
Enabling Data Scientists to easily
create and own Kafka Consumers

Stefan Krawczyk

Mgr. Data Platform - Model Lifecycle

@stefkrawczyk
linkedin.com/in/skrawczyk Try out Stitch Fix → goo.gl/Q3tCQ3

https://twitter.com/stefkrawczyk
http://www.linkedin.com/skrawczyk
https://goo.gl/Q3tCQ3

2

- What is Stitch Fix?

- Data Science @ Stitch Fix

- Stitch Fix’s opinionated Kafka consumer

- Learnings & Future Directions

Agenda

What is Stitch Fix
What does the company do?

Kafka Summit 2021 4

Stitch Fix is a personal styling service.

Shop at your personal curated store. Check out what you like.

Kafka Summit 2021 5

Data Science is behind everything we do.

algorithms-tour.stitchfix.com

Algorithms Org.

- 145+ Data Scientists and Platform Engineers
- 3 main verticals + platform

 Data Platform

https://algorithms-tour.stitchfix.com/

Kafka Summit 2021 6

whoami

Stefan Krawczyk
Mgr. Data Platform - Model Lifecycle

Pre-covid look

Data Science
@ Stitch Fix
Expectations we have on DS @ Stitch Fix

Kafka Summit 2021 8

Most common approach to Data Science

Typical organization:

● Horizontal teams

● Hand off

● Coordination required

DATA SCIENCE /
RESEARCH TEAMS

ETL TEAMS

ENGINEERING TEAMS

Kafka Summit 2021 9

At Stitch Fix:

● Single Organization

● No handoff

● End to end ownership

● We have a lot of them!

● Built on top of data

platform tools &

abstractions.

Full Stack Data Science

See https://cultivating-algos.stitchfix.com/

DATA SCIENCE
ETL

ENGINEERING

https://cultivating-algos.stitchfix.com/

Kafka Summit 2021 10

Full Stack Data Science
A typical DS flow at Stitch Fix

Typical flow:

● Idea / Prototype

● ETL

● “Production”

● Eval/Monitoring/Oncall

● Start on next iteration

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/0?callback=close&name=slides&callback_type=back&v=2797&s=521.7087542616476

Kafka Summit 2021 11

Full Stack Data Science
A typical DS flow at Stitch Fix

Production can mean:

● Web service

● Batch job / Table

● Kafka consumer

Heavily biased towards Python.

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/0?callback=close&name=slides&callback_type=back&v=2797&s=477.9762282333975

Kafka Summit 2021 12

Example use cases DS have built kafka consumers for
Example Kafka Consumers

● A/B testing bucket allocation

● Transforming raw inputs into features

● Saving data into feature stores

● Event driven model prediction

● Triggering workflows

Stitch Fix’s opinionated
Kafka consumer
Code first, explanation second

Kafka Summit 2021 14

Our “Hello world”

Consumer Code []
Architecture []
Mechanics []

Kafka Summit 2021 15

To run this:
> pip install sf_kafka
> python -m sf_kafka.server hello_world_consumer

A simple example
Hello world consumer

hello_world_consumer.py
import sf_kafka

@sf_kafka.register(kafka_topic='some.topic', output_schema={})
def hello_world(messages: List[str]) -> dict:
 """Hello world example
 :param messages: list of strings, which are JSON objects.
 :return: empty dict, as we don't need to emit any events.
 """
 list_of_dicts = [json.loads(m) for m in messages]
 print(f'Hello world I have consumed the following {list_of_dicts}')
 return {}

Kafka Summit 2021 16

import sf_kafka

@sf_kafka.register(kafka_topic='some.topic', output_schema={})
def hello_world(messages: List[str]) -> dict:
 """Hello world example
 :param messages: list of strings, which are JSON objects.
 :return: empty dict, as we don't need to emit any events.
 """
 list_of_dicts = [json.loads(m) for m in messages]
 print(f'Hello world I have consumed the following {list_of_dicts}')
 return {}

A simple example
Hello world consumer

hello_world_consumer.py

So what is this doing?

To run this:
> pip install sf_kafka
> python -m sf_kafka.server hello_world_consumer

Kafka Summit 2021 17

import sf_kafka

@sf_kafka.register(kafka_topic='some.topic', output_schema={})
def hello_world(messages: List[str]) -> dict:
 """Hello world example
 :param messages: list of strings, which are JSON objects.
 :return: empty dict, as we don't need to emit any events.
 """
 list_of_dicts = [json.loads(m) for m in messages]
 print(f'Hello world I have consumed the following {list_of_dicts}')
 return {}

1. Python function that takes in a list of strings called messages.

A simple example
Hello world consumer

hello_world_consumer.py

Kafka Summit 2021 18

import sf_kafka

@sf_kafka.register(kafka_topic='some.topic', output_schema={})
def hello_world(messages: List[str]) -> dict:
 """Hello world example
 :param messages: list of strings, which are JSON objects.
 :return: empty dict, as we don't need to emit any events.
 """
 list_of_dicts = [json.loads(m) for m in messages]
 print(f'Hello world I have consumed the following {list_of_dicts}')
 return {}

1. Python function that takes in a list of strings called messages.
2. We’re processing the messages into dictionaries.

A simple example
Hello world consumer

hello_world_consumer.py

Kafka Summit 2021 19

import sf_kafka

@sf_kafka.register(kafka_topic='some.topic', output_schema={})
def hello_world(messages: List[str]) -> dict:
 """Hello world example
 :param messages: list of strings, which are JSON objects.
 :return: empty dict, as we don't need to emit any events.
 """
 list_of_dicts = [json.loads(m) for m in messages]
 print(f'Hello world I have consumed the following {list_of_dicts}')
 return {}

1. Python function that takes in a list of strings called messages.
2. We’re processing the messages into dictionaries.
3. Printing them to console. (DS would replace this with a call to their function())

A simple example
Hello world consumer

hello_world_consumer.py

Kafka Summit 2021 20

import sf_kafka

@sf_kafka.register(kafka_topic='some.topic', output_schema={})
def hello_world(messages: List[str]) -> dict:
 """Hello world example
 :param messages: list of strings, which are JSON objects.
 :return: empty dict, as we don't need to emit any events.
 """
 list_of_dicts = [json.loads(m) for m in messages]
 print(f'Hello world I have consumed the following {list_of_dicts}')
 return {}

1. Python function that takes in a list of strings called messages.
2. We’re processing the messages into dictionaries.
3. Printing them to console.(DS would replace this with a call to their function())
4. We are registering this function to consume from ‘some.topic’ with no output.

A simple example
Hello world consumer

hello_world_consumer.py

Kafka Summit 2021 21

So what’s really going on?
When someone runs python -m sf_kafka.server hello_world_consumer

Consumer Code ✅
Architecture []
Mechanics []

Kafka Summit 2021 22

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/2?callback=close&name=slides&callback_type=back&v=2797&s=775.4645760603777

Kafka Summit 2021 23

1

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/2?callback=close&name=slides&callback_type=back&v=2797&s=775.4645760603777

Kafka Summit 2021 24

1

2

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/2?callback=close&name=slides&callback_type=back&v=2797&s=775.4645760603777

Kafka Summit 2021 25

1

2

3

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/2?callback=close&name=slides&callback_type=back&v=2797&s=775.4645760603777

Kafka Summit 2021 26

1

2

3
4

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/2?callback=close&name=slides&callback_type=back&v=2797&s=775.4645760603777

Kafka Summit 2021 27

1

2

3
4Platform Concerns DS Concerns

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/2?callback=close&name=slides&callback_type=back&v=2797&s=775.4645760603777

Kafka Summit 2021 28

Platform Concerns vs DS Concerns

Consumer Code ✅
Architecture ✅
Mechanics []

Kafka Summit 2021 29

Platform Concerns DS Concerns

● Kafka consumer operation:
○ What python kafka client to use
○ Kafka client configuration
○ Processing assumptions

■ At least once or at most once
○ How to write back to kafka

■ Direct to cluster or via a proxy?
■ Message serialization format

What does each side own
Platform Concerns vs DS Concerns

Kafka Summit 2021 30

Platform Concerns DS Concerns

● Kafka consumer operation:
○ What python kafka client to use
○ Kafka client configuration
○ Processing assumptions

■ At least once or at most once
○ How to write back to kafka

■ Direct to cluster or via a proxy?
■ Message serialization format

● Production operations:
○ Topic partitioning
○ Deployment vehicle for consumers
○ Monitoring hooks & tools

What does each side own
Platform Concerns vs DS Concerns

Kafka Summit 2021 31

Platform Concerns DS Concerns

● Kafka consumer operation:
○ What python kafka client to use
○ Kafka client configuration
○ Processing assumptions

■ At least once or at most once
○ How to write back to kafka

■ Direct to cluster or via a proxy?
■ Message serialization format

● Production operations:
○ Topic partitioning
○ Deployment vehicle for consumers
○ Monitoring hooks & tools

● Configuration:
○ App name [required]
○ Which topic(s) to consume from [required]
○ Process from beginning/end? [optional]
○ Processing “batch” size [optional]
○ Number of consumers [optional]

● Python function that operates over a list
● Output topic & message [if any]
● Oncall

What does each side own
Platform Concerns vs DS Concerns

Kafka Summit 2021 32

Platform Concerns DS Concerns

● Kafka consumer operation:
○ What python kafka client to use
○ Kafka client configuration
○ Processing assumptions

■ At least once or at most once
○ How to write back to kafka

■ Direct to cluster or via a proxy?
■ Message serialization format

● Production operations:
○ Topic partitioning
○ Deployment vehicle for consumers
○ Monitoring hooks & tools

● Configuration:
○ App name [required]
○ Which topic(s) to consume from [required]
○ Process from beginning/end? [optional]
○ Processing “batch” size [optional]
○ Number of consumers [optional]

● Python function that operates over a list
● Output topic & message [if any]
● Oncall

What does each side own
Platform Concerns vs DS Concerns

Can change without DS involvement -- just need to rebuild their app.

Kafka Summit 2021 33

Platform Concerns DS Concerns

● Kafka consumer operation:
○ What python kafka client to use
○ Kafka client configuration
○ Processing assumptions

■ At least once or at most once
○ How to write back to kafka

■ Direct to cluster or via a proxy?
■ Message serialization format

● Production operations:
○ Topic partitioning
○ Deployment vehicle for consumers
○ Topic monitoring hooks & tools

● Configuration:
○ App name [required]
○ Which topic(s) to consume from [required]
○ Process from beginning/end? [optional]
○ Processing “batch” size [optional]
○ Number of consumers [optional]

● Python function that operates over a list
● Output topic & message [if any]
● Oncall

What does each side own
Platform Concerns vs DS Concerns

Requires coordination with DS

Kafka Summit 2021 34

Platform Concern Choice Benefit

Kafka Client

Processing assumption

Salient choices we made on Platform

Kafka Summit 2021 35

Platform Concern Choice Benefit

Kafka Client python confluent-kafka
(librdkafka)

librdkafka is very performant & stable.

Processing assumption

Salient choices we made on Platform

Kafka Summit 2021 36

Platform Concern Choice Benefit

Kafka Client python confluent-kafka
(librdkafka)

librdkafka is very performant & stable.

Processing assumption At least once; functions
should be idempotent.

Enables very easy error recovery strategy:
● Consumer app breaks until it is fixed; can usually

wait until business hours.
● No loss of events.
● Monitoring trigger is consumer lag.

Salient choices we made on Platform

Kafka Summit 2021 37

Platform Concern Choice Benefit

Message serialization
format

Do we want to write back
to kafka directly?

Salient choices we made on Platform

Kafka Summit 2021 38

Platform Concern Choice Benefit

Message serialization
format

JSON Easy mapping to and from python dictionaries.
Easy to grok for DS.

* python support for other formats wasn’t great.

Do we want to write back
to kafka directly?

Salient choices we made on Platform

Kafka Summit 2021 39

Platform Concern Choice Benefit

Message serialization
format

JSON Easy mapping to and from python dictionaries.
Easy to grok for DS.

* python support for other formats wasn’t great.

Do we want to write back
to kafka directly?

Write via proxy service first. Enabled:
● Not having producer code in the engine.
● Ability to validate/introspect all messages.
● Ability to augment/change minor format

structure without having to redeploy all
consumers.

Salient choices we made on Platform

Kafka Summit 2021 40

Consumer Code ✅
Architecture ✅
Mechanics ✅
What’s missing? ⍰

Kafka Summit 2021 41

Completing the production story

Consumer Code ✅
Architecture ✅
Mechanics ✅
What’s missing? ⍰

Kafka Summit 2021 42

Completing the production story

Consumer Code ✅
Architecture ✅
Mechanics ✅
What’s missing? ⍰

Self-service
^

Kafka Summit 2021 43

The self-service story of how a DS gets a consumer to production
Completing the production story

Example Use Case: Event Driven Model Prediction

1. Client signs up & fills out profile.
2. Event is sent - client.signed_up.
3. Predict something about the client.
4. Emit predictions back to kafka.
5. Use this for email campaigns.

-> $$

Kafka Summit 2021 44

The self-service story of how a DS gets a consumer to production
Completing the production story

1. Determine the topic(s) to
consume.

Kafka Summit 2021 45

The self-service story of how a DS gets a consumer to production
Completing the production story

1. Determine the topic(s) to consume.
2. Write code:

a. Create a function & decorate it to
process events

b. If outputting an event, write a
schema

c. Commit code to a git repository

Event

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/5?callback=close&name=slides&callback_type=back&v=2797&s=479.88018897637795

Kafka Summit 2021 46

The self-service story of how a DS gets a consumer to production
Completing the production story

1. Determine the topic(s) to consume.
2. Write code:

a. Create a function & decorate it to
process events

b. If outputting an event, write a
schema

c. Commit code to a git repository

Event

def create_prediction(client: dict) -> dict:
 # DS would write side effects or fetches here.
 # E.g. grab features, predict,
 # create output message;
 prediction = ...
 return make_ouput_event(client, prediction)

@sf_kaka.register(
 kafka_topic='client.signed_up',
 output_schema={'predict.topic': schema})
def predict_foo(messages: List[str]) -> dict:
 """Predict XX about a client. ..."""
 clients = [json.loads(m) for m in messages]
 predictions = [create_prediction(c)
 for c in clients]
 return {'predict.topic': predictions}

my_prediction.py

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/5?callback=close&name=slides&callback_type=back&v=2797&s=479.88018846887303

Kafka Summit 2021 47

The self-service story of how a DS gets a consumer to production
Completing the production story

1. Determine the topic(s) to consume.
2. Write code:

a. Create a function & decorate it to
process events

b. If outputting an event, write a
schema

c. Commit code to a git repository

Event

def create_prediction(client: dict) -> dict:
 # DS would write side effects or fetches here.
 # E.g. grab features, predict,
 # create output message;
 prediction = ...
 return make_ouput_event(client, prediction)

@sf_kaka.register(
 kafka_topic='client.signed_up',
 output_schema={'predict.topic': schema})
def predict_foo(messages: List[str]) -> dict:
 """Predict XX about a client. ..."""
 clients = [json.loads(m) for m in messages]
 predictions = [create_prediction(c)
 for c in clients]
 return {'predict.topic': predictions}

my_prediction.py

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/5?callback=close&name=slides&callback_type=back&v=2797&s=479.88018897637795

Kafka Summit 2021 48

The self-service story of how a DS gets a consumer to production
Completing the production story

1. Determine the topic(s) to consume.
2. Write code:

a. Create a function & decorate it to
process events

b. If outputting an event, write a
schema

c. Commit code to a git repository

Event

def create_prediction(client: dict) -> dict:
 # DS would write side effects or fetches here.
 # E.g. grab features, predict,
 # create output message;
 prediction = ...
 return make_ouput_event(client, prediction)

@sf_kaka.register(
 kafka_topic='client.signed_up',
 output_schema={'predict.topic': schema})
def predict_foo(messages: List[str]) -> dict:
 """Predict XX about a client. ..."""
 clients = [json.loads(m) for m in messages]
 predictions = [create_prediction(c)
 for c in clients]
 return {'predict.topic': predictions}

my_prediction.py

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/5?callback=close&name=slides&callback_type=back&v=2797&s=479.88018897637795

Kafka Summit 2021 49

The self-service story of how a DS gets a consumer to production
Completing the production story

1. Determine the topic(s) to consume.
2. Write code:

a. Create a function & decorate it to
process events

b. If outputting an event, write a
schema

c. Commit code to a git repository

Event

def create_prediction(client: dict) -> dict:
 # DS would write side effects or fetches here.
 # E.g. grab features, predict,
 # create output message;
 prediction = ...
 return make_ouput_event(client, prediction)

@sf_kaka.register(
 kafka_topic='client.signed_up',
 output_schema={'predict.topic': schema})
def predict_foo(messages: List[str]) -> dict:
 """Predict XX about a client. ..."""
 clients = [json.loads(m) for m in messages]
 predictions = [create_prediction(c)
 for c in clients]
 return {'predict.topic': predictions}

my_prediction.py

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/5?callback=close&name=slides&callback_type=back&v=2797&s=479.88018897637795

Kafka Summit 2021 50

The self-service story of how a DS gets a consumer to production
Completing the production story

1. Determine the topic(s) to consume.
2. Write code:

a. Create a function & decorate it to
process events

b. If outputting an event, write a
schema

c. Commit code to a git repository

"""Schema that we want to validate against."""
schema = {
 'metadata': {
 'timestamp': str,
 'id': str,
 'version': str
 },
 'payload': {
 'some_prediction_value': float,
 'client': int
 }
}

Event

my_prediction.py

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/5?callback=close&name=slides&callback_type=back&v=2797&s=479.88018846887303

Kafka Summit 2021 51

The self-service story of how a DS gets a consumer to production
Completing the production story

1. Determine the topic(s) to consume.
2. Write code
3. Deploy via command line:

a. Handles python environment creation
b. Builds docker container
c. Deploys

Kafka Summit 2021 52

Self-service deployment via command line
Completing the production story

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/3?callback=close&name=slides&callback_type=back&v=2797&s=761.1968273252953

Kafka Summit 2021 53

Self-service deployment via command line
Completing the production story

1

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/3?callback=close&name=slides&callback_type=back&v=2797&s=761.1968273252953

Kafka Summit 2021 54

Self-service deployment via command line
Completing the production story

2

1

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/3?callback=close&name=slides&callback_type=back&v=2797&s=761.1968273252953

Kafka Summit 2021 55

Self-service deployment via command line
Completing the production story

2

3

1

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/3?callback=close&name=slides&callback_type=back&v=2797&s=761.1968273252953

Kafka Summit 2021 56

Self-service deployment via command line
Completing the production story

DS Touch Points

Can be in production in < 1 hour

Self-service!

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/4?callback=close&name=slides&callback_type=back&v=2799&s=959.7598425196851

Kafka Summit 2021 57

The self-service story of how a DS gets a consumer to production
Completing the production story

1. Determine the topic(s) to
consume.

2. Write code
3. Deploy via command line
4. Oncall:

a. Small runbook

1

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/6?callback=close&name=slides&callback_type=back&v=2797&s=539.9997862204724

Kafka Summit 2021 58

The self-service story of how a DS gets a consumer to production
Completing the production story

1. Determine the topic(s) to
consume.

2. Write code
3. Deploy via command line
4. Oncall:

a. Small runbook

1

2

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/6?callback=close&name=slides&callback_type=back&v=2797&s=539.9997862204724

Kafka Summit 2021 59

The self-service story of how a DS gets a consumer to production
Completing the production story

1. Determine the topic(s) to
consume.

2. Write code
3. Deploy via command line
4. Oncall:

a. Small runbook

1

2

3

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/6?callback=close&name=slides&callback_type=back&v=2797&s=539.9997862204724

Kafka Summit 2021 60

The self-service story of how a DS gets a consumer to production
Completing the production story

1. Determine the topic(s) to
consume.

2. Write code
3. Deploy via command line
4. Oncall:

a. Small runbook

1

2

3

4

https://lucid.app/documents/edit/8506ad69-6d9a-43a1-aaf8-8d02c190371f/6?callback=close&name=slides&callback_type=back&v=2797&s=539.9997862204724

Learnings &
Future Directions
What we learned from this and where we’re looking to go.

Kafka Summit 2021 62

What? Learning

Learnings - DS Perspective

Kafka Summit 2021 63

What? Learning

Do they use it? ✅ 👍

Learnings - DS Perspective

Kafka Summit 2021 64

What? Learning

Do they use it? ✅ 👍
Focusing on the function 1. All they need to know about kafka is that it’ll give

them a list of events.
2. Leads to better separation of concerns:

a. Can split driver code versus their logic.
b. Test driven development is easy.

Learnings - DS Perspective

Kafka Summit 2021 65

What? Learning

Do they use it? ✅ 👍
Focusing on the function 1. All they need to know about kafka is that it’ll give

them a list of events.
2. Leads to better separation of concerns:

a. Can split driver code versus their logic.
b. Test driven development is easy.

At least once processing 1. They enjoy easy error recovery; gives DS time to fix
things.

2. Idempotency requirement not an issue.

Learnings - DS Perspective

Kafka Summit 2021 66

What? Learning

Learnings - Platform Perspective (1/2)

Kafka Summit 2021 67

What? Learning

Writing back via proxy service 1. Helped early on with some minor message format
adjustments & validation.

2. Would recommend writing back directly if we were to
start again.
a. Writing back directly leads to better performance.

Learnings - Platform Perspective (1/2)

Kafka Summit 2021 68

What? Learning

Writing back via proxy service 1. Helped early on with some minor message format
adjustments & validation.

2. Would recommend writing back directly if we were to
start again.
a. Writing back directly leads to better performance.

Central place for all things kafka Very useful to have a central place to:
1. Understand topics & topic contents.
2. Having “off the shelf” ability to materialize stream to a

datastore removed need for DS to manage/optimize this
process. E.g. elasticsearch, data warehouse, feature
store.

Learnings - Platform Perspective (1/2)

Kafka Summit 2021 69

What? Learning

Using internal async libraries Using internal asyncio libs is cumbersome for DS.
Native asyncio framework would feel better.*

Learnings - Platform Perspective (2/2)

* we ended up creating a very narrow focused micro-framework addressing these two issues using aiokafka.

Kafka Summit 2021 70

What? Learning

Using internal async libraries Using internal asyncio libs is cumbersome for DS.
Native asyncio framework would feel better.*

Lineage & Lineage Impacts If there is a chain of consumers*, didn’t have easy
introspection into:
● Processing speed of full chain
● Knowing what the chain was

Learnings - Platform Perspective (2/2)

* we ended up creating a very narrow focused micro-framework addressing these two issues using aiokafka.

Kafka Summit 2021 71

What? Why?

Being able to replace different
subcomponents & assumptions of the
system more easily.

Cleaner abstractions & modularity:
● Want to remove leaking business logic into

engine.
● Making parts pluggable means we can easily

change/swap out e.g. schema validation, or
serialization format, or how we write back to
kafka, processing assumptions, support asyncio,
etc.

Future Directions

Kafka Summit 2021 72

What? Why?

Being able to replace different
subcomponents & assumptions of the
system more easily.

Cleaner abstractions & modularity:
● Want to remove leaking business logic into

engine.
● Making parts pluggable means we can easily

change/swap out e.g. schema validation, or
serialization format, or how we write back to
kafka, processing assumptions, support asyncio,
etc.

Exploring stream processing like kafka
streams & faust.

Streaming processing over windows is slowly
becoming something more DS ask about.

Future Directions

Kafka Summit 2021 73

What? Why?

Being able to replace different
subcomponents & assumptions of the
system more easily.

Cleaner abstractions & modularity:
● Want to remove leaking business logic into

engine.
● Making parts pluggable means we can easily

change/swap out e.g. schema validation, or
serialization format, or how we write back to
kafka, processing assumptions, support asyncio,
etc.

Exploring stream processing like kafka
streams & faust.

Streaming processing over windows is slowly
becoming something more DS ask about.

Writing an open source version Hypothesis that this is valuable and that the
community would be interested; would you be?

Future Directions

Summary
TL;DR:

Kafka Summit 2021 75

TL;DR:
Summary

Kafka + Data Scientists @ Stitch Fix:
● We have a self-service platform for Data Scientists to deploy kafka consumers
● We achieve self-service through a separation of concerns:

○ Data Scientists focus on functions to process events
○ Data Platform provides guardrails for kafka operations

Questions?
Find me at:

@stefkrawczyk

linkedin.com/in/skrawczyk/ Try out Stitch Fix → goo.gl/Q3tCQ3

https://twitter.com/stefkrawczyk
https://www.linkedin.com/in/skrawczyk
https://goo.gl/Q3tCQ3

