
HCMC University Of Technology

Faculty of Computer Science & Engineering

Course: Operating Systems

Assignment #1 - System Call

Pham Trung Kien

April 17, 2021

Goal: This assignment helps students to understand steps of modifying, compiling and installing Linux

kernel.

Content: In detail, student will add a new system call which helps applications to know the parent and a

child of a given process. This task requires student to understand system call invocation mechanism as well

as steps of compiling and installing Linux kernel.

Result: After this assignment, student should know how to modify Linux kernel and deploy their own

kernel on a given machine.

1

CONTENTS CONTENTS

Contents

1 Introduction 3

1.1 System calls . 3

1.2 Requirement and Marking . 4

2 Compiling Linux Kernel 5

2.1 Preparation . 5

2.2 Configuration . 6

2.3 Build the configured kernel . 7

2.4 Installing the new kernel . 7

3 Trim the kernel 7

4 System call 8

4.1 The role of system call . 8

4.2 Prototype . 9

4.3 Implementation . 9

4.4 Testing . 11

4.5 Wrapper . 11

4.6 Validation . 12

5 Submission 14

5.1 Source code . 14

5.2 Report . 14

Appendices 14

A Add a new system call to kernel 14

A.1 Define a new system call sys hello() . 14

A.2 Add hello/ to the kernel’s Makefile . 15

A.3 Add the new system call to the system call table . 15

A.4 Add new system call to the system call header file . 15

A.5 Install/update Kernel . 16

A.6 Test system call . 16

B Kernel module 16

Page 2 of 18

1 INTRODUCTION

1 Introduction

1.1 System calls

System calls provide an interface to the services made available by an operating system. These calls are

generally available as routines written in C and C++, although certain low-level tasks (for example, tasks

where hardware must be accessed directly) may have to be written using assembly-language instructions.

As you can see, even simple programs may make heavy use of the operating system. Frequently, systems

execute thousands of system calls per second. Most programmers never see this level of detail, however.

Typically, application developers design programs according to an application programming interface (API).

The API specifies a set of functions that are available to an application programmer, including the parameters

that are passed to each function and the return values the programmer can expect. The functions that make

up an API typically invoke the actual system calls on behalf of the application programmer.

EXAMPLE OF STANDARD API As an example of a standard API, consider the open() function

that is available in UNIX and Linux systems. The API for this function is obtained from the man page. A

description of this API appears below:

$ man open

#include <unistd.h>

5 int open(const char *path, int oflags);

int open(const char *path, int oflags, mode_t mode);

A program that uses the open() function must include the unistd.h header file, as this file defines int data

types (among other things). The parameters passed to open() are as follows.

• const *path - The relative or absolute path to the file that is to be opened.

• int oflags - A bitwise ‘or’ separated list of values that determine the method in which the file is to

be opened.

• mode t mode - A bitwise ‘or’ separated list of values that determine the permissions of the file if it is

created.

The file descriptor returned is always the smallest integer greater than zero that is still available. If a negative

value is returned, then there was an error opening the file.

Figure 1: The handling of a user application invoking the open() system call.

Page 3 of 18

1.2 Requirement and Marking 1 INTRODUCTION

The relationship between an API, the system-call interface, and the operating system is shown in Figure 1,

which illustrates how the operating system handles a user application invoking the open() system call.

1.2 Requirement and Marking

As Figure 2 shown, this is the diagram of doing the assignment. Student will practice the progress of

compiling Linux kernel. After that, the most important part is to implement a system call inside the kernel.

The assignment is divided into multiple stages and score is marked by each stage as Figure 2.

Original OS

Ubuntu Server

Kernel 4.4.0-21-generic

Updated OS

Ubuntu Server

New Kernel 5.0.5-StudentID

Compiling and
trim Kernel

3 points

Write System Call

Add SysCall

3 pointsValidate Syscall

Write A Wrapper
of Syscall

1 points

Report 3 points

Figure 2: Diagram of implementing the assignment.

Page 4 of 18

2 COMPILING LINUX KERNEL

2 Compiling Linux Kernel

Compiling custom kernel has its own advantages and disadvantages. However, new Linux user/admin find it

difficult to compile Linux kernel. Compiling kernel needs to understand few things and then just type couple

of commands. This section guides you basic steps to compile the Linux kernel, but you need to consider the

purposes of these commands for summarizing a short report.

2.1 Preparation

Set up Virtual machine Compiling and installing a new kernel is a risky task so you should work with

the kernel inside a virtual machine. You must download and install Ubuntu 18.04 on a virtual machine to

do this assignment. You could use VMWare or Virtual Box to install the virtual machine. When create

the virtual machine remember to allocate suitable resources to get the best performance of your system when

doing this assignment (originally, number of (virtual) core equal to physical core, about 4GB ram depend

on your system, and 40 GB hard disk space).

Important: Because making a mistake when compiling or installing a new kernel could cause the entire

machine to crash, you must strictly follow instructions in this section. We also encourage you to frequently

take snapshots to avoid repeating time consuming tasks and quickly restore the virtual machine.

Install the core packages Get Ubuntu’s toolchain (gcc, make, and so forth) by installing the build-

essential metapackage:

$ sudo apt-get update

$ sudo apt-get install build-essential

Install kernel-package:

$ sudo apt-get install kernel-package

QUESTION: Why we need to install kernel-package?

Create a kernel compilation directory: It is recommended to create a separate build directory for

your kernel(s). In this example, the directory kernelbuild will be created in the home directory:

$ mkdir ˜/kernelbuild

Download the kernel source: Warning: systemd requires kernel version 3.11 and above (4.2 and above

for unified cgroups hierarchy support). See /usr/share/systemd/README for more information. In this

assignment, you should choose the version 5.0.5 for consistency.

Download the kernel source from http://www.kernel.org. This should be the tarball (tar.xz) file for your

chosen kernel. It can be downloaded by simply right-clicking the tar.xz link in your browser and selecting

Save Link As..., or any other number of ways via alternative graphical or command-line tools that utilize

HTTP, FTP, RSYNC, or Git.

In the following command-line example, wget has been installed and is used inside the ∼/kernelbuild
directory to obtain kernel 5.0.5.

$ cd ˜/kernelbuild

$ wget https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.0.5.tar.xz

QUESTION: Why we have to use another kernel source from the server such as http://www.kernel.org,

can we compile the original kernel (the local kernel on the running OS) directly?

Page 5 of 18

https://www.ubuntu.com/download/desktop/thank-you?country=VN&version=18.04.2&architecture=amd64
https://www.vmware.com/go/getplayer-win
https://www.virtualbox.org/wiki/Downloads

2.2 Configuration 2 COMPILING LINUX KERNEL

Figure 3: Kernel sources from www.kernel.org.

Unpack the kernel source:

Within the build directory, unpack the kernel tarball:

$ tar -xvJf linux-5.0.5.tar.xz

2.2 Configuration

This is the most crucial step in customizing the default kernel to reflect your computer’s precise specifications.

Kernel configuration is set in its .config file, which includes the use of Kernel modules. By setting the

options in .config properly, your kernel and computer will function most efficiently. Since making our own

configuration file is a complicated process, we could borrow the content of configuration file of an existing

kernel currently used by the virtual machine. This file is typically located in /boot/ so our job is simply

copy it to the source code directory:

$ cp /boot/config-$(uname -r) ˜/kernelbuild/.config

Important: Do not forget to rename your kernel version in the General Setup. Because we reuse the

configure file of current kernel, if you skip this, there is the risk of overwriting one of your existing kernels

by mistake. To edit configure file through terminal interface, we must install some essential packages first:

$ sudo apt-get install fakeroot ncurses-dev xz-utils bc flex libelf-dev bison

Then, run $ make menuconfig or $ make nconfig to open Kernel Configuration.

$ make nconfig

To change kernel version, go to General setup option, Access to the line “(-ARCH) Local version - append

to kernel release”. Then enter a dot “.” followed by your MSSV. For example:

.1701234

Press F6 to save your change and then press F9 to exit.

Note: During compiling, you can encounter the error caused by missing openssl packages. You need to

install these packages by running the following command:

$ sudo apt-get install openssl libssl-dev

Page 6 of 18

2.3 Build the configured kernel 3 TRIM THE KERNEL

2.3 Build the configured kernel

First run “make” to compile the kernel and create vmlinuz. It takes a long time to “$ make”, we can run

this stage in parallel by using tag “-j np”, where np is the number of processes you run this command.

$ make

or

$ make -j 4

vmlinuz is “the kernel”. Specifically, it is the kernel image that will be uncompressed and loaded into

memory by GRUB or whatever other boot loader you use.

Then build the loadable kernel modules. Similarly, you can run this command in parallel.

$ make modules

or

$ make -j 4 modules

QUESTION: What is the meaning of these two stages, namely “make” and “make modules”? What are

created and what for?

2.4 Installing the new kernel

First install the modules:

$ sudo make modules_install

or

$ sudo make -j 4 modules_install

Then install the kernel itself:

$ sudo make install

or

$ sudo make -j 4 install

Check out your work: After installing the new kernel by steps described above. Reboot the virtual

machine by typing

sudo reboot

After logging into the computer again, run the following command.

uname -r

If the output string contains your MSSV then it means your custom kernel has been compiled and installed

successfully. You could progress to the next part.

3 Trim the kernel

After install the kernel successfully, you have a new kernel with a default configuration. It will include support

for nearly everything, so it is a general use and huge. With this configuration, you will need very long time

to compile and long time to load. For use in this course, you need a different kernel configuration that create

for your machine. In detail, you should reopen the ”make nconfig” to choose suitable configuration for your

machine. It will present you with a series of menus, from which you will choose the options you want to

include. In most of cases, you have 3 choices: (blank) leave it out; (M) compile it as a module, which will be

load if the feature needed; (*) compile it into the kernel, so it will be load in the first time kernel load. After

Page 7 of 18

4 SYSTEM CALL

the configuration, you can rebuild the kernel (follow steps in section 2.3) and reboot the system to check the

result.

REQUIREMENT:

• Boot the system with the new kernel successfully

• The new kernel must smaller than the default one (You should determine that which is the new

kernel). This includes the boot image is smaller in size, less modules are compiled, etc. Consequently,

the compile of the new kernel will be reduced.

Some helpful information:

You can look for information about devices you have and what drivers are running:

• dmesg to see the messages printed by device drivers or look at /var/log/syslog to see the system log

file

• lspci or lsusb to see the devices that connect to the PCI bus or USB port respectively

• lsmod to see which modules are in use

• Look at /proc/devices to see devices the system has recognized.

• Look at /proc/cpuinfo or /proc/meminfo to see details about the processor and memory you have

When doing the assignment, booting the new kernel may not work. You can choose the previous kernel by

enterring the GRUB menu by pressing SHIFT at the boot time. You also can display GRUB by default

when booting the kernel.

sudo vim /etc/default/grub

And comment out GRUB HIDDEN TIMEOUT. To finish update GRUB by enter:

sudo update-grub

Configuring the kernel is a trial and error process so remember to back up the last configuration file by

a sensible name. You also can use a version control system (github for example) for the management of

changes.

In addition, since the version 2.6.32, make localcongfig is introduced. You can learn about it (link)

4 System call

Now you have known how to a kernel and install it to a system. In this section, you will learn how to add a

new system call to the kernel.

4.1 The role of system call

The main part of this assignment is to implement a new system call that lets the user determine the

information about the parent and the oldest child process. The information about the process’s information

is represented through the following struct:

struct procinfos { //info about processes we need

long studentID;

struct proc_info proc; //process with pid or current process

struct proc_info parent_proc; //parent process

5 struct proc_info oldest_child_proc; //oldest child process

};

Page 8 of 18

https://github.com/
http://www.h-online.com/open/features/Good-and-quick-kernel-configuration-creation-1403046.html

4.2 Prototype 4 SYSTEM CALL

Where the proc info is defined as follows:

struct proc_info { //info about a single process

pid_t pid; //pid of the process

char name[16]; //file name of the program executed

}

procinfos contain information of three processes: proc current process or process with pid; parent proc parent

of the first process; oldest child proc the oldest child process of the first process. The information of processes

is store in struct proc info and contains: pid process is of the process; name name of the program which is

executed.

4.2 Prototype

The prototype of our system call is described as below:

long get_proc_info(pid_t pid, struct proinfos * info);

To invoke get proc info system call, user must provide the PID of the process or −1 in case of current process.

If the system call find out the process having given PID it will get information of the process and put it in

output parameter *info and return 0. However, if the system call cannot find such process, it will return

EINVAL

In addition, every time get proc info is invoked a message including your student ID must print to the kernel.

4.3 Implementation

Now you add the get proc info into the kernel and implement it. You look at appendix A to see the process

of add a new system call into a kernel. The process of add get proc info can be described in brief:

In the kernel source directory enter the following command:

$ pwd

˜/kernelbuild

$ mkdir get_proc_info

$ cd get_proc_info

5 $ touch sys_get_proc_info.c

Add the following lines to sys get proc info.c

#include <linux/kernel.h>

#include <unistd.h>

struct procinfos { //info about processes we need

5 long studentID; //for the assignment testing

struct proc_info proc; //process with pid or current process

struct proc_info parent_proc; //parent process

struct proc_info oldest_child_proc; //oldest child process

};

10

struct proc_info { //info about a single process

pid_t pid; //pid of the process

char name[16]; //file name of the program executed

};

15

asmlinkage long sys_get_proc_info(pid_t pid, struct procinfos * info){

Page 9 of 18

4.3 Implementation 4 SYSTEM CALL

// TODO: implement the system call

}

HINT:

• To find the current process: look at arch/x86/include/asm/current.h or for simple use macro

current (current -> pid)

• To find info about each process: look at include/linux/sched.h

• To after the trimming process the time to build the kernel is reduced to about 10 minutes but it is till

a long time to compile. To make to the development of system call as fast as possible, you can use

kernel module to test the system call represented as a module in advance (Appd B).

Create a Makefile for the source file:

$ pwd

˜/kernelbuild/get_proc_info

$ touch Makefile

$ echo "obj-y := get_proc_info.o"

Add get proc info/ to the kernel Makefile

$ pwd

˜/kernelbuild/get_proc_info

$ cd ..

$ pwd

5 ˜/kernelbuild/

$ vim Makefile

Find the following line:

core-y += kernel/ mm/ fs/ ipc/ security/ crypto/ block/

Add get proc info/ to the end of this line.

core-y += kernel/ mm/ fs/ ipc/ security/ crypto/ block/ get_proc_info/

Add the new system call to the system call table:

$ pwd

˜/kernelbuild/

$ cd arch/x86/entry/syscalls/

$ echo "548 64 get_proc_info sys_get_proc_info" >> syscall_64.tbl

QUESTION: What is the meaning of fields of the line that just add to the system call table (548, 64,

get proc info, i.e.)

Add new system call to the system call header file:

$ ˜/kernelbuild/include/linux/

Open syscalls.h and add the following line before #endif statement.

struct proc_info;

struct procinfos;

asmlinkage long sys_get_proc_info(pid_t pid, struct procinfos * info);

QUESTION: What is the meaning of each line above?

Finally recompile the kernel and restart the system to apply the new kernel:

Page 10 of 18

4.4 Testing 4 SYSTEM CALL

$ make -j 8

$ make modules -j 8

$ sudo make modules_install

$ sudo make install

5 $ sudo reboot

4.4 Testing

After booting to the new kernel, create a small C program to check if the system call has been integrated

into the kernel.

#include <sys/syscall.h>

#include <stdio.h>

#include <unistd.h>

5 #def ine SIZE 200

int main(){

long sys_return_value;

unsigned long info[SIZE];

10 sys_return_value = syscall(548, -1, &info);

printf("My student ID: %lu\n", info[0]);

return 0;

}

QUESTION: Why this program could indicate whether our system call works or not?

4.5 Wrapper

Although get proc info system call works properly, we still have to invoke it through its number which

is quite inconvenient for other programmers so we need to implement a C wrapper for it to make it easy to

use. This can be done outside the kernel. Thus, to avoid recompile the kernel again, we leave out kernel

source code directory and create another directory to store source code for our wrapper. We first create a

header file which contains the prototype of the wrapper and declare procinfos and proc info struct.

Naming the header file with get proc info.h and put the following lines into its content:

#i fnde f _GET_PROC_INFO_H_

#def ine _GET_PROC_INFO_H_

#include <unistd.h>

5 #include <unistd.h>

struct procinfos {

long studentID;

struct proc_info proc;

10 struct proc_info parent_proc;

struct proc_info oldest_child_proc;

};

struct proc_info {

15 pid_t pid;

char name[16];

};

Page 11 of 18

4.6 Validation 4 SYSTEM CALL

long sys_get_proc_info(pid_t pid, struct procinfos * info);

20 #endi f // _GET_PROC_INFO_H_

Note: You must define fields in procinfos and proc info struct in the same order as you did in the

kernel.

QUESTION: Why we have to redefine procinfos and proc info struct while we have already defined

it inside the kernel?

We then create a file named get proc info.c to hold the source code file for wrapper. The content of

this file should be as follows:

#include "get_proc_info.h"

#include <linux/kernel.h>

#include <sys/syscall.h>

#include <unistd.h>

5

long get_proc_info(pid_t pid, struct procinfos * info) {

// TODO: implement the wrapper here.

}

Hint: You could implement your wrapper based on the code of our test program above.

4.6 Validation

You could check your work by write an additional test module to call this functions but do not include the

test part to your source file (get proc info.c). After making sure that the wrapper work properly, we

then install it to our virtual machine. First, we must ensure everyone could access this function by making

the header file visible to GCC. Run following command to copy our header file to header directory of our

system:

$ sudo cp <path to get_proc_info.h> /usr/include

QUESTION: Why root privilege (e.g. adding sudo before the cp command) is required to copy the header

file to /usr/include?

We then compile our source code as a shared object to allow user to integrate our system call to their

applications. To do so, run the following command:

$ gcc -share -fpic get_proc_info.c -o libget_proc_info.so

If the compilation ends successfully, copy the output file to /usr/lib. (Remember to add sudo before cp

command).

QUESTION: Why we must put -share and -fpic option into gcc command?.

We only have the last step: check all of your work. To do so, write following program, and compile it with

-lget proc info option. The result should be consistent with the process information.

#include <get_proc_info.h>

#include <sys/types.h>

#include <unistd.h>

#include <stdio.h>

5 #include <stdint.h>

int main() {

Page 12 of 18

4.6 Validation 4 SYSTEM CALL

pid_t mypid = getpid();

printf("PID: %d\n", mypid);

10 struct procinfos info;

i f (get_proc_info(mypid, &info) == 0) {

// TODO: print all information in struct procinfos info

} e l s e {

15 printf("Cannot get information from the process %d\n", mypid);

}

// If necessary, uncomment the following line to make this program run

// long enough so that we could check out its dependence

// sleep(100);

20 }

You should write several tests using get process time to validate the correctness.

Page 13 of 18

A ADD A NEW SYSTEM CALL TO KERNEL

5 Submission

5.1 Source code

After you finish the assignment, you need to compress the following code files into a zip file:

• sys get process time.c

• get process time.c

• all files you changed in the 5.0.5 Linux kernel

• report.pdf (Your report in PDF format)

Requirement: you have to code the system call followed by the coding style. Reference:

https://www.gnu.org/prep/standards/html node/Writing-C.html.

5.2 Report

As Figure 2 shown, the score for compiling kernel is 2 points, System call is 3 points, Wrapper of System

call is 2 points and the report is 3 points. For the content of assignment report, describe steps of adding

procmem system call to Linux kernel. The report layout is follows:

• Adding new system call

• System call Implementation

• Compilation and Installation process

• Making API for system call

In the report, just describe steps in short, succinct paragraphs. You have to add your answer to questions

with the highlight word “QUESTION” throughout this instruction to related sections. Please do not

answer questions as a list of items. One addition requirement for your report: describe in detail the process

you study and implement the core (source code) of the system call. Your score are given based on the

correctness of your answers and the clarify of the report content.

Appendices

A Add a new system call to kernel

A.1 Define a new system call sys hello()

To add a new system call to kernel, you first have to define the new system call. In this appendix, sys hello()

is used which print a message into the kernel log. In the kernel source directory, create a new directory

named hello and change the directory to hello:

mkdir hello

cd ./hello

Create hello.c with the following lines:

Page 14 of 18

A.2 Add hello/ to the kernel’s Makefile A ADD A NEW SYSTEM CALL TO KERNEL

#include <linux/kernel.h>

asmlinkage long sys_hello(void)

{

5 printk("Hello world\n");

return 0;

}

printk() prints to the kernel log file.

Create a Makefile in the hello directory and add the following line:

obj-y := hello.o

A.2 Add hello/ to the kernel’s Makefile

Change the directory and open the kernel Makefile:

cd ..

vim Makefile

Find the following line:

core-y += kernel/ mm/ fs/ ipc/ security/ crypto/ block/

Add hello/ to the end of this line:

core-y += kernel/ mm/ fs/ ipc/ security/ crypto/ block/ hello/

A.3 Add the new system call to the system call table

Modern processors support invoking system calls in many different ways depend on their architecture. Since

our virtual machine runs on x86 processors, we only consider about Linux’s system call implementation for

this architecture.

In those file, each system call is declared in one row with following information: number, ABI, name, entry

point and compat entry point separated by a TAB. System calls are call from user space through their

numbers so our system call’s number must be unique.

In the kernel source folder, run the following command to change the directory:

cd arch/x86/entry/syscalls/

Go to the last of ‘syscall 64.tbl’ and add the following line. (if you are on a 32-bit system you’ll need to

change ‘syscall 32.tbl’. For 64-bit, change ‘syscall 64.tbl’.)

548 64 hello sys_hello

A.4 Add new system call to the system call header file

At this time, we have told the kernel that we have a new system call to be deployed but we still do not let

it know the definition (e.g. its input parameters, return values, etc.) of this new system call. The next job

is to explicitly define this system call. To do so, we must add necessary information to kernel’s header files.

Go to the kernel source file and change the directory to include/linux/

cd include/linux/

Page 15 of 18

A.5 Install/update Kernel B KERNEL MODULE

Open syscalls.h and add the following line to near the end of file (before #endif statement)

asmlinkage long sys_hello(void);

A.5 Install/update Kernel

Recompile the kernel:

make -j 8

make modules -j 8

sudo make modules_install

sudo make install

And reboot to check the result.

A.6 Test system call

Create a C source file to call the system call.

//hello-syscall.c

#include <stdio.h>

#include <unistd.h>

int main()

5 {

long int amma = syscall(548);

printf("System call sys_hello returned %ld\n", amma);

return 0;

}

Now compile hello-syscall.c and check the result.

$ gcc hello-syscall.c

$./a.out

In case of all the steps are done correctly, you will get the out put.

System call sys_hello returned 0

Run the following command to check the kernel message.

$ dmesg

This will display Hello World at the end of the kernel’s message.

This is end process of adding sys hello into you linux kernel.

B Kernel module

Treated the system call as a Kernel Module is a simple and fast way to save time compiling the kernel.

To see how Kernel Module actually work, look at the Hello World example:

/*

* hello-1.c - The simplest kernel module.

*/

#include <linux/module.h> /* Needed by all modules */

5 #include <linux/kernel.h> /* Needed for KERN_INFO */

Page 16 of 18

B KERNEL MODULE

int init_module(void)

{

printk(KERN_INFO "Hello world 1.\n");

10

/*

* A non 0 return means init_module failed; module can’t be loaded.

*/

return 0;

15 }

void cleanup_module(void)

{

printk(KERN_INFO "Goodbye world 1.\n");

20 }

Kernel module must have at least two functions: a “start” (initialization) function called init module()

which is called when the module is insmoded into the kernel, and an “end” (clean up) function called

cleanup module() which is called just before it is rmmoded.

Compiling kernel modules and run it: please refer to the following link. For a deeper view of Kernel

Module, look at link.

In this assignment, you can use the Kernel Module to test before writing the system call and compiling it.

#include <linux/module.h>

#include <linux/moduleparam.h>

#include <linux/kernel.h>

#include <linux/init.h>

5 #include <linux/stat.h>

MODULE_LICENSE("GPL");

module_param(PID, long , S_IRUSR);

10 MODULE_PARM_DESC(PID, "PID of the process");

int init_module(void)

{

printk(KERN_INFO "Kernel module starts\n");

15 printk(KERN_INFO "Input argument from insmod: %ld\n", PID);

// TODO: Implement the kernel module

return 0;

}

20 void cleanup_module(void)

{

printk(KERN_INFO "Kernel module exits\n");

}

To check the kernel module:

$ sudo insmod <name of the module> PID=1

Page 17 of 18

http://www.tldp.org/LDP/lkmpg/2.6/html/x181.html
http://www.tldp.org/LDP/lkmpg/2.6/html/c119.html

B KERNEL MODULE

Reversion History

Revision Date Author Description

1.0 2016 PD Nguyen, DH Nguyen, MT Chung First Version

2.0 2019 TK Pham Trim kernel, change the system call, add question

Page 18 of 18

	Introduction
	System calls
	Requirement and Marking

	Compiling Linux Kernel
	Preparation
	Configuration
	Build the configured kernel
	Installing the new kernel

	Trim the kernel
	System call
	The role of system call
	Prototype
	Implementation
	Testing
	Wrapper
	Validation

	Submission
	Source code
	Report

	Appendices
	Add a new system call to kernel
	Define a new system call sys_hello()
	Add hello/ to the kernel's Makefile
	Add the new system call to the system call table
	Add new system call to the system call header file
	Install/update Kernel
	Test system call

	Kernel module

