
Hamilton: an open source
micro framework
for creating dataframes
December 2021

Stefan Krawczyk

#sfhamilton #MLOps #machinelearning

@stefkrawczyk
linkedin.com/in/skrawczyk

Try out Stitch Fix → goo.gl/Q3tCQ3

https://twitter.com/stefkrawczyk
http://www.linkedin.com/skrawczyk
https://goo.gl/Q3tCQ3

What to keep in mind for the next ~15 minutes?

1. Hamilton is a new paradigm to create dataframes*.

2. Hamilton enables Data Scientists to focus on functions
rather than “glue” code.

3. https://github.com/stitchfix/hamilton

#sfhamilton #MLOps #machinelearning 2

https://github.com/stitchfix/hamilton

Outline: Hamilton
> Backstory: who, what, & why
Hamilton
The Result
Future

Backstory: who

#sfhamilton #MLOps #machinelearning 4

Forecasting, Estimation, & Demand (FED)Team

● Data Scientists that are responsible for forecasts that help the

business make operational decisions.

○ e.g. staffing levels

● One of the oldest teams at Stitch Fix.

Backstory: what

#sfhamilton #MLOps #machinelearning 5

Forecasting, Estimation, & Demand (FED)Team

FED workflow:

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/0?callback=close&name=slides&callback_type=back&v=28289&s=717.8826771653543

FED workflow: + ==

Backstory: what

#sfhamilton #MLOps #machinelearning 6

Forecasting, Estimation, & Demand Team

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/0?callback=close&name=slides&callback_type=back&v=28289&s=717.8826771653543

Backstory: what

#sfhamilton #MLOps #machinelearning

Creating a dataframe for time-series modeling.

7

Biggest problems here

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/1?callback=close&name=slides&callback_type=back&v=28289&s=717.8858359028974

Backstory: what

#sfhamilton #MLOps #machinelearning 8

Creating a dataframe for time-series modeling.

Focus of talk

Biggest problems here

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/1?callback=close&name=slides&callback_type=back&v=28289&s=717.8858267716536

Backstory: why

#sfhamilton #MLOps #machinelearning 9

What is this dataframe & why is it causing 🔥
?

(not big data)

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/3?callback=close&name=slides&callback_type=back&v=28289&s=493.77722927904506

Backstory: why

#sfhamilton #MLOps #machinelearning 10

What is this dataframe & why is it causing 🔥 ?

Columns are
functions of

other columns

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/5?callback=close&name=slides&callback_type=back&v=28289&s=479.2243393700787
https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/6?callback=close&name=slides&callback_type=back&v=28289&s=486.46062992125985

Backstory: why

#sfhamilton #MLOps #machinelearning 11

What is this dataframe & why is it causing 🔥 ?

g(f(A,B), …)

h(g(f(A,B), …), …)

etc🔥

Columns are
functions of

other columns:

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/5?callback=close&name=slides&callback_type=back&v=28289&s=479.2243393700787

Backstory: why

#sfhamilton #MLOps #machinelearning 12

Featurization: some example code

df = load_dates() # load date ranges
df = load_actuals(df) # load actuals, e.g. spend, signups
df['holidays'] = is_holiday(df['year'], df['week']) # holidays
df['avg_3wk_spend'] = df['spend'].rolling(3).mean() # moving average of spend
df['spend_per_signup'] = df['spend'] / df['signups'] # spend per person signed up
df['spend_shift_3weeks'] = df.spend['spend'].shift(3) # shift spend because ...
df['spend_shift_3weeks_per_signup'] = df['spend_shift_3weeks'] / df['signups']

def my_special_feature(df: pd.DataFrame) -> pd.Series:
 return (df['A'] - df['B'] + df['C']) * weights

df['special_feature'] = my_special_feature(df)
...

Backstory: why

#sfhamilton #MLOps #machinelearning 13

Featurization: some example code

df = load_dates() # load date ranges
df = load_actuals(df) # load actuals, e.g. spend, signups
df['holidays'] = is_holiday(df['year'], df['week']) # holidays
df['avg_3wk_spend'] = df['spend'].rolling(3).mean() # moving average of spend
df['spend_per_signup'] = df['spend'] / df['signups'] # spend per person signed up
df['spend_shift_3weeks'] = df.spend['spend'].shift(3) # shift spend because ...
df['spend_shift_3weeks_per_signup'] = df['spend_shift_3weeks'] / df['signups']

def my_special_feature(df: pd.DataFrame) -> pd.Series:
 return (df['A'] - df['B'] + df['C']) * weights

df['special_feature'] = my_special_feature(df)
...

Now scale this code to 1000+ columns & a growing team 😬

Backstory: why

○ Unit testing 👎
○ Documentation 👎
○ Onboarding 📈 👎
○ Debugging 📈 👎

#sfhamilton #MLOps #machinelearning 14

df = load_dates() # load date ranges
df = load_actuals(df) # load actuals, e.g. spend, signups
df['holidays'] = is_holiday(df['year'], df['week']) # holidays
df['avg_3wk_spend'] = df['spend'].rolling(3).mean() # moving average of spend
df['spend_per_signup'] = df['spend'] / df['signups'] # spend per person signed up
df['spend_shift_3weeks'] = df.spend['spend'].shift(3) # shift spend because ...
df['spend_shift_3weeks_per_signup'] = df['spend_shift_3weeks'] / df['signups']

def my_special_feature(df: pd.DataFrame) -> pd.Series:
 return (df['A'] - df['B'] + df['C']) * weights

df['special_feature'] = my_special_feature(df)
...

Scaling this type of code results in the following:
- lots of heterogeneity in function definitions & behaviors
- inline dataframe manipulations
- code ordering is super important

Backstory - Summary

#sfhamilton #MLOps #machinelearning 15

1. Code for featurization == 🤯.

2. Data all fits in memory.

Outline: Hamilton
Backstory: who, what, & why
> Hamilton
The Result
Future

Hamilton: Code → DAG → DF

Code:

DAG:

DF:
#sfhamilton #MLOps #machinelearning 17

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
 """Some docs"""
 return some_library(year, week)
def avg_3wk_spend(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.rolling(3).mean()
def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend / signups
def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.shift(3)
def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend_shift_3weeks / signups

DS

Platform

DS

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/3?callback=close&name=slides&callback_type=back&v=28289&s=493.77721456692916

Hamilton: a new paradigm

1. Write functions!

2. Function name

== output column

3. Function inputs

== input columns

#sfhamilton #MLOps #machinelearning 18

Hamilton: a new paradigm

4. Use type hints for

typing checking.

5. Documentation is

easy and natural.

#sfhamilton #MLOps #machinelearning 19

Hamilton: code to DAG - how?

1. Inspect module.

2. Nodes & edges +

graph theory 101.

#sfhamilton #MLOps #machinelearning 20

Hamilton: why is it called Hamilton?

#sfhamilton #MLOps #machinelearning

Naming things is hard...

1. Associations with “FED”:

a. Alexander Hamilton is the father of the Fed.

b. FED models business mechanics.

2. We’re doing some basic graph theory.

apropos Hamilton
21

Example Hamilton Code
So you can get a feel for this paradigm...

#sfhamilton #MLOps #machinelearning 22

Basic code - defining “Hamilton” functions

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
 """Some docs"""
 return some_library(year, week)

def avg_3wk_spend(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.rolling(3).mean()

def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend / signups

def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.shift(3)

def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend_shift_3weeks / signups

#sfhamilton #MLOps #machinelearning 23

my_functions.py

Basic code - defining “Hamilton” functions

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
 """Some docs"""
 return some_library(year, week)

def avg_3wk_spend(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.rolling(3).mean()

def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend / signups

def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.shift(3)

def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend_shift_3weeks / signups

#sfhamilton #MLOps #machinelearning 24

Output Column
Input Column

my_functions.py

Driver code - how do you get the Dataframe?
from hamilton import driver
initial_columns = { # load from actuals / initial data
 'A': ...,
 'B': ...,
 'C': 3,
 'signups': ...,
 'spend': ...,
 'week': ...,
 'year': ...
}
module_name = 'my_functions' # e.g. my_functions.py
module = importlib.import_module(module_name) # The python file to crawl

dr = driver.Driver(initial_columns, module) # can pass in multiple modules

output_columns = ['year','week',...,'spend_shift_3weeks_per_signup','special_feature']

df = dr.execute(output_columns, display_graph=True) # only walk DAG for what is needed
#sfhamilton #MLOps #machinelearning 25

Driver code - how do you get the Dataframe?
from hamilton import driver
initial_columns = { # load from actuals / initial data
 'A': ...,
 'B': ...,
 'C': 3,
 'signups': ...,
 'spend': ...,
 'week': ...,
 'year': ...
}
module_name = 'my_functions' # e.g. my_functions.py
module = importlib.import_module(module_name) # The python file to crawl

dr = driver.Driver(initial_columns, module) # can pass in multiple modules

output_columns = ['year','week',...,'spend_shift_3weeks_per_signup','special_feature']

df = dr.execute(output_columns, display_graph=True) # only walk DAG for what is needed
#sfhamilton #MLOps #machinelearning 26

Driver code - how do you get the Dataframe?
from hamilton import driver
initial_columns = { # load from actuals / initial data
 'A': ...,
 'B': ...,
 'C': 3,
 'signups': ...,
 'spend': ...,
 'week': ...,
 'year': ...
}
module_name = 'my_functions' # e.g. my_functions.py
module = importlib.import_module(module_name) # The python file to crawl

dr = driver.Driver(initial_columns, module) # can pass in multiple modules

output_columns = ['year','week',...,'spend_shift_3weeks_per_signup','special_feature']

df = dr.execute(output_columns, display_graph=True) # only walk DAG for what is needed
#sfhamilton #MLOps #machinelearning 27

Driver code - how do you get the Dataframe?
from hamilton import driver
initial_columns = { # load from actuals / initial data
 'A': ...,
 'B': ...,
 'C': 3,
 'signups': ...,
 'spend': ...,
 'week': ...,
 'year': ...
}
module_name = 'my_functions' # e.g. my_functions.py
module = importlib.import_module(module_name) # The python file to crawl

dr = driver.Driver(initial_columns, module) # can pass in multiple modules

output_columns = ['year','week',...,'spend_shift_3weeks_per_signup','special_feature']

df = dr.execute(output_columns, display_graph=True) # only walk DAG for what is needed
#sfhamilton #MLOps #machinelearning 28

Driver code - how do you get the Dataframe?
from hamilton import driver
initial_columns = { # load from actuals / initial data
 'A': ...,
 'B': ...,
 'C': 3,
 'signups': ...,
 'spend': ...,
 'week': ...,
 'year': ...
}
module_name = 'my_functions' # e.g. my_functions.py
module = importlib.import_module(module_name) # The python file to crawl

dr = driver.Driver(initial_columns, module) # can pass in multiple modules

output_columns = ['year','week',...,'spend_shift_3weeks_per_signup','special_feature']

df = dr.execute(output_columns, display_graph=True) # only walk DAG for what is needed
#sfhamilton #MLOps #machinelearning 29

Driver code - how do you get the Dataframe?
from hamilton import driver
initial_columns = { # load from actuals / initial data
 'A': ...,
 'B': ...,
 'C': 3,
 'signups': ...,
 'spend': ...,
 'week': ...,
 'year': ...
}
module_name = 'my_functions' # e.g. my_functions.py
module = importlib.import_module(module_name) # The python file to crawl

dr = driver.Driver(initial_columns, module) # can pass in multiple modules

output_columns = ['year','week',...,'spend_shift_3weeks_per_signup','special_feature']

df = dr.execute(output_columns, display_graph=True) # only walk DAG for what is needed
#sfhamilton #MLOps #machinelearning 30

Driver code - how do you get the Dataframe?
from hamilton import driver
initial_columns = { # load from actuals / initial data
 'A': ...,
 'B': ...,
 'C': 3,
 'signups': ...,
 'spend': ...,
 'week': ...,
 'year': ...
}
module_name = 'my_functions' # e.g. my_functions.py
module = importlib.import_module(module_name) # The python file to crawl

dr = driver.Driver(initial_columns, module) # can pass in multiple modules

output_columns = ['year','week',...,'spend_shift_3weeks_per_signup','special_feature']

df = dr.execute(output_columns, display_graph=True) # only walk DAG for what is needed
#sfhamilton #MLOps #machinelearning 31

Can visualize what we’re executing too!

Outline: Hamilton
Backstory: who, what, & why
Hamilton
> The Result
Future

The Result - after 1.5+ years in production

#sfhamilton #MLOps #machinelearning 33

The Result:

● Unit testing (found bugs during migration) ✅
● Documentation ✅
● Visualization ✅
● Onboarding ✅
● Debugging ✅
● Syntactic sugar to keep things DRY ✅
● DS focus on what matters ✅
● Platform owns “glue” code ✅

#sfhamilton #MLOps #machinelearning 34

The Result - after 1.5+ years in production

DS Quote:

#sfhamilton #MLOps #machinelearning 35

I've previously onboarded at an organization that dealt with multiple layers of information dependency. The
“data product” was a result of years of multiple authors adding layers without systematic examination for
potholes like circular references. Because of that, the product was a terribly fragile product and knowledge
transfers took place through a series of ad-hoc trial and error by a new member; they run into an issue, ask
their supervisor for clarification, then they are handed an opaque explanation and workaround which then
gets propagated through a game of telephone to the next person (the mechanics of solution is propagated,
but the reason behind the solution is not). In my own experience, the ah-ha moment did not occur until I
doggedly followed the thread of information and built a dag on my own.

Having had that experience, onboarding a data product that already had a graph structure to embody the
complex dependency was a delight; chief among its many benefits is that the product is amenable to other
generic analysis approaches for graphs. Moreover, because of the abstraction that separates dataframe
structure from quantitative specification, it helps a new person to process the information without having to
have a priori domain knowledge, since dependencies are clearly specified and functions are simple and
concise.

The Result - after 1.5+ years in production

DS Quote: TL;DR:

#sfhamilton #MLOps #machinelearning 36

Before/Previous:
● understanding code base is hard.
● it’s not obvious where things are used.
● easy to break things.

With Hamilton:
● no prior domain knowledge required to ramp up.
● dependencies are clearly specified.
● functions are simple and concise.
● hard to break things.

The Result: try it for yourself!

> pip install sf-hamilton

#sfhamilton #MLOps #machinelearning 37

Get started in <15 minutes!

Documentation - see README -
https://github.com/stitchfix/hamilton#hamilton-in-15-minutes

Example
https://github.com/stitchfix/hamilton/tree/main/examples/hello_world

https://github.com/stitchfix/hamilton#hamilton-in-15-minutes
https://github.com/stitchfix/hamilton/tree/main/examples/hello_world

The Result: try it for yourself!

> pip install sf-hamilton

#sfhamilton #MLOps #machinelearning 38

https://github.com/stitchfix/hamilton

⭐ on github
☑ create issues on github
📣 join us on discord

https://github.com/stitchfix/hamilton
https://discord.gg/wCqxqBqn73

Outline: Hamilton
Backstory: who, what, & why
Hamilton
The Result
> Future

Future

Ideas:
● distributed processing

○ we have a DAG, why not farm it out?

● why pandas?
○ no reason we couldn’t support other data structures
○ extend to anything that can be “unioned/merged” together

● general featurization
○ can we take this more mainstream?

#sfhamilton #MLOps #machinelearning 40

Thank you! Questions?

Try out Stitch Fix → goo.gl/Q3tCQ3@stefkrawczyk
linkedin.com/in/skrawczyk

https://goo.gl/Q3tCQ3
https://twitter.com/stefkrawczyk
http://www.linkedin.com/skrawczyk

