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Automated Triage of Screening Breast MRI Examinations in
High-Risk Women Using an Ensemble Deep Learning Model
Arka Bhowmik, PhD,* Natasha Monga, MD,* Kristin Belen, MD,* Keitha Varela, BS,*
Varadan Sevilimedu, DrPH,† Sunitha B. Thakur, PhD,*‡ Danny F. Martinez, MS,* Elizabeth J. Sutton, MD,*

Katja Pinker, MD, PhD,* and Sarah Eskreis-Winkler, MD, PhD*
Objectives: The aim of the study is to develop and evaluate the performance of a
deep learning (DL) model to triage breast magnetic resonance imaging (MRI)
findings in high-risk patients without missing any cancers.
Materials and Methods: In this retrospective study, 16,535 consecutive
contrast-enhanced MRIs performed in 8354 women from January 2013 to
January 2019were collected. From 3NewYork imaging sites, 14,768MRIs were
used for the training and validation data set, and 80 randomly selectedMRIs were
used for a reader study test data set. From 3New Jersey imaging sites, 1687MRIs
(1441 screening MRIs and 246 MRIs performed in recently diagnosed breast
cancer patients) were used for an external validation data set. The DL model was
trained to classify maximum intensity projection images as “extremely low suspi-
cion” or “possibly suspicious.” Deep learning model evaluation (workload reduc-
tion, sensitivity, specificity) was performed on the external validation data set, using
a histopathology reference standard. A reader study was performed to compare
DL model performance to fellowship-trained breast imaging radiologists.
Results: In the external validation data set, the DL model triaged 159/1441 of
screening MRIs as “extremely low suspicion” without missing a single cancer,
yielding a workload reduction of 11%, a specificity of 11.5%, and a sensitivity
of 100%. The model correctly triaged 246/246 (100% sensitivity) of MRIs in re-
cently diagnosed patients as “possibly suspicious.” In the reader study, 2 readers
classified MRIs with a specificity of 93.62% and 91.49%, respectively, and
missed 0 and 1 cancer, respectively. On the other hand, the DL model classified
MRIs with a specificity of 19.15% and missed 0 cancers, highlighting its poten-
tial use not as an independent reader but as a triage tool.
Conclusions:Our automatedDLmodel triages a subset of screening breastMRIs
as “extremely low suspicion” without misclassifying any cancer cases. This tool
may be used to reduceworkload in standalonemode, to shunt low suspicion cases
to designated radiologists or to the end of the workday, or to serve as base model
for other downstream AI tools.
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E ach year, in the United States alone, there are over 300,000 cases of
new breast cancer diagnoses, leading to over 40,000 deaths. Breast

cancer mortality is significantly decreased by annual screening mam-
mography, which is recommended in all average-risk women beginning
at age 40 years.1 For women at high risk of breast cancer, generally de-
fined as a greater than 20% lifetime risk, screening guidelines recom-
mend supplemental screening with dynamic contrast-enhanced breast
magnetic resonance imaging (DCE-MRI), which markedly improves
the sensitivity of early detection.2 Dynamic contrast-enhanced MRI is also
increasingly considered in women with a personal history of breast cancer
and in women with dense breast tissue.3–5 Recent, European Society of Breast
Imaging guidelines recommend that women aged 50–70 years old with
extremely dense breasts should be offered DCE-MRI every 2 to 4 years.6

As breast MRI utilization increases, it can be challenging for
breast imaging radiologists to interpret all cases in a timely manner.
Each screening breast MRI examination contains thousands of images
for review, representing a nontrivial task. Yet, over 80% of these exam-
inations are completely negative, requiring no further workup, and 98%
to 99% are ultimately designated cancer-free after additional testing (eg,
biopsy).7 Given the limited number of radiologists with subspecialized
training in breast imaging, there is a need for automated methods to op-
timize the clinical workflow. Automated triaging, for instance, could
assign “extremely low suspicion” examinations to designated radiolo-
gists, or to be reviewed at the end of the workday, so that more time, fo-
cus, and expertise may be directed to the more challenging cases.

Over the past few years, deep learning (DL) tools have been de-
veloped for a variety of breast imaging applications,8,9 including for
image reconstruction,10,11 segmentation,12 cancer detection,13 lesion
classification,14 and risk assessment.15,16 Initial results are promising, with
some algorithms performing at or beyond the level of radiologists,17–19 al-
though peer-reviewed studies have thus far been retrospective or small
reader studies. Prospective trials are needed to more accurately determine
the real-world performance and value of AI algorithms in the clinic.20 Deep
learning tools are particularly well suited for high-volume repetitive tasks
such as cancer screening or examination triage, since they are not sus-
ceptible to fatigue that can lead radiologists to make errors in these set-
ting. Several studies have used large mammography data sets to explore
the use of DL to reduce the clinical workload via the automated inter-
pretation of normal mammograms.21–24 Deep learning has also been
explored to reduce the clinicalworkload of screening breastMRI exam-
inations in women with extremely dense breasts,25 or as an initial triage
step before computer-aided detection in an effort to decrease the num-
ber of biopsies on benign lesions.26 Deep learning has also been used to
triage cancer patients with additional MRI lesions directly to surgery,
potentially eliminating need for additional preoperative biopsies that
have a very high likelihood of malignancy.27 However, no study to date
has evaluated the use of DL for automated triage of screening breast
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MRI examinations in a large population of high-risk women (ie, women
with greater than 20% lifetime risk of breast cancer), which constitutes
the clinically relevant scenario.

Herein, we aimed to develop and evaluate a DLmodel for the triage
of “extremely low suspicion” MRI examinations in a large population of
high-risk women. We further aimed to evaluate DL model performance
in the clinical context, by comparing the performance of the DL model
to that of fellowship-trained breast imaging radiologists.
MATERIALS AND METHODS

Study Patients
This retrospective study was approved by the institutional review

board at Memorial Sloan Kettering Cancer Center, and the need for in-
formed consent was waived. The study was compliant with the US
Health Insurance Portability and Accountability Act.

Consecutive contrast-enhanced screening axial breast MRI ex-
aminations, performed between January 2013 and January 2019 across
6Memorial Sloan Kettering Cancer Center cancer care sites in the states
of New York and New Jersey were reviewed. Examinations were ex-
cluded; these are as follows: (1) if the postcontrast sequences were ac-
quired in the sagittal plane or using a combined high spatial and high
temporal resolution protocol, that is, differential subsampling with
Cartesian ordering28; (2) if Digital Imaging and Communications
inMedicine (DICOM) header labelswere nonstandardized; (3) if the exam-
inations were performed directly after neoadjuvant chemotherapy or breast
surgery; or (4) if automated extraction of pathology and/or laterality infor-
mation from the electronic medical record failed. Patient age, date of MRI
examination, American College of Radiology Breast Imaging Reporting
and Data System (BI-RADS) assessment category,29 background paren-
chymal enhancement (BPE) category, and pathology (including laterality
information) with date of pathology, when applicable, were automatically
extracted with the aid of in-house natural language processing software
from the electronic medical record for all patients. Women with breast im-
plants, prior cancer history, and prior surgical history were all included.
Screening examinations were defined as MRIs performed in patients with-
out a prior diagnosis of breast cancer, or in patients who had previously
completed treatment for breast cancer. Patients with “recently diagnosed
cancer” were defined as patients with a breast cancer diagnosis, but who
did not yet undergo surgical treatment or chemotherapy. Each examination
was given 2 labels: a BIRADS label (extracted from the radiology report),
and a pathology label. The pathology labelwas cancer if the patient was di-
agnosed with breast malignancy within 1 year of the breast MRI examina-
tion date. The pathology label was negative (ie, no cancer), if the MRI as-
sessmentwas negative (ie, BIRADS1orBIRADS2), and therewas at least
1 year of follow-up without malignant pathology or cancer diagnosis.

For this study, breast MRI data were divided based on the location
of imaging (ie, New York or New Jersey). Breast MRI examinations per-
formed at the New York sites (main site: Manhattan, regional site 1:
Westchester, and regional site 2: Suffern) were used for the reader study
and for the training/validation data set. The reader study test data set com-
prised 80 examinations randomly selected from the NY cohort. The re-
maining NY examinations were randomly split into 5 folds for training
and validation. BreastMRI examinations performed at theNew Jersey sites
(regional site 3: Basking Ridge, regional site 4: Bergen, and regional site 5:
Monmouth) were sequestered as an external validation data set; these ex-
aminationswere further subdivided into “screening examinations” and “ex-
aminations performed in recently diagnosed cancer patients.”Any patients
with examinations in the reader study test set or the external validation set
were excluded from the training/validation data set.

MRI Acquisition
All patients underwent a contrast-enhanced breast MRI on a 1.5

or 3.0 T system (Discovery 750; GE Medical Systems, Waukesha, WI)
© 2023 Wolters Kluwer Health, Inc. All rights reserved.
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with a dedicated 8- or 16-channel breast coil. The gadolinium-based
contrast agent was administered at a concentration of 0.1 mmol gadobu-
trol per kg body weight (Gadavist; Bayer Healthcare Pharmaceuticals,
Inc, Whippany, NJ), at a rate of 2 mL/s. The acquisition parameters for
conventional steady-state DCE-MRI, were TR/TE = 7.9/4.3, flip an-
gle = 12 degrees, in-plane spatial resolution = 1.0 � 1.0 mm, thick-
ness = 1.0 mm, temporal resolution = ~90 seconds, and axial orientation.

DL Model Development
The DL model was developed with the intent to triage a subset of

breast MRI examinations as “extremely low suspicion” without missing
any cancers. Themodelwas tested using a histopathology reference standard.

To teach the model how to identify an “extremely low suspicion
examination” that achieved this task, a 2-step labeling process was im-
plemented. During training, BI-RADS labeling (see Fig. 1) consisted of
2 separately trained CNNs that performed (1) whole-breast segmentation
and (2) examination triage into “extremely low suspicion” and “possibly
suspicious” categories. Precontrast and first postcontrast fat-saturated
T1-weighted, images were used to generate axial subtraction images,
which were used to create standard maximum intensity projections
(MIPs), as well as upper slab, middle slab, and lower slab MIPs, gener-
ated from the upper, middle, and lower axial images, respectively.30

Training of U-Net
Standard MIPs and their matching segmentations were used to

train a 2D U-Net to perform whole-breast segmentation (see Supple-
mental Digital Content 1: Text S1 and Fig. S1 for the U-Net architec-
ture, http://links.lww.com/RLI/A804).12,31 The U-Net was initially
trained using 500 randomly selectedMIPs, with their associatedmanual
segmentations serving as the reference standard. This initially trained
U-Net was then used to generate reference standard masks for an addi-
tional 1500 MIPs from the training data set, which were used to retrain
the U-Net using all 2000 MIPs. This final U-Net was used to generate
segmentations for all remaining axial MIPs (see Supplemental Digital
Content 1: Supplementary Table S1, http://links.lww.com/RLI/A804).
The U-Net output, a segmented breast MIP, was automatically divided
into right and leftMIPs, which served as input to theDL classifier network,
described below. This preprocessing segmentation step was performed to
improve signal-to-noise ratio by focusing the attention of the DL model
on the region of interest (ie, the breast) and avoiding distraction from back-
ground noise or high-intensity features located outside of the breast.

DL Classifier
AVGG-16 binary classifier was developed to triage segmented

single breast MIPs as “extremely low suspicion” or “possibly suspicious”
(see Supplemental Digital Content 1: Supplementary Text S1 and Sup-
plementary Fig. S2 for the VGG-16 architecture, http://links.lww.com/
RLI/A804).32 Each single breast MIP was assigned both a BI-RADS as-
sessment category label (automatically extracted from radiology reports)
and a pathology label (automatically extracted from pathology reports).

During model development, BI-RADS labels were used to sort
examinations into the “extremely low suspicion” and “possibly suspicious”
categories. Training/validation data set examinations with BI-RADS 1 or
BI-RADS2 assessmentswere assigned an “extremely low suspicion” label,
and examinations with BI-RADS 3, BI-RADS 4, BI-RADS 5, or
BI-RADS 6 assessments were assigned a “possibly suspicious” label.
During model evaluation, pathology labels were used as the reference
standard to evaluate model performance. For examinations with an “ex-
tremely low suspicion” label, left and right breasts were treated as inde-
pendent training examples, doubling the data set size. For examinations
with a “possibly suspicious” label, only the breast containing the imaging
finding was used (the contralateral breast was not used since it was un-
known whether it had “possibly suspicious” imaging findings or not, and
this would introduce noise into model training). The classifier was then
www.investigativeradiology.com 711
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FIGURE 2. Flowchart illustrating the inclusion of breast magnetic resonance imaging examinations and patients.

FIGURE 1. Flow diagram illustrating deep learning model triaging of breast magnetic resonance imaging examinations into “extremely low suspicion”
and “possibly suspicious” examinations. A, Model training. B, Model testing. MIP, maximum intensity projection; BI-RADS, Breast Imaging Reporting
and Data System.
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initialized with ImageNet weights, and 5-fold cross-validation, was per-
formed across all training/validation data, with class balancing using ran-
dom oversampling of the minority class. The 5 classifiers were combined
into an ensemble model, with the final prediction probability defined
as the average of the 5 classifiers. To maximize sensitivity (ie, to
avoid triaging any malignant cases as “extremely low suspicion”),
the cutoff value of the final ensemble model was set as the probability
score so that all malignant cases in all 5 validation folds to be classi-
fied as “possibly suspicious” (see Supplemental Digital Content 1:
Supplementary Text S2 and Supplementary Fig. S3 for the calibration
of the classifier, http://links.lww.com/RLI/A804).

For model testing, the final ensemble model was tested using the
external validation data set consisting of examinations performed at the
New Jersey sites, and using the reader study test data set. During model
testing, after whole-breast segmentation, each subtraction MIP was
used to generate 8 subimages: (1) left breast full MIP, (2) right breast
full MIP, (3) left upper breast slab MIP, (4) left middle breast slab
TABLE 1. Patient Demographical and Examination Characteristics

Parameters
Training and

Validation Data Set
Screen

Examina

Examinations from New York imaging centers
Main site: Manhattan 12,419
Regional site 1: Westchester 817
Regional site 2: Suffern 1532

Examinations from New Jersey imaging centers
Regional site 3: Basking Ridge 0 97
Regional site 4: Bergen 0 6
Regional site 5: Monmouth 0 40

Totals from all imaging centers
No. examinations 14,768 144
No. patients 7419 87

Age distribution in years
Mean 52 5
SD 11 1
Range 14–90 23–8

BI-RADS assessment
BI-RADS 1 2934 20
BI-RADS 2 9276 91
BI-RADS 3 1074 14
BI-RADS 4 609 17
BI-RADS 5 25 1
BI-RADS 6 850

BPE
Minimal BPE 5447 63
Mild BPE 4927 35
Moderate BPE 2444 15
Marked BPE 1007 4
BPE category (unknown) 943 24

Menopausal status
Premenopausal 5870 60
Postmenopausal 8894 83
Menopausal status (unknown) 4

Pathology status
Malignant 1368 5
Benign 13,400 138

BI-RADS, Breast Imaging Reporting and Data System; BPE, background parench

© 2023 Wolters Kluwer Health, Inc. All rights reserved.
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MIP, (5) left lower breast slab MIP, (6) right upper breast slab MIP, (7)
right middle breast slab MIP, and (8) left lower breast slab MIP. Exam-
inations were classified as “extremely low suspicion” if the predicted
probability of all 8 subimages was less than the cutoff value that was es-
tablished during model development.

All DL models were developed and tested in Python with
Keras API and TensorFlow backend, using NVIDIA-GTX-1080ti
GPU support. Hyperparameters for all models are detailed in the sup-
plementary material (see Supplemental Digital Content 1: Supplementary
Table S2, http://links.lww.com/RLI/A804). All code has been made avail-
able in GitHub (https://github.com/Arka-Bhowmik/mri_triage_normal).

Reader Study
To compare DL model performance to radiologist performance,

2 fellowship-trained breast imaging radiologists (N.M. and K.B., 5 and
10 years of experience, respectively) independently evaluated and assigned
a suspicion score to the 80 breastMRI examinations in the reader study test
External Validation Data Set

Reader Study
Test Data Set

ing
tions

Examinations Performed in
Recently Diagnosed Cancer Patients

0 0 67
0 0 5
0 0 8

6 157 0
2 25 0
3 64 0

1 246 80
4 246 80

2 51 51
0 10 11
2 28–84 19–73

2 0 11
0 0 36
6 0 0
2 75 30
1 0 2
0 171 1

3 64 29
9 73 21
6 59 21
7 8 8
6 42 1

6 117 33
5 129 47
0 0 0

9 246 33
2 0 47

ymal enhancement.

www.investigativeradiology.com 713
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data set. Readers were instructed that BI-RADS 1 and 2 assessments
should be deemed “extremely low suspicion,” and BI-RADS 3,
BI-RADS 4, and BI-RADS 5 assessments should be deemed “possibly
suspicious.” Readers were blinded to the radiology reports, prior breast
MRIs, and pathology information. Readers used all available MRI se-
quences to render their interpretation, mimicking routine clinical practice.

Gradient-Weighted Class Activation Mapping
Gradient-weighted class activation mapping (GRAD-CAM) is a

technique to achieve explainable artificial intelligence (XAI) by visual-
izing a DLmodel's choice of features.33 Herein, GRAD-CAMwas used
to highlight where the model was “looking.” GRAD-CAM overlays
were generated for each of the 5 DL classifiers.

Model Performance at Different Operating Thresholds
Because the clinical purpose of the DLmodel is to triage a subset

a normal examination without missing cancer, the model threshold was
set to maximize sensitivity, and the cutoff value was set as the probabil-
ity score so that all malignant cases in all 5 validation folds during
FIGURE 3. U-Net segmentation of the MIP image in 2 patients from the exter
(B), and U-Net segmentation (C) (DSC: 0.928 and 0.934 for patient 1 and 2,

714 www.investigativeradiology.com
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model development to be classified as “possibly suspicious.”To explore
the trade-off between “missed cancers” and accuracy, however, we eval-
uated model performance at a range of operating thresholds corre-
sponding to the following sensitivities in the training/validation data
set: 100%, 99%, 95%, 90%, 80%, and 0%.

Statistical Analysis
U-Net performance for whole-breast segmentation was evalu-

ated using the Dice similarity coefficient (DSC), which measures the
spatial overlap between the ground-truth segmented mask and the
U-Net generated segmented mask.34

The DLmodel for triaging “extremely low suspicion” breast MRI
examinations was evaluated using standard diagnostic performance met-
rics, including sensitivity and specificity, as well as a “workload reduc-
tion” metric, defined as the proportion of normal cases dismissed by
the model as “extremely low suspicion.” Calculations were performed
with exact 95% confidence intervals (CIs) for the external validation data
set and the reader study test data set.
nal validation data set. Input MIP (A), ground truth manual segmentation
respectively). MIP, maximum intensity projection.

© 2023 Wolters Kluwer Health, Inc. All rights reserved.
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Breast MRI examinations designated “extremely low suspicion”
by the DL model were stratified according to the BI-RADS assessment
category from the original radiology report, and also according to the
BPE category from the original radiology report. Similar subgroup
analysis was performed for MRI examinations designated “possibly
suspicious” by the DL model.
RESULTS

Patient and Examination Characteristics
Of 22,067 breast MRI examinations performed in 11,064 pa-

tients between January 2013 and January 2019, 2677 were excluded be-
cause they were not acquired using a standard axial postcontrast MRI
protocol or lacked standard DICOM header labels, 1335 were excluded
because they were performed directly after neoadjuvant chemotherapy
or after breast surgery, and 1520 were excluded due to the failure of auto-
mated extraction of pathology or laterality information. The study thus in-
cluded a total of 16,535 breast MRI examinations performed in 8354
women (see Fig. 2 for the breast MRI and patient inclusion flow diagram).

Table 1 shows the patient demographical details and examination
characteristics across the 3 data sets used in this study. The training and
validation data set (fromNewYork sites) consisted of 14,768 examinations
performed in 7419 women (mean age, 52 years; range, 14–90 years). The
external validation data set (from New Jersey sites) consisted of 1441
screening examinations performed in 874 women (mean age, 52 years;
range, 23–82 years) and 246 examinations performed to evaluate the extent
of disease in 246 women (mean age, 51 years; range, 28–84 years) with
recently diagnosed cancer. The reader study test data set consisted of 80
women (mean age, 51 years; range, 19–73 years).

U-Net Performance for Whole-Breast Segmentation
U-Net whole-breast segmentation achieved a DSC of 0.94 (95%

CI, 0.9368–0.9431) on 400 randomly selected examinations from the
training and validation data set, a DSC of 0.93 (95% CI, 0.924–0.9329)
on 120 randomly selected examinations from the external validation data
set, and aDSC of 0.955 (95%CI, 0.9535–0.9583) on all 80 examinations
in the reader study test data set (see Fig. 3 for 2 case examples).
FIGURE 4. DLmodel triage of screening breastmagnetic resonance imaging e
breakdown of examinations classified as “extremely low suspicion” (B) and “p
Reporting and Data System; and BPE, background parenchymal enhancemen

© 2023 Wolters Kluwer Health, Inc. All rights reserved.
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DL Model Performance for Screening Breast
MRI Examinations

For screening examinations in the external validation data set,
the DL model triaged 159 (11.50%) of the 1382 cancer-free examinations
to the “extremely low suspicion” category without missing a single cancer.
It correctly classified all 59 (100%) of the malignant screening examinations
as “possibly suspicious.” This resulted in a sensitivity of 100%, a specificity
of 11.50% (95% CI, 9.87–13.31), and a workload reduction of 11%.

Of the 159 screening breast MRI examinations that were correctly
classified as “extremely low suspicion” by the DLmodel, 34 (21.38%) were
BI-RADS 1 examinations, 114 (71.70%) were BI-RADS 2 examinations, 7
(4.40%) were BI-RADS 3 examinations, and 4 (2.52%) were BI-RADS 4
examinations. There were 115 (72.33%) examinations with minimal BPE,
26 (16.35%) with mild BPE, 5 (3.15%) with moderate BPE, 0 (0%)
with marked BPE, and 13 (8.17%) with unknown BPE category.

Of the 59 screening examinations classified as “possibly suspi-
cious” by the DL model, 168 (13.10%) were BI-RADS 1 examinations,
796 (62.10%) were BI-RADS 2 examinations, 139 (10.84%) were
BI-RADS 3 examinations, 168 (13.10%) were BI-RADS 4 examinations,
and 11 (0.86%)were BI-RADS 5 examinations. Therewere 518 (40.41%)
of examinations with minimal BPE, 333 (25.97%) with mild BPE, 151
(11.78%) with moderate BPE, 47 (3.67%) with marked BPE, and 233
(18.17%) with unknown BPE category. See Figure 4 for further details.
Table 2 illustrates how the DL model triaged the benign and malignant
screening cases for each BI-RADS assessment category.

DLModel Performance for Breast MRI Examinations in
Recently Diagnosed Cancer Patients

Of the 246MRI examinations performed to evaluate extent of dis-
ease in recently diagnosed cancer patients, the DL model correctly clas-
sified all 246 (100%) malignant examinations as “possibly suspicious.”
See Table 3 for the breakdown by BI-RADS assessment category.

GRAD-CAM Results to DetermineWhere the DLModel
Is “Looking”

GRAD-CAM maps were successfully reconstructed and showed
that, in images containing malignancy, models from all 5 cross-validation
xaminations from the external validation data set (A) with BI-RADS and BPE
ossibly suspicious” (C). DL, deep learning; BI-RADS, Breast Imaging
t.
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TABLE 2. Screening Breast MRI Examinations (n = 1441) From the External Validation Data Set Triaged by the DL Model to “Extremely Low
Suspicion” and “Possibly Suspicious” Examinations

BI-RADS Pathology Examinations

Screening Examinations, Triaged by the DL Model

Extremely Low Suspicion Possibly Suspicious

1 Malignant 0 0 (0%) 0 (0%)
Benign 202 34 (16.83%) 168 (83.17%)

2 Malignant 0 0 (0%) 0 (0%)
Benign 910 114 (12.53%) 796 (87.47%)

3 Malignant 0 0 (0%) 0 (0%)
Benign 146 7 (4.79%) 139 (95.21%)

4 Malignant 48 0 (0%) 48 (100%)
Benign 124 4 (3.23%) 120 (96.77%)

5 Malignant 11 0 (0%) 11 (100%)
Benign 0 0 (0%) 0 (0%)

MRI, magnetic resonance imaging; DL, deep learning; BI-RADS, Breast Imaging Reporting and Data System.
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folds focused on the suspicious parts of the image. In contrast, for im-
ages without suspicious features, model localization varied across
cross-validation folds (see Fig. 5).

Performance of the DL Model Compared With Breast
Imaging Radiologists

Of the 33 malignant breast MRI examinations contained within
the reader study test data set, the DL model flagged all 33/33 (100%)
as “possibly suspicious,” whereas the 2 readers flagged 33 (100%) and
32 (96.97%), respectively. One reader missed 1 cancer in an examination
complicated by marked BPE (see Fig. 6 for the GRAD-CAM visualiza-
tion of the cancer missed by reader 2).

Of the 47 benign examinations contained within the reader study
test data set, the model classified 9 (19.15%) as “extremely low suspi-
cion” and 38 (80.85%) as “possibly suspicious.” Readers respectively
classified 44/47 (93.62%) and 43/47 (91.49%) as “extremely low suspi-
cion” and 3/47 (6.38%) and 4/47 (8.51%) as “possibly suspicious.”

Thus, reader 1 attained a sensitivity of 100% and a specificity of
93.62% (95%CI, 86.63–100), and reader 2 attained a sensitivity of 96.97%
(95% CI, 91.12–100) and a specificity of 91.49% (95% CI, 83.51–99.46).
The DL model attained a sensitivity of 100% and a specificity of 19.15%
(95% CI, 7.90–30.39) (see Table 4 for a summary of triaged examinations
from the reader study test set by reader 1, reader 2, and the DL model).

Model Performance at Different Operating Thresholds
The performance metrics of the DL model vary depending on

the operating threshold. At an operating threshold corresponding to
99% sensitivity in the training/validation set, workload reduction is
19.98%, sensitivity is 96.61% (95% CI, 91.99–100), and specificity
TABLE 3. Breast MRI Examinations That Had Been Performed to Evaluate
cancer (n = 246) From the External Validation Data Set Triaged by the D
Examinations

BI-RADS Pathology Examinations

Exam

Ext

4 Malignant 75
6 Malignant 171

MRI, magnetic resonance imaging; DL, deep learning; BI-RADS, Breast Imaging
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is 20.83% (95% CI, 18.69–22.98) for the external validation set screen-
ing examinations. At an operating threshold corresponding to 95% sensi-
tivity in the training/validation set, workload reduction is 44.55%, sensi-
tivity is 83.05% (95% CI, 73.47–92.62), and specificity is 46.45% (95%
CI, 43.82–49.08) for the external validation set screening examina-
tions. See Figure 7 for graphical displays of this trade-off, for the exter-
nal validation screening examination data set, and for the reader study
test data set.
DISCUSSION
We developed an automated DL model to triage a subset of

breast MRI examinations as “extremely low suspicion” in an effort to
improve the clinical workflow without missing any cancers. In external
validation, the DLmodel dismissed 159 (11%) of 1441 screening breast
MRI examinations as “extremely low suspicion” without missing a sin-
gle cancer; the model also correctly triaged all 246 breast MRIs in patients
with recently diagnosed cancers as “possibly suspicious.” In the reader
study test data set, the DL model triaged 19.15% of examinations as “ex-
tremely low suspicion,” again without missing a single cancer.

The primary goal of this DL model is to improve clinical workflow
by triaging a subset of completely negative breast MRIs as “extremely low
suspicion” without missing any cancers. To achieve this objective, we
adopted a training strategy of labeling BI-RADS 1 and BI-RADS 2 exam-
inations as “extremely low suspicion” (ie, no suspicious or indeterminate
imaging findings) and BI-RADS 3, BI-RADS 4, BI-RADS 5 and
BI-RADS 6 examinations as “possibly suspicious” (ie, examinations
with indeterminate and/or malignant imaging findings). Our goal was
to teach the model to be a high sensitivity/low risk model, pushing ex-
aminations with almost any kind of lesion to the “possibly suspicious”
the Extent of Disease in Patients With Recently Diagnosed Breast
L Model to “Extremely Low Suspicion” and “Possibly Suspicious”

inations With Recently Diagnosed Cancer, Triaged by DL Model

remely Low Suspicion Possibly Suspicious

0 (0%) 75 (100%)
0 (0%) 171 (100%)

Reporting and Data System.

© 2023 Wolters Kluwer Health, Inc. All rights reserved.
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FIGURE 5. Visually explainable interpretation of DL model prediction with GRAD-CAM visualization for a case with left breast malignancy. A, In a
cancer-containing examination, the ensemble model localizes to the suspicious mass in the left breast with all output scores above 0.97. B, For an
“extremely low suspicion” examination without cancer, ensemble model localization varies across folds, with model output scores less than 0.33.
GRAD-CAM, gradient-weighted class activation mapping; DL, deep learning.
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category and sending only the most negative-appearing examinations to
the “extremely low suspicion” category. However, BI-RADS labels are
noisy and have high interreader variability. The algorithm, therefore,
was ultimately tested not on BIRADS labels, but on a stronger pathol-
ogy reference standard (based on a combination of pathology and 1 year
of follow-up). Although a small number of cancers may be occult and
not present for at least 1 year, the high sensitivity of MRI in the hands
of fellowship-trained breast radiologists combined with the pathology
information and 1 year follow-up yielded a strong reference standard for
model evaluation in this work. This enabled calculation of theworkload re-
duction to determine if any cancers were incorrectly dismissed by the
model, which were the metrics that focused on the clinical motivation of
the study, and to safely triage a fraction of “extremely low suspicious” ex-
aminationswithoutmissing any cancers. In addition, to further decrease the
chances that cancerswould bemissed by themodel, the operating threshold
was adjusted to maximize the sensitivity of cancer detection across the 5
cross-validation folds (at the cost of reducing specificity).

Breast MRIs triaged as “extremely low suspicion” by our model
were most likely to have been assigned BI-RADS 1 and BI-RADS 2 as-
sessments and were also more likely to have been assigned low BPE
FIGURE 6. GRAD-CAM visualization of cancer examination missed by reader
mapping; DL, deep learning.

© 2023 Wolters Kluwer Health, Inc. All rights reserved.
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(72.33% had minimal BPE and 16.35% had mild BPE). Of note, none
of the examinations with marked BPE cases were triaged by the model
as “extremely low suspicion.” This suggests that, like radiologists, it is
more difficult for the model to classify high BPE cases as normal. In the
reader study, the malignancy missed by 1 of the 2 readers (but not by
the model) had marked BPE.

This algorithm could be used to optimize the clinical workflow
by triaging “extremely low suspicion” cases to designated radiologists,
or to be reviewed the end of the workday when radiologist performance
may be decreased. It is well documented that radiologist fatigue can
affect diagnostic performance.35 The algorithm could also be used to
bypass, or at least shorten, radiologist interpretation of “extremely low
suspicion” cases, althoughmore extensive multicenter validation would
be needed. In addition, it is important to note that if the algorithm was
used as a standalone tool, an 11% reduction in number of cases to be
read likely would not track linearly with time savings, since the simpler
cases are dismissed by the model; future work is needed to better under-
stand the time savings component.

This work adds to a growing body of evidence that DLmodels may
be used to identify and triage completely normal-appearing examinations
2 in the reader study. GRAD-CAM, gradient-weighted class activation

www.investigativeradiology.com 717

ealth, Inc. All rights reserved.

www.investigativeradiology.com


TABLE 4. Triaged Examinations (n = 80) From the Reader Study Test Set

Total No. Examinations

Malignant Benign

33 (41.25%) 47 (58.75%)

Triaged Groups Extremely Low Suspicion Possibly Suspicious Extremely Low Suspicion Possibly Suspicious

Reader 1 0 (0%) 33 (100%) 44 (93.62%) 3 (6.38%)
Reader 2 1 (3.04%) 32 (96.96%) 43 (91.5%) 4 (8.5%)
DL model 0 (0%) 33 (100%) 9 (19.15%) 38 (80.85%)

DL, deep learning.
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with high performance. Verburg et al25 developed a DL algorithm to
dismiss normal breast MRIs among non–high-risk women with dense
breast tissue, achieving a workload reduction of 39.7%. The proportion
of cancers in their cohort was much lower than in this study (1.6% can-
cers vs 18% cancers), likely accounting for their ability to dismiss a
higher proportion of examinations. Jing et al36 also developed a DL
model to automatically dismiss 16% of normal ultrafast breast MRI ex-
aminations, albeit with only 30 cancers in their testing set. In triage
studies for screening mammography, testing sets of >100,000 patients
have been used to demonstrate a 25% decrease in callbacks with non-
significant differences in overall diagnostic performance.37

Our study data were pooled from multiple imaging sites across 2
states, permitting us to sequester all data from one of the states as an ex-
ternal validation data set, thereby demonstrating the generalizability of
FIGURE 7. Ensemble DL model performance (A) sensitivity, (B) specificity, (C)
(ie, screening examinations and reader examinations) at different operating th
data. DL, deep learning.

718 www.investigativeradiology.com
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our model. Our studywas retrospective, but it is the largest study to date
for the triage of normal breast MRIs in high-risk women, and it paves
the way for future prospective work. All imaging sites used GE scanners,
which may limit model generalizability. However, multiple versions of
GE scanners were used, several MR protocol versions were used, and
the technologists and patients varied by imaging site. Our DLmodel used
2D MIP images and MIP slabs down sampled to 256 � 256; in future
work, we plan to extend the architecture to accommodate stacks of 3D
subtraction images, dynamic contrast information, and other MR se-
quences as the model input, and explore the effect of increase input res-
olution to the original size of the MRI, thereby further improving the
model's sensitivity for small or subtle findings. Our reference standard
during training was the BIRADS label extracted from the radiology re-
port. BIRADS labels have interreader variability, although we expect that
missed cancer, and (D) workload reduction in external validation data set
resholds (τ). The operating thresholds were set using training/validation

© 2023 Wolters Kluwer Health, Inc. All rights reserved.
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the binary grouping of (1) BIRADS 1 and BIRADS 2, and (2) BIRADS
3, BIRADS 4, BIRADS 5, and BIRADS 6 mitigated some of this vari-
ability. The algorithm was then ultimately tested not on the BIRADS la-
bels, but on a stronger reference standard of negative pathology com-
binedwith 1 year of negative follow-up. Although a small number of can-
cers may be occult and not present for at least 1 year, the high sensitivity
of MRI in the hands of fellowship-trained breast radiologists combined
with the pathology information and 1 year follow-up yielded a strong ref-
erence standard for model evaluation in this work.

In conclusion, our automated DL model safely triaged 11% of
high-risk screening breast MRI examinations as “extremely low suspicion”
without missing any of the 59 cancers among the 1441 screening breast
MRI examinations in the external validation data set. This tool may be used
to triage breastMRI examinations in clinic, shunting low suspicion cases to
designated radiologists or to the end of a long workday. Multicenter pro-
spective studies are warranted to pave the way for clinical implementation.
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