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What is Stitch Fix
What does the company do?
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Stitch Fix is a personal styling service.

Shop at your personal curated store. Check out what you like.



Kafka Summit 2021 5

Data Science is behind everything we do.

algorithms-tour.stitchfix.com

Algorithms Org.

- 145+ Data Scientists and Platform Engineers
- 3 main verticals + platform

                 Data Platform

https://algorithms-tour.stitchfix.com/
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whoami

Stefan Krawczyk
Mgr. Data Platform - Model Lifecycle

Pre-covid look



Data Science 
@ Stitch Fix
Expectations we have on DS @ Stitch Fix
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Most common approach to Data Science

Typical organization:

● Horizontal teams

● Hand off

● Coordination required 

DATA SCIENCE / 
RESEARCH TEAMS

ETL TEAMS

ENGINEERING TEAMS
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At Stitch Fix:

● Single Organization

● No handoff

● End to end ownership 

● We have a lot of them!

● Built on top of data 

platform tools & 

abstractions.

Full Stack Data Science

See https://cultivating-algos.stitchfix.com/

DATA SCIENCE
ETL

ENGINEERING

https://cultivating-algos.stitchfix.com/
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Full Stack Data Science
A typical DS flow at Stitch Fix

Typical flow:

● Idea / Prototype

● ETL

● “Production”

● Eval/Monitoring/Oncall

● Start on next iteration

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/0?callback=close&name=slides&callback_type=back&v=2797&s=521.7087542616476
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Full Stack Data Science
A typical DS flow at Stitch Fix

Production can mean:

● Web service

● Batch job / Table

● Kafka consumer

Heavily biased towards Python.

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/0?callback=close&name=slides&callback_type=back&v=2797&s=477.9762282333975
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Example use cases DS have built kafka consumers for
Example Kafka Consumers

● A/B testing bucket allocation

● Transforming raw inputs into features

● Saving data into feature stores

● Event driven model prediction

● Triggering workflows



Stitch Fix’s opinionated 
Kafka consumer
Code first, explanation second



Kafka Summit 2021 14

Our “Hello world”

Consumer Code [   ] 
Architecture [   ]
Mechanics [   ]
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To run this:
> pip install sf_kafka
> python -m sf_kafka.server hello_world_consumer

A simple example
Hello world consumer

hello_world_consumer.py
import sf_kafka

@sf_kafka.register(kafka_topic='some.topic', output_schema={})
def hello_world(messages: List[str]) -> dict:
   """Hello world example
   :param messages: list of strings, which are JSON objects.
   :return: empty dict, as we don't need to emit any events.
   """
   list_of_dicts = [json.loads(m) for m in messages]
   print(f'Hello world I have consumed the following {list_of_dicts}')
   return {}
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import sf_kafka

@sf_kafka.register(kafka_topic='some.topic', output_schema={})
def hello_world(messages: List[str]) -> dict:
   """Hello world example
   :param messages: list of strings, which are JSON objects.
   :return: empty dict, as we don't need to emit any events.
   """
   list_of_dicts = [json.loads(m) for m in messages]
   print(f'Hello world I have consumed the following {list_of_dicts}')
   return {}

A simple example
Hello world consumer

hello_world_consumer.py

So what is this doing?

To run this:
> pip install sf_kafka
> python -m sf_kafka.server hello_world_consumer
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import sf_kafka

@sf_kafka.register(kafka_topic='some.topic', output_schema={})
def hello_world(messages: List[str]) -> dict:
   """Hello world example
   :param messages: list of strings, which are JSON objects.
   :return: empty dict, as we don't need to emit any events.
   """
   list_of_dicts = [json.loads(m) for m in messages]
   print(f'Hello world I have consumed the following {list_of_dicts}')
   return {}

1. Python function that takes in a list of strings called messages.

A simple example
Hello world consumer

hello_world_consumer.py
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import sf_kafka

@sf_kafka.register(kafka_topic='some.topic', output_schema={})
def hello_world(messages: List[str]) -> dict:
   """Hello world example
   :param messages: list of strings, which are JSON objects.
   :return: empty dict, as we don't need to emit any events.
   """
   list_of_dicts = [json.loads(m) for m in messages]
   print(f'Hello world I have consumed the following {list_of_dicts}')
   return {}

1. Python function that takes in a list of strings called messages.
2. We’re processing the messages into dictionaries.

A simple example
Hello world consumer

hello_world_consumer.py
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import sf_kafka

@sf_kafka.register(kafka_topic='some.topic', output_schema={})
def hello_world(messages: List[str]) -> dict:
   """Hello world example
   :param messages: list of strings, which are JSON objects.
   :return: empty dict, as we don't need to emit any events.
   """
   list_of_dicts = [json.loads(m) for m in messages]
   print(f'Hello world I have consumed the following {list_of_dicts}')
   return {}

1. Python function that takes in a list of strings called messages.
2. We’re processing the messages into dictionaries.
3. Printing them to console. (DS would replace this with a call to their function())

A simple example
Hello world consumer

hello_world_consumer.py
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import sf_kafka

@sf_kafka.register(kafka_topic='some.topic', output_schema={})
def hello_world(messages: List[str]) -> dict:
   """Hello world example
   :param messages: list of strings, which are JSON objects.
   :return: empty dict, as we don't need to emit any events.
   """
   list_of_dicts = [json.loads(m) for m in messages]
   print(f'Hello world I have consumed the following {list_of_dicts}')
   return {}

1. Python function that takes in a list of strings called messages.
2. We’re processing the messages into dictionaries.
3. Printing them to console.(DS would replace this with a call to their function())
4. We are registering this function to consume from ‘some.topic’ with no output.

A simple example
Hello world consumer

hello_world_consumer.py
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So what’s really going on?
When someone runs python -m sf_kafka.server hello_world_consumer

Consumer Code ✅ 
Architecture [   ]
Mechanics [   ]
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https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/2?callback=close&name=slides&callback_type=back&v=2797&s=775.4645760603777
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1

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/2?callback=close&name=slides&callback_type=back&v=2797&s=775.4645760603777
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1

2

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/2?callback=close&name=slides&callback_type=back&v=2797&s=775.4645760603777
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1

2

3

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/2?callback=close&name=slides&callback_type=back&v=2797&s=775.4645760603777
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1

2

3
4

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/2?callback=close&name=slides&callback_type=back&v=2797&s=775.4645760603777
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1

2

3
4Platform Concerns DS Concerns

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/2?callback=close&name=slides&callback_type=back&v=2797&s=775.4645760603777
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Platform Concerns vs DS Concerns

Consumer Code ✅ 
Architecture ✅
Mechanics [   ]
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Platform Concerns DS Concerns

● Kafka consumer operation:
○ What python kafka client to use
○ Kafka client configuration
○ Processing assumptions

■ At least once or at most once
○ How to write back to kafka

■ Direct to cluster or via a proxy?
■ Message serialization format

What does each side own
Platform Concerns vs DS Concerns
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Platform Concerns DS Concerns

● Kafka consumer operation:
○ What python kafka client to use
○ Kafka client configuration
○ Processing assumptions

■ At least once or at most once
○ How to write back to kafka

■ Direct to cluster or via a proxy?
■ Message serialization format

● Production operations:
○ Topic partitioning
○ Deployment vehicle for consumers
○ Monitoring hooks & tools

What does each side own
Platform Concerns vs DS Concerns
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Platform Concerns DS Concerns

● Kafka consumer operation:
○ What python kafka client to use
○ Kafka client configuration
○ Processing assumptions

■ At least once or at most once
○ How to write back to kafka

■ Direct to cluster or via a proxy?
■ Message serialization format

● Production operations:
○ Topic partitioning
○ Deployment vehicle for consumers
○ Monitoring hooks & tools

● Configuration:
○ App name [required]
○ Which topic(s) to consume from [required]
○ Process from beginning/end? [optional]
○ Processing “batch” size [optional]
○ Number of consumers [optional]

● Python function that operates over a list
● Output topic & message [if any]
● Oncall

What does each side own
Platform Concerns vs DS Concerns
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Platform Concerns DS Concerns

● Kafka consumer operation:
○ What python kafka client to use
○ Kafka client configuration
○ Processing assumptions

■ At least once or at most once
○ How to write back to kafka

■ Direct to cluster or via a proxy?
■ Message serialization format

● Production operations:
○ Topic partitioning
○ Deployment vehicle for consumers
○ Monitoring hooks & tools

● Configuration:
○ App name [required]
○ Which topic(s) to consume from [required]
○ Process from beginning/end? [optional]
○ Processing “batch” size [optional]
○ Number of consumers [optional]

● Python function that operates over a list
● Output topic & message [if any]
● Oncall

What does each side own
Platform Concerns vs DS Concerns

Can change without DS involvement -- just need to rebuild their app.
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Platform Concerns DS Concerns

● Kafka consumer operation:
○ What python kafka client to use
○ Kafka client configuration
○ Processing assumptions

■ At least once or at most once
○ How to write back to kafka

■ Direct to cluster or via a proxy?
■ Message serialization format

● Production operations:
○ Topic partitioning
○ Deployment vehicle for consumers
○ Topic monitoring hooks & tools

● Configuration:
○ App name [required]
○ Which topic(s) to consume from [required]
○ Process from beginning/end? [optional]
○ Processing “batch” size [optional]
○ Number of consumers [optional]

● Python function that operates over a list
● Output topic & message [if any]
● Oncall

What does each side own
Platform Concerns vs DS Concerns

Requires coordination with DS
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Platform Concern Choice Benefit

Kafka Client

Processing assumption

Salient choices we made on Platform
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Platform Concern Choice Benefit

Kafka Client python confluent-kafka 
(librdkafka)

librdkafka is very performant & stable.

Processing assumption

Salient choices we made on Platform
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Platform Concern Choice Benefit

Kafka Client python confluent-kafka 
(librdkafka)

librdkafka is very performant & stable.

Processing assumption At least once; functions 
should be idempotent.

Enables very easy error recovery strategy:
● Consumer app breaks until it is fixed; can usually 

wait until business hours.
● No loss of events.
● Monitoring trigger is consumer lag.

Salient choices we made on Platform
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Platform Concern Choice Benefit

Message serialization 
format

Do we want to write back 
to kafka directly?

Salient choices we made on Platform
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Platform Concern Choice Benefit

Message serialization 
format

JSON Easy mapping to and from python dictionaries.
Easy to grok for DS.

* python support for other formats wasn’t great.

Do we want to write back 
to kafka directly?

Salient choices we made on Platform
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Platform Concern Choice Benefit

Message serialization 
format

JSON Easy mapping to and from python dictionaries.
Easy to grok for DS.

* python support for other formats wasn’t great.

Do we want to write back 
to kafka directly?

Write via proxy service first. Enabled:
● Not having producer code in the engine.
● Ability to validate/introspect all messages.
● Ability to augment/change minor format 

structure without having to redeploy all 
consumers.

Salient choices we made on Platform
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Consumer Code ✅
Architecture ✅
Mechanics ✅
What’s missing? ⍰
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Completing the production story

Consumer Code ✅
Architecture ✅
Mechanics ✅
What’s missing? ⍰
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Completing the production story

Consumer Code ✅
Architecture ✅
Mechanics ✅
What’s missing? ⍰

Self-service
^
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The self-service story of how a DS gets a consumer to production
Completing the production story

Example Use Case: Event Driven Model Prediction

1. Client signs up & fills out profile.
2. Event is sent - client.signed_up.
3. Predict something about the client.
4. Emit predictions back to kafka.
5. Use this for email campaigns.

-> $$
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The self-service story of how a DS gets a consumer to production
Completing the production story

1. Determine the topic(s) to 
consume.
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The self-service story of how a DS gets a consumer to production
Completing the production story

1. Determine the topic(s) to consume.
2. Write code:

a. Create a function & decorate it to 
process events

b. If outputting an event, write a 
schema

c. Commit code to a git repository

Event

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/5?callback=close&name=slides&callback_type=back&v=2797&s=479.88018897637795
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The self-service story of how a DS gets a consumer to production
Completing the production story

1. Determine the topic(s) to consume.
2. Write code:

a. Create a function & decorate it to 
process events

b. If outputting an event, write a 
schema

c. Commit code to a git repository

Event

def create_prediction(client: dict) -> dict:
   # DS would write side effects or fetches here.
   # E.g. grab features, predict,
   # create output message;
   prediction = ...
   return make_ouput_event(client, prediction)

@sf_kaka.register(
   kafka_topic='client.signed_up',
   output_schema={'predict.topic': schema})
def predict_foo(messages: List[str]) -> dict:
   """Predict XX about a client. ..."""
   clients = [json.loads(m) for m in messages]
   predictions = [create_prediction(c)
                  for c in clients]
   return {'predict.topic': predictions}

my_prediction.py

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/5?callback=close&name=slides&callback_type=back&v=2797&s=479.88018846887303
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The self-service story of how a DS gets a consumer to production
Completing the production story

1. Determine the topic(s) to consume.
2. Write code:

a. Create a function & decorate it to 
process events

b. If outputting an event, write a 
schema

c. Commit code to a git repository

Event

def create_prediction(client: dict) -> dict:
   # DS would write side effects or fetches here.
   # E.g. grab features, predict,
   # create output message;
   prediction = ...
   return make_ouput_event(client, prediction)

@sf_kaka.register(
   kafka_topic='client.signed_up',
   output_schema={'predict.topic': schema})
def predict_foo(messages: List[str]) -> dict:
   """Predict XX about a client. ..."""
   clients = [json.loads(m) for m in messages]
   predictions = [create_prediction(c)
                  for c in clients]
   return {'predict.topic': predictions}

my_prediction.py

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/5?callback=close&name=slides&callback_type=back&v=2797&s=479.88018897637795
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The self-service story of how a DS gets a consumer to production
Completing the production story

1. Determine the topic(s) to consume.
2. Write code:

a. Create a function & decorate it to 
process events

b. If outputting an event, write a 
schema

c. Commit code to a git repository

Event

def create_prediction(client: dict) -> dict:
   # DS would write side effects or fetches here.
   # E.g. grab features, predict,
   # create output message;
   prediction = ...
   return make_ouput_event(client, prediction)

@sf_kaka.register(
   kafka_topic='client.signed_up',
   output_schema={'predict.topic': schema})
def predict_foo(messages: List[str]) -> dict:
   """Predict XX about a client. ..."""
   clients = [json.loads(m) for m in messages]
   predictions = [create_prediction(c)
                  for c in clients]
   return {'predict.topic': predictions}

my_prediction.py

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/5?callback=close&name=slides&callback_type=back&v=2797&s=479.88018897637795
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The self-service story of how a DS gets a consumer to production
Completing the production story

1. Determine the topic(s) to consume.
2. Write code:

a. Create a function & decorate it to 
process events

b. If outputting an event, write a 
schema

c. Commit code to a git repository

Event

def create_prediction(client: dict) -> dict:
   # DS would write side effects or fetches here.
   # E.g. grab features, predict,
   # create output message;
   prediction = ...
   return make_ouput_event(client, prediction)

@sf_kaka.register(
   kafka_topic='client.signed_up',
   output_schema={'predict.topic': schema})
def predict_foo(messages: List[str]) -> dict:
   """Predict XX about a client. ..."""
   clients = [json.loads(m) for m in messages]
   predictions = [create_prediction(c)
                  for c in clients]
   return {'predict.topic': predictions}

my_prediction.py

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/5?callback=close&name=slides&callback_type=back&v=2797&s=479.88018897637795
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The self-service story of how a DS gets a consumer to production
Completing the production story

1. Determine the topic(s) to consume.
2. Write code:

a. Create a function & decorate it to 
process events

b. If outputting an event, write a 
schema

c. Commit code to a git repository

"""Schema that we want to validate against."""
schema = {
   'metadata': {
       'timestamp': str,
       'id': str,
       'version': str
   },
   'payload': {
       'some_prediction_value': float,
       'client': int
   }
}

Event

my_prediction.py

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/5?callback=close&name=slides&callback_type=back&v=2797&s=479.88018846887303
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The self-service story of how a DS gets a consumer to production
Completing the production story

1. Determine the topic(s) to consume.
2. Write code
3. Deploy via command line:

a. Handles python environment creation
b. Builds docker container
c. Deploys
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Self-service deployment via command line
Completing the production story

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/3?callback=close&name=slides&callback_type=back&v=2797&s=761.1968273252953
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Self-service deployment via command line
Completing the production story

1

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/3?callback=close&name=slides&callback_type=back&v=2797&s=761.1968273252953
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Self-service deployment via command line
Completing the production story

2

1

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/3?callback=close&name=slides&callback_type=back&v=2797&s=761.1968273252953
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Self-service deployment via command line
Completing the production story

2

3

1

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/3?callback=close&name=slides&callback_type=back&v=2797&s=761.1968273252953
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Self-service deployment via command line
Completing the production story

DS Touch Points

Can be in production in < 1 hour

Self-service!

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/4?callback=close&name=slides&callback_type=back&v=2799&s=959.7598425196851
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The self-service story of how a DS gets a consumer to production
Completing the production story

1. Determine the topic(s) to 
consume.

2. Write code
3. Deploy via command line
4. Oncall:

a. Small runbook

1

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/6?callback=close&name=slides&callback_type=back&v=2797&s=539.9997862204724
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The self-service story of how a DS gets a consumer to production
Completing the production story

1. Determine the topic(s) to 
consume.

2. Write code
3. Deploy via command line
4. Oncall:

a. Small runbook

1

2

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/6?callback=close&name=slides&callback_type=back&v=2797&s=539.9997862204724
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The self-service story of how a DS gets a consumer to production
Completing the production story

1. Determine the topic(s) to 
consume.

2. Write code
3. Deploy via command line
4. Oncall:

a. Small runbook

1

2

3

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/6?callback=close&name=slides&callback_type=back&v=2797&s=539.9997862204724
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The self-service story of how a DS gets a consumer to production
Completing the production story

1. Determine the topic(s) to 
consume.

2. Write code
3. Deploy via command line
4. Oncall:

a. Small runbook

1

2

3

4

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/6?callback=close&name=slides&callback_type=back&v=2797&s=539.9997862204724


Learnings & 
Future Directions
What we learned from this and where we’re looking to go.
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What? Learning

Learnings - DS Perspective
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What? Learning

Do they use it? ✅ 👍

Learnings - DS Perspective
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What? Learning

Do they use it? ✅ 👍
Focusing on the function 1. All they need to know about kafka is that it’ll give 

them a list of events.  
2. Leads to better separation of concerns:

a. Can split driver code versus their logic.
b. Test driven development is easy.

Learnings - DS Perspective
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What? Learning

Do they use it? ✅ 👍
Focusing on the function 1. All they need to know about kafka is that it’ll give 

them a list of events.  
2. Leads to better separation of concerns:

a. Can split driver code versus their logic.
b. Test driven development is easy.

At least once processing 1. They enjoy easy error recovery; gives DS time to fix 
things.

2. Idempotency requirement not an issue.

Learnings - DS Perspective
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What? Learning

Learnings - Platform Perspective (1/2)
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What? Learning

Writing back via proxy service 1. Helped early on with some minor message format 
adjustments & validation.

2. Would recommend writing back directly if we were to 
start again.
a. Writing back directly leads to better performance.

Learnings - Platform Perspective (1/2)
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What? Learning

Writing back via proxy service 1. Helped early on with some minor message format 
adjustments & validation.

2. Would recommend writing back directly if we were to 
start again.
a. Writing back directly leads to better performance.

Central place for all things kafka Very useful to have a central place to:
1. Understand topics & topic contents.
2. Having “off the shelf” ability to materialize stream to a 

datastore removed need for DS to manage/optimize this 
process. E.g. elasticsearch, data warehouse, feature 
store.

Learnings - Platform Perspective (1/2)
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What? Learning

Using internal async libraries Using internal asyncio libs is cumbersome for DS.
Native asyncio framework would feel better.*

Learnings - Platform Perspective (2/2)

* we ended up creating a very narrow focused micro-framework addressing these two issues using aiokafka. 
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What? Learning

Using internal async libraries Using internal asyncio libs is cumbersome for DS.
Native asyncio framework would feel better.*

Lineage & Lineage Impacts If there is a chain of consumers*, didn’t have easy 
introspection into:
● Processing speed of full chain
● Knowing what the chain was

Learnings - Platform Perspective (2/2)

* we ended up creating a very narrow focused micro-framework addressing these two issues using aiokafka. 
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What? Why?

Being able to replace different 
subcomponents & assumptions of the 
system more easily.

Cleaner abstractions & modularity:
● Want to remove leaking business logic into 

engine.
● Making parts pluggable means we can easily 

change/swap out e.g. schema validation, or 
serialization format, or how we write back to 
kafka, processing assumptions, support asyncio, 
etc.

Future Directions
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● Making parts pluggable means we can easily 

change/swap out e.g. schema validation, or 
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etc.

Exploring stream processing like kafka 
streams & faust.

Streaming processing over windows is slowly 
becoming something more DS ask about.

Future Directions
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What? Why?

Being able to replace different 
subcomponents & assumptions of the 
system more easily.

Cleaner abstractions & modularity:
● Want to remove leaking business logic into 

engine.
● Making parts pluggable means we can easily 

change/swap out e.g. schema validation, or 
serialization format, or how we write back to 
kafka, processing assumptions, support asyncio, 
etc.

Exploring stream processing like kafka 
streams & faust.

Streaming processing over windows is slowly 
becoming something more DS ask about.

Writing an open source version Hypothesis that this is valuable and that the 
community would be interested; would you be? 

Future Directions



Summary
TL;DR:
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TL;DR:
Summary

Kafka + Data Scientists @ Stitch Fix:
● We have a self-service platform for Data Scientists to deploy kafka consumers
● We achieve self-service through a separation of concerns:

○ Data Scientists focus on functions to process events
○ Data Platform provides guardrails for kafka operations



Questions?
Find me at:

@stefkrawczyk

linkedin.com/in/skrawczyk/ Try out Stitch Fix → goo.gl/Q3tCQ3

https://twitter.com/stefkrawczyk
https://www.linkedin.com/in/skrawczyk
https://goo.gl/Q3tCQ3

