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What to keep in mind for the next ~15 minutes?

1. Hamilton is a new paradigm to  create dataframes*.

2. Hamilton enables Data Scientists to focus on functions
rather than “glue” code.

3. https://github.com/stitchfix/hamilton
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https://github.com/stitchfix/hamilton
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Backstory: who
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Forecasting, Estimation, & Demand (FED)Team

● Data Scientists that are responsible for forecasts that help the 

business make operational decisions.

○ e.g. staffing levels

● One of the oldest teams at Stitch Fix.



Backstory: what
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Forecasting, Estimation, & Demand (FED)Team

FED workflow:

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/0?callback=close&name=slides&callback_type=back&v=28289&s=717.8826771653543


FED workflow:                         +              ==

Backstory: what
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Forecasting, Estimation, & Demand Team

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/0?callback=close&name=slides&callback_type=back&v=28289&s=717.8826771653543


Backstory: what
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Creating a dataframe for time-series modeling.

7

Biggest problems here

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/1?callback=close&name=slides&callback_type=back&v=28289&s=717.8858359028974


Backstory: what
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Creating a dataframe for time-series modeling.

Focus of talk

Biggest problems here

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/1?callback=close&name=slides&callback_type=back&v=28289&s=717.8858267716536


Backstory: why
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What is this dataframe & why is it causing 🔥 
?

(not big data)

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/3?callback=close&name=slides&callback_type=back&v=28289&s=493.77722927904506


Backstory: why
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What is this dataframe & why is it causing 🔥 ?

Columns are 
functions of 

other columns

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/5?callback=close&name=slides&callback_type=back&v=28289&s=479.2243393700787
https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/6?callback=close&name=slides&callback_type=back&v=28289&s=486.46062992125985


Backstory: why
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What is this dataframe & why is it causing 🔥 ? 

g(f(A,B), …) 

h(g(f(A,B), …), …)

etc🔥

Columns are 
functions of 

other columns:

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/5?callback=close&name=slides&callback_type=back&v=28289&s=479.2243393700787


Backstory: why
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Featurization: some example code

df = load_dates()  # load date ranges
df = load_actuals(df)  # load actuals, e.g. spend, signups
df['holidays'] = is_holiday(df['year'], df['week'])  # holidays
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()  # moving average of spend
df['spend_per_signup'] = df['spend'] / df['signups']  # spend per person signed up
df['spend_shift_3weeks'] = df.spend['spend'].shift(3)  # shift spend because ...
df['spend_shift_3weeks_per_signup'] = df['spend_shift_3weeks'] / df['signups'] 

def my_special_feature(df: pd.DataFrame) -> pd.Series:
   return (df['A'] - df['B'] + df['C']) * weights

df['special_feature'] = my_special_feature(df)
# ...



Backstory: why
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Featurization: some example code

df = load_dates()  # load date ranges
df = load_actuals(df)  # load actuals, e.g. spend, signups
df['holidays'] = is_holiday(df['year'], df['week'])  # holidays
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()  # moving average of spend
df['spend_per_signup'] = df['spend'] / df['signups']  # spend per person signed up
df['spend_shift_3weeks'] = df.spend['spend'].shift(3)  # shift spend because ...
df['spend_shift_3weeks_per_signup'] = df['spend_shift_3weeks'] / df['signups'] 

def my_special_feature(df: pd.DataFrame) -> pd.Series:
   return (df['A'] - df['B'] + df['C']) * weights

df['special_feature'] = my_special_feature(df)
# ...

Now scale this code to 1000+ columns & a growing team 😬



Backstory: why 

○ Unit testing 👎
○ Documentation 👎
○ Onboarding  📈 👎
○ Debugging  📈 👎
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df = load_dates()  # load date ranges
df = load_actuals(df)  # load actuals, e.g. spend, signups
df['holidays'] = is_holiday(df['year'], df['week'])  # holidays
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()  # moving average of spend
df['spend_per_signup'] = df['spend'] / df['signups']  # spend per person signed up
df['spend_shift_3weeks'] = df.spend['spend'].shift(3)  # shift spend because ...
df['spend_shift_3weeks_per_signup'] = df['spend_shift_3weeks'] / df['signups'] 

def my_special_feature(df: pd.DataFrame) -> pd.Series:
   return (df['A'] - df['B'] + df['C']) * weights

df['special_feature'] = my_special_feature(df)
# ...

Scaling this type of code results in the following:
- lots of heterogeneity in function definitions & behaviors
- inline dataframe manipulations
- code ordering is super important



Backstory - Summary
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1. Code for featurization == 🤯.

2. Data all fits in memory.
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Hamilton: Code → DAG → DF

Code:

DAG:

DF: 
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def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
   """Some docs"""
   return some_library(year, week)
def avg_3wk_spend(spend: pd.Series) -> pd.Series:
   """Some docs"""
   return spend.rolling(3).mean()
def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
   """Some docs"""
   return spend / signups
def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
   """Some docs"""
   return spend.shift(3)
def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
   """Some docs"""
   return spend_shift_3weeks / signups

DS

Platform

DS 

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/3?callback=close&name=slides&callback_type=back&v=28289&s=493.77721456692916


Hamilton: a new paradigm

1. Write functions!

2. Function name 

== output column

3. Function inputs 

== input columns
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Hamilton: a new paradigm

4. Use type hints for 

typing checking.

5. Documentation is 

easy and natural.
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Hamilton: code to DAG - how?

1. Inspect module.

2. Nodes & edges + 

graph theory 101.
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Hamilton: why is it called Hamilton?
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Naming things is hard...

1. Associations with “FED”:

a. Alexander Hamilton is the father of the Fed.

b. FED models business mechanics.

2. We’re doing some basic graph theory.

apropos Hamilton
21



Example Hamilton Code
So you can get a feel for this paradigm...
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Basic code - defining “Hamilton” functions

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
   """Some docs"""
   return some_library(year, week)

def avg_3wk_spend(spend: pd.Series) -> pd.Series:
   """Some docs"""
   return spend.rolling(3).mean()

def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
   """Some docs"""
   return spend / signups

def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
   """Some docs"""
   return spend.shift(3)

def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
   """Some docs"""
   return spend_shift_3weeks / signups
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my_functions.py



Basic code - defining “Hamilton” functions

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
   """Some docs"""
   return some_library(year, week)

def avg_3wk_spend(spend: pd.Series) -> pd.Series:
   """Some docs"""
   return spend.rolling(3).mean()

def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
   """Some docs"""
   return spend / signups

def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
   """Some docs"""
   return spend.shift(3)

def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
   """Some docs"""
   return spend_shift_3weeks / signups
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Output Column
Input Column

my_functions.py



Driver code - how do you get the Dataframe?
from hamilton import driver
initial_columns = {  # load from actuals / initial data
   'A': ...,
   'B': ...,
   'C': 3,
   'signups': ...,
   'spend': ...,
   'week': ...,
   'year': ...
}
module_name = 'my_functions'  # e.g. my_functions.py
module = importlib.import_module(module_name)  # The python file to crawl 

dr = driver.Driver(initial_columns, module)  # can pass in multiple modules

output_columns = ['year','week',...,'spend_shift_3weeks_per_signup','special_feature']

df = dr.execute(output_columns, display_graph=True) # only walk DAG for what is needed
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Driver code - how do you get the Dataframe?
from hamilton import driver
initial_columns = {  # load from actuals / initial data
   'A': ...,
   'B': ...,
   'C': 3,
   'signups': ...,
   'spend': ...,
   'week': ...,
   'year': ...
}
module_name = 'my_functions'  # e.g. my_functions.py
module = importlib.import_module(module_name)  # The python file to crawl 

dr = driver.Driver(initial_columns, module)  # can pass in multiple modules

output_columns = ['year','week',...,'spend_shift_3weeks_per_signup','special_feature']

df = dr.execute(output_columns, display_graph=True) # only walk DAG for what is needed
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Driver code - how do you get the Dataframe?
from hamilton import driver
initial_columns = {  # load from actuals / initial data
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dr = driver.Driver(initial_columns, module)  # can pass in multiple modules

output_columns = ['year','week',...,'spend_shift_3weeks_per_signup','special_feature']

df = dr.execute(output_columns, display_graph=True) # only walk DAG for what is needed
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Driver code - how do you get the Dataframe?
from hamilton import driver
initial_columns = {  # load from actuals / initial data
   'A': ...,
   'B': ...,
   'C': 3,
   'signups': ...,
   'spend': ...,
   'week': ...,
   'year': ...
}
module_name = 'my_functions'  # e.g. my_functions.py
module = importlib.import_module(module_name)  # The python file to crawl 

dr = driver.Driver(initial_columns, module)  # can pass in multiple modules

output_columns = ['year','week',...,'spend_shift_3weeks_per_signup','special_feature']

df = dr.execute(output_columns, display_graph=True) # only walk DAG for what is needed
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Driver code - how do you get the Dataframe?
from hamilton import driver
initial_columns = {  # load from actuals / initial data
   'A': ...,
   'B': ...,
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   'spend': ...,
   'week': ...,
   'year': ...
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Driver code - how do you get the Dataframe?
from hamilton import driver
initial_columns = {  # load from actuals / initial data
   'A': ...,
   'B': ...,
   'C': 3,
   'signups': ...,
   'spend': ...,
   'week': ...,
   'year': ...
}
module_name = 'my_functions'  # e.g. my_functions.py
module = importlib.import_module(module_name)  # The python file to crawl 

dr = driver.Driver(initial_columns, module)  # can pass in multiple modules

output_columns = ['year','week',...,'spend_shift_3weeks_per_signup','special_feature']

df = dr.execute(output_columns, display_graph=True) # only walk DAG for what is needed
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Driver code - how do you get the Dataframe?
from hamilton import driver
initial_columns = {  # load from actuals / initial data
   'A': ...,
   'B': ...,
   'C': 3,
   'signups': ...,
   'spend': ...,
   'week': ...,
   'year': ...
}
module_name = 'my_functions'  # e.g. my_functions.py
module = importlib.import_module(module_name)  # The python file to crawl 

dr = driver.Driver(initial_columns, module)  # can pass in multiple modules

output_columns = ['year','week',...,'spend_shift_3weeks_per_signup','special_feature']

df = dr.execute(output_columns, display_graph=True) # only walk DAG for what is needed
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Can visualize what we’re executing too!
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The Result - after 1.5+ years in production
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The Result:

● Unit testing (found bugs during migration) ✅
● Documentation ✅
● Visualization ✅
● Onboarding ✅
● Debugging ✅
● Syntactic sugar to keep things DRY ✅
● DS focus on what matters ✅
● Platform owns “glue” code ✅
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The Result - after 1.5+ years in production

DS Quote:
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I've previously onboarded at an organization that dealt with multiple layers of information dependency. The 
“data product” was a result of years of multiple authors adding layers without systematic examination for 
potholes like circular references. Because of that, the product was a terribly fragile product and knowledge 
transfers took place through a series of ad-hoc trial and error by a new member; they run into an issue, ask 
their supervisor for clarification, then they are handed an opaque explanation and workaround which then 
gets propagated through a game of telephone to the next person (the mechanics of solution is propagated, 
but the reason behind the solution is not). In my own experience, the ah-ha moment did not occur until I 
doggedly followed the thread of information and built a dag on my own.

Having had that experience, onboarding a data product that already had a graph structure to embody the 
complex dependency was a delight; chief among its many benefits is that the product is amenable to other 
generic analysis approaches for graphs. Moreover, because of the abstraction that separates dataframe 
structure from quantitative specification, it helps a new person to process the information without having to 
have a priori domain knowledge, since dependencies are clearly specified and functions are simple and 
concise.



The Result - after 1.5+ years in production

DS Quote: TL;DR:
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Before/Previous: 
● understanding code base is hard.
● it’s not obvious where things are used.
● easy to break things.

With Hamilton: 
● no prior domain knowledge required to ramp up.
● dependencies are clearly specified.
● functions are simple and concise.
● hard to break things.



The Result: try it for yourself!

> pip install sf-hamilton
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Get started in <15 minutes!  

Documentation - see README - 
https://github.com/stitchfix/hamilton#hamilton-in-15-minutes 

Example 
https://github.com/stitchfix/hamilton/tree/main/examples/hello_world

https://github.com/stitchfix/hamilton#hamilton-in-15-minutes
https://github.com/stitchfix/hamilton/tree/main/examples/hello_world


The Result: try it for yourself!

> pip install sf-hamilton
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https://github.com/stitchfix/hamilton 

⭐ on github
☑ create issues on github
📣 join us on discord 

https://github.com/stitchfix/hamilton
https://discord.gg/wCqxqBqn73
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Future

Ideas:
● distributed processing

○ we have a DAG, why not farm it out?

● why pandas? 
○ no reason we couldn’t support other data structures
○ extend to anything that can be “unioned/merged” together

● general featurization
○ can we take this more mainstream?
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Thank you!  Questions?

Try out Stitch Fix → goo.gl/Q3tCQ3@stefkrawczyk
linkedin.com/in/skrawczyk

https://goo.gl/Q3tCQ3
https://twitter.com/stefkrawczyk
http://www.linkedin.com/skrawczyk

