as well. Unfortunately, we couldn’t include this procedure
in our front-end application.

--create table for user info
-1 use ProjectSAP

RN VA e

(
StudentEmail varchar(1ee),

PasswordHash BINARY(64) NOT NULL,
FOREIGN KEY (StudentEmail) references Student(StudentEmail)

Y
)

--stored procedure

USE [ProjectSAP]
GO
/***¥¥%% Object: StoredProcedure [dbo].[uspAddUse] Script Date: °
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
-ICreate PROCEDURE [dbo].[uspAddUse]
@pLogin NVARCHAR(50),
@pPassword NVARCHAR(5©)

AS
-IBEGIN
SET NOCOUNT ON
= FNSERT INTO dbo.[UserInfo] (StudentEmail, PasswordHash)
VALUES (@pLogin, HASHBYTES('SHA2_512', @pPassword))
end

Figure 6: Stored Procedure “uspAddUse”

e Create a stored procedure “InsertLoglnHistory”, which will keep
records whenever a student login to the application, and by clicking the
button “Login” it will call this stored procedure and insert information
about the time and status of the login into the “LoginHistory” table. First
of all, the procedure will check if the login status is successful or not,
according to that, it will show the message “Login successful.” or “Login
failed. Invalid email.”. If the StudentEmail already exists in a “Student”
table then login is going to be successful and the procedure will insert
information about LoginTime (DATETIME), LoginSatatus, and
StudentEmail into the “LoginHistory” table.

--Create a stored procedure for log in records
-|CREATE OR ALTER PROCEDURE InsertLogInHistory
[@Email VARCHAR(18@),
ILoginstatus WVARCHAR(28)

AS
—-|BEGIN
DECLARE (@iLoginTime DATETIME
SET (@LoginTime = GETDATE()
DECLARE (fLoginMessage VARCHAR(188)
= IF (@LoginStatus = 'Success'
- BEGIN
SET (@LoginMessage = 'Login successful.’
END
- ELSE IF (flLoginStatus = 'Failure’
- BEGIN
SET (LoginMessage = 'Login failed. Invalid email.’
END
- Check if the student email exists in the Student table
- IF EXISTS (SELECT 1 FROM Student WHERE StudentEmail = [@Email)
- BEGIN
-- Insert the login record into the LoginHistory table
= INSERT INTO LoginHistory (LoginTime, LoginStatus, StudentEmail) -- LoginMessage
VALUES (f@iLoginTime, @LoginStatus, @Email) -- ,@LocginMessage
END
END
G0

--EXEC the value that already exists

-1--EXEC the value that doesn't exist
--EXEC InsertLogInHistory (@LoginStatus = 'Failure', [@Email = 'spamilsus.edu’

select * from LogInHistory
go

Figure 7: Stored Procedure “InsertLoglnHistory”

Here is the test execution of the procedure, where the login failed, because
we did not have the “alexristic@Isus.edu” email address in our Student data.
As soon as we inserted that address into a table, the login became
successful. After that, we checked our “LoginHistory” table and we can see
StudentEmail which just logged in that has all the information about the date
and time, as well as the login status.

mailto:alexristic@lsus.edu

LoginlD LoginTime LoginStatus Student Email

{ { 20230715 21:52.43.067 Failure alexristic@{sus.edu
20230719 21:52:48.837 Failure alexristic @sus edu

20230719 21:52:55 443 Success alexristic@sus edu

3] R0 20230719 22:16:03.903 Success asd@asd.com
G 21 0230715 22:16:39170 Success asd@asd.com

Figure 8: Execution of the Stored Procedure “InsertLoglnHistory”
- Failure and Successful Login Status -

EE Resuts =B Messages

LoginMessage

1 i Login failed. Invalid email.

% Results Ei Messages

LoginMessage

1 i Login successful.

e Create a stored procedure “SubmitApplication”, which will insert all the
student data and related information in two tables - “Student”, and”
ApplicationSAP. This procedure is called by clicking the button
“‘Submit” on the application”. The idea is to choose the High School
name, Gender, Major, and Semester, which will be shown as a
separate drop-down menu on the application form. The procedure
works in a way that if the particular HighSchoollD or MajorID etc. is
selected then relate that student to a specific High School name and
major name according to their Primary keys (the “Student” table has
the relation to their primary keys which become foreign keys in a
“‘Student” table). After all of the information is selected, then we
specified which values we want to store in the “Student” table and
which ones in the “ApplicationSAP” table.

|_—— Create a stored procedure Submit Student Application and update

[FICREATE OR ALTER PROCEDURE SubmitApplication
[@FirstName WVARCHAR(S@),
[@LastName VARCHAR(S@),
[IHomeAddress WARCHAR(MAX),
[@eender WARCHAR(1@),
[@EmailAddress VARCHAR(18@),
@GPA DECIMAL (3,2),
[@HighSchoolName WVARCHAR(MAX),
MajorName VARCHAR(MAX),
[@semesterName VARCHAR(MAX)

AS

[=IBEGIN

[—

DECLARE ([@HighSchoolID INT,
{iMajorID VARCHAR(MAX),
[@semesterID INT

B IF @HighSchoolName = 'Gymnasium'
Bl BEGIN
SET @HighSchoolID = 1
| END
B ELSE IF (@HighSchoolName = 'Louisiana State High School'
Bl BEGIN
SET {iHighSchoolID = 2
END

= IF [@ajorName = 'Computer Science’
Bl BEGIN
SET [@MajorID = 'CS'

END
= ELSE IF ([@ajorName = 'Business’
Bl BEGIN
SET {MajorID = 'BUS'
| END
I';I'I ELSE IF (@MajorName = 'Biology’
Bl BEGIN
SET {@MajorID = 'BIO’
| END
= ELSE IF ([@ajorName = 'Communications'
Bl BEGIN
SET [@MajorID = 'CoM'
END

all connected tables

10

= ELSE IF ([@ajorName = 'Phschalogy’

= BEGIN
SET @ajorID = 'PHS'
END
= ELSE IF ([@MajorName = 'Phisical Therapy'
= BEGIN
SET @MajorID = 'PHT'
END

= IF [@SemesterName = 'Fall 2823°
= BEGIN
SET (@SemesterID = 1
END
= ELSE IF (@SemesterName = 'Spring 2824'
= BEGIN
SET {@semesterID = 2
END
= ELSE IF (@SemesterName = 'Summer 2824'
= BEGIN
SET {@SemesterID = 3
END

= INSERT INTO dbo.Student (StudentEmail, First_name, Last_name, Gender, Mailing_address, GPA, High_SchoelID, MajerID)
VALUES (f@EmailAddress, @FirstName, @LastName, @Gender, @HomeAddress, @GPA, @HighSchoolID, @MajorID)

= INSERT INTO dbe.ApplicationSAP (App_status, App_date, SemID, StudentEmail, MajorID)
VALUES ('Submitted', GETDATE(), [@SemesterID, @EmailAddress, @MajorID)

EXEC SubmitApplication @FirstName = 'Kiki', @LastName = 'Ristic’, @HomeAddress = 'Majora Marka', @Gender = 'Female', @EmailAddress = 'kiki@gmail.com',
@GPA = 4.8, @HighSchoolName = 'Gymnasium’', @ajorName = 'Computer Science', @SemesterName = 'Fall 2823°

GO

-Iselect * from Student
select * from ApplicationSAP

Figure 9: Stored Procedure “SubmitApplication”

Here is the result of the procedure execution, where we can see both tables
are having inserted values.

EH Resuts [Messages

1 | aleksnstic@gmail.com | aleks Mleksandra Ristic MNULL NULL MULL NULL NULL
2 aleksristice @gmail.com NULL Aleksandra Ristic Female Majora Marka 250 1 CS

3 alexandraristic@sus.edu alex Alexandra Ristic NULL MULL NULL NULL NULL
4 alexristic@lsus edu alex Alex Ristic MULL MULL MULL MULL NULL
5 asd@asd.com asd asd asd NULL MULL NULL 10 NULL
6 chrak @gmail com WNULL Chakra Chakrabaty Male West 400 2 Cs

7 dualipa@agmail com Dua '

Completed 2022-05-15 00:00:00.000

1 1 1 1 risticaleksandra@lsus edu NULL
2 2 Completed ~ 2022-08-17 00:00:00.000 2 1 twgoel32@gmail com NULL
3 3 In Progress ~ 2022-08-23 00:00:00.000 3 2 ladygaga@gmail.com MNULL
4 4 In progress 2023-03-28 00:00:00.000 1 2 selenagomez@gmail com NULL
5 5 Completed ~ 2023-01-18 00:00:00.000 2 2 dualipa@gmail com NULL
1 29 Submitted 20230715 231531363 1 MULL lepa@lepa.com Ccs
7 30 Submitted 2023-07-2008:51:36 663 1 MULL aleksrstic@gmail.com Ccs
a 1 MULL aleksristic@gmail com Cs

k1 Submitted 2023-07-20 08:52:24 633

kit = o L) (UG R Al et rratalat=tl

2023-07-20 09:07:51.730 kikiri@gmail.com

12 35 Submitted 2023-07-21 00:55:28 240 1 MULL kikir@gmail.com Cs
13 36 Submitted 2023-07-21 00:55:42.490 1 MULL kiki@gmail com Cs

11

Figure 10: Execution of the Stored Procedure “SubmitApplication”

e Create a stored procedure “ViewStudentData” which is not used in our
front-end application. The idea is to combine all related tables and
show all the information per specific StudentEmail.

--Create & procedure to view student information

~ICREATE PROCEDURE ViewStudentData
@studentEmail VARCHAR(188

AS

-IBEGIN
-- Retrieve student data and informaticn from connected tables
SELECT S.*, HS.High_school name, M.Major_name, D.DoC_name
FROM Student §
LEFT JOIN High_school HS OM S.High_SchoolID = HS.High SchoolID
LEFT JOIN Majer M ON S.MajorID = M.MajorID
LEFT JOIN Documents D ON 5.DocID = D.DocID
WHERE 5.StudentEmail = @studentEmail;

END;

EXEC ViewstudentData @studentemail = ‘risticaleksandra@lsus.edu’

First_name Last_name Gender Date_bith Mailing_address GPA SAT High_SchoollD MajerlD DeclD ApplD LeoginlD High_school_name Major_name Doc_name
;Neksandra Ristic Female 15990526 5483 Hector Drive 400 1600 GYM cs MWULL 1 1 Gymnasium Computer Science MULL

Figure 11: Stored Procedure “ViewStudentData”

SQL Server Authentication

We created an SQL Server User (“Jennie”, one of our Addmissions people)
who has only access to the “ProjectSAP” database and she can Update,
Delete or Insert new data into tables.

-- Create a login for admission people
CREATE LOGIN Jennie WITH PASSWORD = 'test’

CREATE USER Jennie FOR LOGIN Jennie
GO

GRANT SELECT, UPDATE, DELETE, INSERT ON ApplicationSAP TO Jennie
G0

—USE ProjectSAP
CREATE ROLE ApplicationSTATUS
G0

—-USE ProjectSAP
CREATE ROLE StudentData
G0

=|--SELECT name FROM sys.sgl logins WHERE name = "Jennie’;
--ALTER LOGIN Jennie WITH PASSWORD = ‘newpassword’, CHECK_POLICY = OFF, CHECK_EXPIRATION = OFF;

Figure 12: SQL Server Authentication

12

= Security

= Legins
s Jennie
M sa
Server Roles

We wanted to make sure that it works, so here is the test of Jennie trying to
access other databases which are currently on this server, but she gets an
error and cannot access it.

“F W ProjectSAP ~ B P Execute v io | Ry =T | Eu'?jm'_j | =

Microsoft SOL Server Management Studio 1‘
'8‘ The database StudentData is not accessible,

|

Database Replication

Database replication ensures real-time synchronization of data, providing
continuous access to information in case of server failures and minimizing
downtime. Replication creates redundant copies of the database at offsite
locations, safeguarding against data loss due to disasters or hardware
failures, and enabling quick recovery. Distributing data copies across
multiple locations reduces latency and optimizes resource utilization,
enhancing system performance. Overall, database replication ensures data
reliability, improves system responsiveness, and fortifies organizations
against potential disruptions.

g meem e e

—luse master
exec sp_replicationdboption @dbname = N'ProjectSAP', @optname = N'publish', [@value = N'true’
G0

exec [ProjectSAP].sys.sp_addlogreader_agent @job_login = null, @job_password = null, @publisher_security mode = 1
G0
-- Adding the transactional publication
—Juse [ProjectSAP]
exec sp_addpublication {@publication = N'PublicationProjectSAP', ([@description = N'Transactional publication of databa:
G0

13

Sluse [ProJectsar |
exec sp_addarticle @publication = N'PublicationProjectSAP', @article = N'Student', @source_owner = N'dbo', @source_object = N'Student', @type = N'logbased', f@des
60
-- Adding the transactional subscriptions

Sluse [ProjectSAP]
exec sp_addsubscription @publication = N'PublicationProjectSAP', @subscriber = N'LAPTOP-SHPSFUTUNNEWSERVER', @destination_db = N'ReplicationProjectSAP', @subscri
exec sp_addpushsubscription_agent @publication = N'PublicationProjectSAP', @subscriber = N'LAPTOP-SHPSFUTUNNEWSERVER', @subscriber_db = N'ReplicationProjectSAP',
c0

Figure 13: Database Replication

Front-End Design and Database Connectivity
(GitHub link contains both Application code and SQL queries.
https://github.com/aaleksandraristic/ProjectSAP)

SSMS is connected by using the .NET framework through visual
studio. Once the database connection is successful, it is followed by making
front-end forms using C++.

The initial step is that the user needs to register, if the user does not already
have an account by clicking on the register link on the login page.

Login
Email
Password
Login
Reqgister

Figure 14: Login Form

14

https://github.com/aaleksandraristic/ProjectSAP

After registering, the user will see a pop-up saying registered
successfully/unsuccessfully. If registered successfully then the user can
continue to log in with his email and password by clicking on the login link on
the register page.

o

Register

First Name

Last Name
Email Address

Password .

Register

Login

Figure 15: Register Form

Once logged in the user will see the student application form the user is
required to fill in the information and submit the form by clicking on the submit
button at the bottom of the page and the application is submitted and stored
in the database.

15

o
L

Student Application Form

First Name

Last Name

Home Address

Gender Male <

Email Address

GPA

High School Name Louisiana State High School =
Major Computer Science ~
Semester Fall 2023 -

Submit

Figure 16: Student Application Form

Security Plan

The purpose of this security plan is to outline the measures taken to protect
students' login information in an educational institution's database. The plan
employs two key security practices: hashing passwords and implementing
SQL Server Authentication for a specific user with database access.

Hashed Passwords

Hashing is a cryptographic technique to secure passwords by converting
them into a fixed-length string of characters. It ensures that the original
password cannot be easily retrieved from the hash value. When students
create or update their passwords, the system does not store the actual
passwords. Instead, the system stores only the hashed values of the
passwords.

16

SQL Server Authentication

SQL Server Authentication is used to control access to the database itself.
This method requires users to provide valid credentials before being granted
access to the database. A specific user account with a strong and complex
password is created specifically for accessing the database. This user is
granted only the necessary privileges required to perform authorized
operations.

By implementing the practice of hashing passwords and utilizing SQL Server
authentication for a specific user, the security of students' login information
and the database as a whole is significantly enhanced. These measures
reduce the risk of data breaches and unauthorized access, ensuring the
confidentiality and integrity of student data.

Limitations

The Student Admissions Portal may have faced several limitations
related to the manual processing of applications and documents. On one
side, admissions personnel would need to manually review each submitted
document to check for completeness and accuracy. This process is time-
consuming and prone to human errors, potentially leading to delays in
application processing.

Another limitation is that users cannot save their work. They have to fill out
the application in one sitting. And if it is not submitted, they would have to
restart the application.

On the other side, the limited and inefficient communication between the
students and admissions personnel where students might have to wait for
email or postal notifications to learn about missing documents, causing
delays and uncertainty in the application process.

By incorporating machine learning, these limitations can be addressed,
making the admissions process more efficient, accurate, and user-friendly.
It automates tedious tasks, improves data analysis, and enhances the overall
application experience for both students and admissions personnel.

17

Future Work

The idea for the further development of the SAP Application is to create
a seamless and efficient experience for both students and admissions
personnel, eliminating the frustration and delays caused by missing
documents or incomplete applications.

The new version of the SAP Application will be powered by machine learning
algorithms. This new system could not only process applications but also
analyze the submitted documents to identify any missing or incomplete
information automatically.

With the help of machine learning, the application will quickly scan through
the uploaded high school documents and personal information provided by
the students. It will compare the information against predefined criteria and
patterns, and instantly flag any missing or incomplete details. This proactive
approach will not only save time for the admissions staff but also ensure that
students receive prompt notifications about the specific documents or
information that are missing.

The application also features an intuitive user interface that allows students
to track their application status in real time. They can easily view a checklist
of required documents and monitor their submission progress. The system
can also provide helpful suggestions and reminders to ensure students
completed their applications successfully.

With the power of machine learning, the admissions process became more
streamlined, empowering students to take charge of their applications while
providing admissions personnel with a reliable and intelligent tool to manage
the influx of submissions. It is a future where efficiency and effectiveness
merged, creating a brighter educational journey for students worldwide.

18

User Instructions

Step 1: Registration

Upon arriving at the login page, users will notice a prominent "Register"” link
thoughtfully placed for quick access. Clicking on this link will seamlessly
guide users through the registration process. After completing the
registration with their chosen email and password, users will be directed back
to the login page.

Step 2: Logging In

Using the credentials they just registered with, users can effortlessly log in
to their personalized accounts from the login page. This ensures a smooth
transition to the next step of the process.

Step 3: Student Application Form

Upon successful login, students are presented with an intelligently designed
student application form. The form is thoughtfully crafted, guiding users to
enter all necessary information accurately and conveniently. Each field in the
form is intuitively labeled to ensure clarity and ease of use.

Step 4: Seamlessly Submitting the Form

Once all the required details are entered into the application form, students
can confidently click the "Submit" button to seamlessly submit their
application. The submission process is efficient, allowing users to complete
this crucial step with confidence and ease.

In conclusion, the user experience is carefully designed to ensure a
seamless and efficient journey for students, starting from registration,
through login, and culminating in the completion and submission of the
student application form. With user-friendliness and simplicity in mind, this
process aims to make the overall experience pleasant and hassle-free for all
users.

19

