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In 2021, an AI named "Sophy"[4] achieved a remarkable feat by

outperforming the best human players in the racing game "Gran

Turismo Sport". Another racing game, Trackmania [7], has also seen

the development of AI systems.

Another racing game, Trackmania, has also seen the development

of AI systems. A French group of developers have created multiple

AI systems for Trackmania using different techniques[3]. In a French

show, they demonstrated one of their AI models (TMAI) setting a

time of around 45 seconds on a test track, which is already a strong

performance, but still not as fast as the human record of 35 seconds.

The goal of this research is to improve TMAI performance by

analyzing the differences between Sophy and Trackmania AI. The

purpose of this study is to identify changes that can be transferred

to TMAI and to analyze the difference in performance. Finding

differences between the two systems will drive the understanding of

reinforcement learning algorithms forward. This in turn will enable

the creation of higher-performance systems.

1 INTRODUCTION

1.1 Background
1.1.1 what is Trackmania? Trackmania is a racing game where

players try to drive from start to finish in the shortest amount of
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Fig. 2. Gran Turismo Sport

Fig. 3. Trackmania

time. Players can create their own tracks (important). Gran Turismo

Sport is a realistic racing game the goal of which is to win races.

A group of developers has created a framework called tmrl (Track-

mania Reinforcement Learning)[3], with which you can build and
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Fig. 4. Tmrl-test track

train AIs that drive trackmania. The AI model that we use as a base-

line for this thesis is their lidar-based model. For simplicity, we will

call this model TMAI (Trackmania AI) from now on.

The French developers created a track 4 (tmrl-test) on which they

drove with their AI model 10 times. They set an average time of

47,176 seconds.

I tried this track myself and completed it on average in 38 seconds.

Therefore, there is room for improvement.

Another AI that can drive in a racing game is Sophy AI[4], de-

veloped by the Sony AI group. This AI is developed for a different

racing game, namely "Gran Turismo Sport" (GTS) [6].

Gran Turismo Sport is a very different game than Trackmania,

the cars, physics and track are all much more realistic. Tracks are

only made by the developers, where track creation is an important

part of Trackmania.

Sony managed to create an AI that could rival and beat the best

humans in GTS, which leads to the question: Can we learn from

how Sophy works and improve TMAI?

1.2 Research questions
In order to test if it possible to improve TMAI based on Sophy AI,

we have to answer the following research questions:

(1) What are the key distinctions between Sophy and TMAI?

(2) What modifications can be transferred from Sophy to TMAI?

(3) How do these changes affect TMAI’s performance?

2 METHODOLOGY
The approach to answering research questions starts by comparing

and analyzing the two AI agents, Sophy and TMAI, that were trained

to play racing games using reinforcement learning. The study will

then focus on identifying key differences between the two models

and how they were trained, with the goal of understanding how

Sophy was able to outperform human players in "Gran Turismo

Sport". After this, the study will analyze which of these differences

can be transferred from Sophy to Trackmania AI. And finally, we

will implement the changes to evaluate the difference they make in

performance.

This leads to the following steps:

(1) Data collection: Collect data on the performance and inner

workings of Sophy and TMAI, including their lap times, driv-

ing lines, algorithm used, input data and other relevant met-

rics.

(2) Identifying key differences: Analyze the data from the first

step and identify the key differences between the two systems.

(3) Transfer differences: Identify changes that can be transferred

from Sophy to TMAI to improve its performance, such as

using the same type of input data, using similar algorithms,

or adjusting other parameters used.

(4) Evaluation of changes: Implement the identified changes on

TMAI and evaluate the impact of these changes on its perfor-

mance.

3 RESULTS

3.1 Data collection
In this section we will collect all relevant information about the two

systems: Sophy and TMAI

3.1.1 Lap times. The first objective is to prove that Sophy is, in fact,

much better than TMAI. To show this, we will compare lap times

(the time it takes to drive from start to finish) between the two.

Since the two systems are built for different games, we cannot

directly compare them on the same tracks or environments; what

we can do is compare the two with human performance in their

respective games. This will still give a good indication of the strength

of the AIs, especially when a comparison is made between the AIs

and the best human players.

Lap times[sec]: Sophy vs humans

Sophy fastest
human

median
humans

Setting A 1:15.913 1:16.602 1:22.300

Setting B 1:39.408 1:39.445 1:47.259

Setting C 2:07.701 2:07.319 2:13.980

Lap times[sec]: TMAI vs humans

TMAI fastest
human

median
humans

tmrl-test

track

45.643 34.308 37.895

3.1.2 driving lines. When driving, a factor that has a great impact

on lap times is: "driving lines", the way the car drives through cor-

ners. You want to drive through a corner as fast as possible and to

do this often and out-in-out approach is the fastest. This means that

you drive from the outside of the corner to the inside and then to

the outside of the upcoming track.

When comparing the racing lines of the two systems, it is evident

that Sophy follows the out-in-out approach a lot better than TMAI.

TMAI has a more save approach to driving in general, it doesn’t

take much risk by trying to drive close to the walls but rather stays

in the middle of the track.

3.1.3 AI Algorithms. Now that we know what both systems are

capable of, the next step is to understand how they work. Both
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Fig. 5. Racing lines Sophy Fig. 6. Racing lines TMAI

Fig. 7. The out-in-out approach

systems use an AI technique called Reinforcement Learning[1]. Re-

inforcement learning is a type of machine learning in which an

agent learns to make decisions by interacting with its environment.

The agent receives rewards or punishments based on its actions and

uses this feedback to update its decision-making strategy. The goal

of the agent is to maximize the total reward over time.

The specific reinforcement learning algorithm that is used hap-

pens to be the same for both TMAI and Sophy. This algorithm is soft

actor-critic[5]. One of the benefits of using SAC is that it can reduce

the amount of data and resources needed for training by using a

technique called off-policy training. This means it can learn from

previously recorded actions and experiences, rather than needing

to constantly collect new data. Additionally, SAC can be effective

in high-dimensional environments, where there are many different

variables that the system needs to take into account.

Since both systems use the same training algorithm, we assume

that the main difference between the two will be in a different area.

3.1.4 Input data. The reinforcement learning algorithm receives a

set of variables representing the environment, it then has to make

a decision on what output to give, for example: pressing forward,

left, right, or break, which controls the car in the game. After this a

reward will be given to the algorithm, based on howwell it is driving.

From this the algorithm will try to understand its environment and

how to maximize the reward it will receive. The algorithm needs to

know enough about the environment to make a solid decision that

will give it the maximum reward.

We will now compare the environments of Sophy and TMAI.

Sophy uses an environment consisting of the following observa-

tion space:

(1) linear velocity

(2) linear acceleration

(3) Euler angle between the car’s rotation and the direction of

the centerline of the track

(4) distance measurements that measure the distance from the

center point of the car to objects, such as the edge of the

track.

(5) The previous steering command

(6) a binary flag indicating wall contact

(7) curvature measurements in the forms of a series of discrete

points of the sides andmiddle of the course ahead. Six seconds

of course, based on the current speed of the car.

The environment that TMAI uses uses the following observation

space:

(1) linear velocity forward

(2) 19 distance measurements that measure the distance in pixels

on camera, measured from the lower middle (50 pixels above

the edge of the window) to the walls of the track, distributed

across 180°.

(3) history of last 4 distance measurements.

(4) The previous steering command

We observe a difference in observation space between the two

systems, which we will analyze in chapter 3.2.

3.1.5 Reward function. The reward function defines how well an

AI agent is doing. For example, it will give a positive reward when

the agent is driving in the correct direction and a negative reward

when driving in the wrong direction.

A naive approach to creating a reward function would be to give

a reward based on the speed of the car. However, this approach is

not optimal, as the goal of the agent should not be to drive as fast

as possible, but rather to complete the track as fast as possible. The

two are in fact not equivalent as one will have to consider optimal

trajectory, which may imply slowing down for corners etc.

That is why both Sophy and TMAI use a reward based on progress

of the total track. This means that the AI will receive reward based

on how much of the track has been convert since the last timestamp.

3.2 Identifying key differences
In the last chapter, we discovered the main aspects of the two AI

systems, Sophy and TMAI. When comparing the two, the three main

aspects are: type of algorithm, reward function, and input data. In

the first two, we do not observe notable differences; there are minor

differences in exact implementation, but these do not seem likely to

be the sole reason for the major difference in performance.

That is why we should have a better look at what the differences

are between the systems in terms of input data. What we observe

is that almost all of the variables from the observation space of

TMAI are also in the observation space of Sophy, with the exception

of the history of 4 distance-measurement observation. On top of

that, Sophy has a few extra variables, namely: acceleration, Euler

angle, binary flag for wall contact, and measurements of track ahead.

Of these four, the one that catches the attention the most is "the

measurements of the track ahead". This is because this information

gives insight in what the upcoming track will look like, which could

be very useful as the AI agent would be able to anticipate how to

, Vol. 1, No. 1, Article . Publication date: February 2023.



4 • Laurens Neinders

next corner look and might be able to adjust its way current driving

to accommodate for this upcoming corner.

Figure 8 gives a visual representation of the information that dis-

tance measurements provide compared to what the measurements

of the track ahead provide. You can see that the distance sensors

are only able to see the first part of the corner, which means that

the AI cannot know how the track will look after this, see fig 9.

The theory that arises from these findings is that the key differ-

ence between Sophy and TMAI is the lack of information of the

track ahead as input data for TMAI.

Fig. 8. Distance measurements only give information about a short piece
of track ahead, whereas curvature measurements of the track ahead gives
more information to make a better decision.

Fig. 9. TMAI can’t know how the next corner will look.

3.3 Transfer differences
To test the theory from the last chapter, we will have to implement

a system that can provide information about the piece of track

Fig. 10. Sophy has information of the track, 6 seconds ahead, based on the
current speed

ahead of the car. The Sophy system makes use of a built-in feature

of the game it plays, "Gran Turismo Sport". This feature provides

the upcoming piece of track, which Sophy can use to predict the

best way to drive. However, this information is not available in

the game TMAI was made for, "Trackmania". Therefore in order to

test the theory, a similar system had to be made. details about the

implementation can be found in the appendix.

3.4 Comparison lap times
This section contains the results of training an AI with the up-

coming track as input. The newly trained AI will here be called

UpcomingTrack AI (UTAI for short).

These are the lap times driven on the tmrl-test track, the track

for which TMAI is trained.

tmrl-test track, Lap times[sec]: TMAI vs. Upcoming Track AI

track TMAI UTAI Best
Human

Average
Human

Fastest lap 44.413 38.402 34.308 36.985

Average

(std. dev.)

47.176 s

(0.769)

40.178

(0.517)

Unknown 38.126

(0.531)

4 CONCLUSION

4.1 RQ1: What are the key distinctions between Sophy
and TMAI?

The key distinction that was found between Sophy and TMAI is a

difference in input data. The most notable difference in input data

was the lack of information about upcoming track in TMAI.

4.2 RQ2: What modifications can be transferred from
Sophy to TMAI?

While not natively supported in Trackmania, we managed to imple-

ment a function that replicates similar input data about upcoming

track as Sophy uses.

4.3 RQ3: How do these changes affect TMAI’s
performance?

The AI trained using the upcoming track as input data affected

TMAI’s performance in a positive way. The lap time comparison

, Vol. 1, No. 1, Article . Publication date: February 2023.



Improving Trackmania Reinforcement Learning Performance: A Comparison of Sophy and Trackmania AI • 5

shows that this new solution managed to beat TMAI’s records by a

significant margin.

5 DISCUSSION
In this chapter, we discuss the significance of the results obtained,

the limitations of the study, and suggestions for future work.

5.0.1 Significance of obtained results. This study shows the impor-

tance of carefully chosen input data in the field of reinforcement

learning. The analyzed AI, TMAI, used many state-of-the-art tech-

nologies and techniques but left potential performance on the table

by not having enough information for the AI to correctly predict

how to drive in the fastest way possible.

5.0.2 Limitations. While the study helped proved insight in the

importance of input data in reinforcement learning, the use-case for

the specific AI that was created is narrow. Not only does it just work

in the trackmania game, which is to be expected, but it also works

only in very specific scenarios. For the AI to work, a track needs

to be flat with black borders all around it, and with a normal road

surface. This might not sound that specific, but these types of track

are uncommon in Trackmania. Tracks in the game consist of a wide

variety of track surfaces, height-differences, loops and boosters.

If you would want to build an AI that works on all types of track,

it would have to make use of a more advanced structure for input

data that can capture all the intricacies of Trackmania.

5.0.3 Future work. This study’s focus was on upcoming track in-

formation. This subject can be delved further into, one could for

example study what exact representation of data would yield the

best results, and shortest training time. This study used 30 coordi-

nates of wall up ahead, but a different amount of, or with different

distance between points could be better. There are also other possi-

bilities, such as drawing a curve through the points and providing

the AI with the parameters of the curve.

It would also be beneficial to research optimal training parameters

for the tmrl framework, or reinforcement learning in general.

My last suggestion for future work would be to investigate differ-

ent representations that can capture different aspects of the track,

such as the difference in height and road surface. This would enable

the creation of AIs that can drive on a wider variety of tracks.
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7 APPENDICES

7.1 Calculation of the track.
This appendix explains the calculations for creating a representation

of the track.

The goal was to create a representation of a track by driving on

it once, then using the data that the distance sensors provide to

calculate the position of the walls. This will create a representation

of the track that can then be used to train TMAI on.

So, the first part is to calculate the position of wall based on the

measurements of distance sensors. The next part will be to convert

the many data points that emerge from recording the track and

doing the calculations, into an input that is useful for the AI.

7.1.1 Distance calculations. To calculate where the position of the

walls of the track are, we start by looking at the distance sensors

that are implemented in the tmrl framework.

Fig. 11. the distance sensors are lines from a point below the center of the
image, to the walls of the track

Fig. 12. side view of car, goal is to calculate BC

The first part we want to calculate is the vertical direction of each

of these lines, the most obvious line to start is the one in the middle,

here made orange. We want to know how long the piece of road

from the camera to the wall is. What we know about this line is that

it has a length of a certain amount of pixels, for example, 150. the

line starts 50 pixels from the bottom and the picture has a height of

500 pixels (488 in practice, but 500 for explanation sake).

In fig 12 you can see the car and camera from the side. The

camera is on the front of the car and slightly higher. What we need
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Fig. 13. We need to calculate the vertical part of each line in order to
calculate how many meters the point is forward in 3d space.

to know is the length BC. To do this, we will first need to know the

total vertical angle of the camera, which is 80 degrees. Now we can

calculate the angle beta, ((150px+50px)/500px)*80 deg = 32 degrees

The total angle, alpha, will then be 50 + 32 = 82 deg AB is known

to be 1.5 meter, so BC is tan(82 deg)*1.5 = 10.7 meter

We now know how to use the vertical distance in pixels to cal-

culate the distance in the 3d space. For the distance sensor in the

middle this approach works, but the other sensors are angled with

increments of 10°. This means that we will have to calculate both

the vertical part of each line and the horizontal part to find the

coordinates of the point. The calculation of the vertical part (FG)

is illustrated in figure 13. We use the same calculation from before

to calculate how many meters this in in 3d space in the forward

direction.

The next step to finding the coordinate where the distance sensor

hits the wall, is to calculate the horizontal distance in 3d space, JK

in Figure ??. To calculate this, we need to know the angel i. We can

calculate i from figure 13 as follows. We know that the total width of

the window is 958 pixels, together with the height of the windows,

488 pixels and the vertical total angle of the camera, the horizontal

angle of the camera is 117°. To obtain i, we have to divide GH by the

total width of the window, times 117°. In this case, 212.1/958 * 117°,

in this case i is 25.9° With this value we are now able to calculate

JK, JK = tan(i)*10.7m = 5.19 m

We now calculate the relative position of the walls from the

camera.We can use this information togetherwith the coordinates of

the camera and the angle which it is pointing, to find the coordinates

of the walls.

7.1.2 Creating the map. The next step is to record a large series

of images and distance measurements while driving the track and

combine the coordinates found.

Something to note here is that while driving, the camera makes

small movements and rotations that add to the playing immersion,

but it also distorts the calculations. To combat this, the rotation and

angle (roll and pitch) must be taken into account.

Figure 15 is one of the first attempts to create a coordinate map.

The general shape of the track is visible, but there are many outliers

and errors.

Figure 16 shows the map in a later phase of development. The

accuracy of calculations has improved and outliers are filtered out.

Fig. 14. IJ is the forward distance in 3d space, JK is the horizontal distance
is 3d space.

Fig. 15. The first try on programming a representation of the track. The
map has a lot of noise and outliers, but the general shape is visible

Fig. 16. This how the map looks later in the process, a lot of outliers are
gone and both sides of the track are clearly distinguishable. The yellow line
is the trajectory of the car, purple and green are the left and right side of
the track respectively.

There are still some inaccuracies that need to be addressed before it

can be used.

Figure 17 is the final representation of the track. In this version,

the inaccuracies from before are hammered out. To reach this point,

a Bezier curve [2] is drawn through the points, which fills any gaps
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Fig. 17. This is the final version of the map, all outliers are removed and the
points that make up the track are equally spaced out

in the data, and then this curve is divided by a number of points

along it.

7.1.3 Input for the AI. The final step before we can use the map to

train an AI, is to cut out the part which is directly in front of the car

which will be what the AI gets to see of the track at any given time.

To do this, we take the point closest to the position of the car, and

from there we take the next n points along the track. This means

that the distance that the AI can see infront is fixed. This is different

from how Sophy does this; instead of a fixed distance, they provide

a part of the track based on the current speed of the car.

We chose a fixed distance because a variable distance would

increase complexity in both implementation and AI training.

After a small part of the track is cut out, we subtract the position

of the car such that the track is always centered the (0,0) point. This

is useful for AI training because, say you have the same corner but

on a different physical place, both will be normalized to (0,0), and

the AI will not have to learn both corners separately. We also angled

the track based on the rotation of the car, which means that the

direction that the car is pointing will become the vertical axis in the

input. Figure 18 shows this process.

Fig. 18. A small part of the track-map is cut out, normalized, rotated and
given to the AI as input.
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