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What to keep in mind for the next ~40 minutes?

1. Hamilton is a new paradigm to  create dataframes*.

2. Using Hamilton is a productivity boost for teams.

3. It’s open source - join us on:
Github: https://github.com/stitchfix/hamilton
Discord: https://discord.gg/wCqxqBqn73 

#sfhamilton #MLOps #machinelearning 2* in fact,  any python object really.

https://github.com/stitchfix/hamilton
https://discord.gg/wCqxqBqn73
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Backstory: who
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Forecasting, Estimation, & Demand (FED)Team

● Data Scientists that are responsible for forecasts that help the 

business make operational decisions.

○ e.g. staffing levels

● One of the oldest teams at Stitch Fix.



Backstory: what
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Forecasting, Estimation, & Demand (FED)Team

FED workflow:

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/0?callback=close&name=slides&callback_type=back&v=28289&s=717.8826771653543


FED workflow:                         +              ==

Backstory: what
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Forecasting, Estimation, & Demand Team

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/0?callback=close&name=slides&callback_type=back&v=28289&s=717.8826771653543


Backstory: what
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Creating a dataframe for time-series modeling.

7

Biggest problems here

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/1?callback=close&name=slides&callback_type=back&v=28289&s=717.8858359028974


Backstory: what
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Creating a dataframe for time-series modeling.

What 
Hamilton 

helped solve!

Biggest problems here

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/1?callback=close&name=slides&callback_type=back&v=28289&s=717.8858267716536


Backstory: why
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What is this dataframe & why is it causing 🔥 
?

(not big data)

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/3?callback=close&name=slides&callback_type=back&v=28289&s=493.77722927904506


Backstory: why
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What is this dataframe & why is it causing 🔥 ?

Columns are 
functions of 

other columns

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/5?callback=close&name=slides&callback_type=back&v=28289&s=479.2243393700787
https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/6?callback=close&name=slides&callback_type=back&v=28289&s=486.46062992125985


Backstory: why
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What is this dataframe & why is it causing 🔥 ? 

g(f(A,B), …) 

h(g(f(A,B), …), …)

etc🔥

Columns are 
functions of 

other columns:

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/5?callback=close&name=slides&callback_type=back&v=28289&s=479.2243393700787


Backstory: why
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Featurization: some example code

df = load_dates()  # load date ranges
df = load_actuals(df)  # load actuals, e.g. spend, signups
df['holidays'] = is_holiday(df['year'], df['week'])  # holidays
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()  # moving average of spend
df['spend_per_signup'] = df['spend'] / df['signups']  # spend per person signed up
df['spend_shift_3weeks'] = df.spend['spend'].shift(3)  # shift spend because ...
df['spend_shift_3weeks_per_signup'] = df['spend_shift_3weeks'] / df['signups'] 

def my_special_feature(df: pd.DataFrame) -> pd.Series:
   return (df['A'] - df['B'] + df['C']) * weights

df['special_feature'] = my_special_feature(df)
# ...



Backstory: why
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Featurization: some example code

df = load_dates()  # load date ranges
df = load_actuals(df)  # load actuals, e.g. spend, signups
df['holidays'] = is_holiday(df['year'], df['week'])  # holidays
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()  # moving average of spend
df['spend_per_signup'] = df['spend'] / df['signups']  # spend per person signed up
df['spend_shift_3weeks'] = df.spend['spend'].shift(3)  # shift spend because ...
df['spend_shift_3weeks_per_signup'] = df['spend_shift_3weeks'] / df['signups'] 

def my_special_feature(df: pd.DataFrame) -> pd.Series:
   return (df['A'] - df['B'] + df['C']) * weights

df['special_feature'] = my_special_feature(df)
# ...

Now scale this code to 1000+ columns & a growing team 😬



Backstory: why 

○ Testing / Unit testing 👎
○ Documentation 👎
○ Code Reviews 👎
○ Onboarding  📈 👎
○ Debugging  📈 👎
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df = load_dates()  # load date ranges
df = load_actuals(df)  # load actuals, e.g. spend, signups
df['holidays'] = is_holiday(df['year'], df['week'])  # holidays
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()  # moving average of spend
df['spend_per_signup'] = df['spend'] / df['signups']  # spend per person signed up
df['spend_shift_3weeks'] = df.spend['spend'].shift(3)  # shift spend because ...
df['spend_shift_3weeks_per_signup'] = df['spend_shift_3weeks'] / df['signups'] 

def my_special_feature(df: pd.DataFrame) -> pd.Series:
   return (df['A'] - df['B'] + df['C']) * weights

df['special_feature'] = my_special_feature(df)
# ...

Scaling this type of code results in the following:
- lots of heterogeneity in function definitions & behaviors
- inline dataframe manipulations
- code ordering is super important
- monolithic scripts 😬



Backstory - Summary
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Code for featurization == 🤯.
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Hamilton: Code → Directed Acyclic Graph → Object

Code:

DAG:

Object 
(e.g. DataFrame): 
#sfhamilton #MLOps #machinelearning 17

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
   """Some docs"""
   return some_library(year, week)
def avg_3wk_spend(spend: pd.Series) -> pd.Series:
   """Some docs"""
   return spend.rolling(3).mean()
def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
   """Some docs"""
   return spend / signups
def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
   """Some docs"""
   return spend.shift(3)
def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
   """Some docs"""
   return spend_shift_3weeks / signups

User

Hamilton

User 

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/3?callback=close&name=slides&callback_type=back&v=28289&s=493.77721456692916


Hamilton: a new paradigm

1. Write declarative 

functions!

2. Function name 

⇒ output 

3. Function inputs 

⇒ inputs 

#sfhamilton #MLOps #machinelearning 18



Hamilton: a new paradigm

4. Use type hints for 

typing checking.

5. Documentation is 

easy and natural.

#sfhamilton #MLOps #machinelearning 19



Hamilton: code to directed acyclic graph - how?

1. Inspect module to 
extract function 
names & 
parameters.

2. Nodes & edges + 

graph theory 101.

#sfhamilton #MLOps #machinelearning 20



Hamilton: directed acyclic graph to Object - how?

1. Specify outputs & 

provide inputs.

2. Determine execution 

path.

3. Execute functions once.

4. Combine at the end.

#sfhamilton #MLOps #machinelearning 21



Hamilton: Key Point to remember (1)
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Hamilton requires:

1. Function names

2. Function parameter names

to match to stitch together
a directed acyclic graph.
    
      “they declare their inputs & output”



Hamilton

Hamilton: Key Point to remember (2)

Hamilton users:

do not have to maintain 

how to connect 

computation with the 

outputs required.

#sfhamilton #MLOps #machinelearning 23

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
   """Some docs"""
   return some_library(year, week)
def avg_3wk_spend(spend: pd.Series) -> pd.Series:
   """Some docs"""
   return spend.rolling(3).mean()
def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
   """Some docs"""
   return spend / signups
def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
   """Some docs"""
   return spend.shift(3)
def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
   """Some docs"""
   return spend_shift_3weeks / signups

No monolithic script 
to maintain!

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/3?callback=close&name=slides&callback_type=back&v=28289&s=493.77721456692916


A declarative dataflow paradigm.

Hamilton: in one sentence

#sfhamilton #MLOps #machinelearning 24

https://en.wikipedia.org/wiki/Dataflow


Hamilton: why is it called Hamilton?
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Naming things is hard...

1. Associations with “FED”:

a. Alexander Hamilton is the father of the Fed.

b. FED models business mechanics.

2. We’re doing some basic graph theory.

apropos Hamilton
25



Example Hamilton Code
So you can get a feel for this paradigm...

#sfhamilton #MLOps #machinelearning 26



Basic code - defining “Hamilton” functions

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
   """Some docs"""
   return some_library(year, week)

def avg_3wk_spend(spend: pd.Series) -> pd.Series:
   """Some docs"""
   return spend.rolling(3).mean()

def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
   """Some docs"""
   return spend / signups

def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
   """Some docs"""
   return spend.shift(3)

def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
   """Some docs"""
   return spend_shift_3weeks / signups

#sfhamilton #MLOps #machinelearning 27

my_functions.py



Basic code - defining “Hamilton” functions

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
   """Some docs"""
   return some_library(year, week)

def avg_3wk_spend(spend: pd.Series) -> pd.Series:
   """Some docs"""
   return spend.rolling(3).mean()

def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
   """Some docs"""
   return spend / signups

def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
   """Some docs"""
   return spend.shift(3)

def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
   """Some docs"""
   return spend_shift_3weeks / signups
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Output Column
Input Column

my_functions.py



Driver code - how do you get a result?
from hamilton import driver
config_and_initial_data = {  # pass in config, initial data (or load data via funcs)
   'C': 3,  # a config variable 
   'signups': ...,  # can pass in initial data – or pass in at execute time.

...
   'year': ...
}
module_name = 'my_functions'  # e.g. my_functions.py; can instead `import my_functions`
module = importlib.import_module(module_name)  # The python file to crawl 

dr = driver.Driver(config_and_initial_data, module)  # can pass in multiple modules

output_columns = ['year','week',...,'spend_shift_3weeks_per_signup','special_feature']

df = dr.execute(output_columns) # only walk DAG for what is needed; default obj. is DF.
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Driver code - how do you get a result?
from hamilton import driver
config_and_initial_data = {  # pass in config, initial data (or load data via funcs)
   'C': 3,  # a config variable 
   'signups': ...,  # can pass in initial data – or pass in at execute time.

...
   'year': ...
}
module_name = 'my_functions'  # e.g. my_functions.py; can instead `import my_functions`
module = importlib.import_module(module_name)  # The python file to crawl 

dr = driver.Driver(config_and_initial_data, module)  # can pass in multiple modules

output_columns = ['year','week',...,'spend_shift_3weeks_per_signup','special_feature']

df = dr.execute(output_columns) # only walk DAG for what is needed; default obj. is DF.
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Driver code - how do you get a result?
from hamilton import driver
config_and_initial_data = {  # pass in config, initial data (or load data via funcs)
   'C': 3,  # a config variable 
   'signups': ...,  # can pass in initial data – or pass in at execute time.

...
   'year': ...
}
module_name = 'my_functions'  # e.g. my_functions.py; can instead `import my_functions`
module = importlib.import_module(module_name)  # The python file to crawl 

dr = driver.Driver(config_and_initial_data, module)  # can pass in multiple modules

output_columns = ['year','week',...,'spend_shift_3weeks_per_signup','special_feature']

df = dr.execute(output_columns) # only walk DAG for what is needed; default obj. is DF.
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Driver code - how do you get a result?
from hamilton import driver
config_and_initial_data = {  # pass in config, initial data (or load data via funcs)
   'C': 3,  # a config variable 
   'signups': ...,  # can pass in initial data – or pass in at execute time.

...
   'year': ...
}
module_name = 'my_functions'  # e.g. my_functions.py; can instead `import my_functions`
module = importlib.import_module(module_name)  # The python file to crawl 

dr = driver.Driver(config_and_initial_data, module)  # can pass in multiple modules

output_columns = ['year','week',...,'spend_shift_3weeks_per_signup','special_feature']

df = dr.execute(output_columns) # only walk DAG for what is needed; default obj. is DF.
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Driver code - how do you get a result?
from hamilton import driver
config_and_initial_data = {  # pass in config, initial data (or load data via funcs)
   'C': 3,  # a config variable 
   'signups': ...,  # can pass in initial data – or pass in at execute time.

...
   'year': ...
}
module_name = 'my_functions'  # e.g. my_functions.py; can instead `import my_functions`
module = importlib.import_module(module_name)  # The python file to crawl 

dr = driver.Driver(config_and_initial_data, module)  # can pass in multiple modules

output_columns = ['year','week',...,'spend_shift_3weeks_per_signup','special_feature']

df = dr.execute(output_columns) # only walk DAG for what is needed; default obj. is DF.
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Driver code - how do you get a result?
from hamilton import driver
config_and_initial_data = {  # pass in config, initial data (or load data via funcs)
   'C': 3,  # a config variable 
   'signups': ...,  # can pass in initial data – or pass in at execute() time.

...
   'year': ...
}
module_name = 'my_functions'  # e.g. my_functions.py; can instead `import my_functions`
module = importlib.import_module(module_name)  # The python file to crawl 

dr = driver.Driver(config_and_initial_data, module)  # can pass in multiple modules

output_columns = ['year','week',...,'spend_shift_3weeks_per_signup','special_feature']

df = dr.execute(output_columns) # only walk DAG for what is needed; default obj. is DF.
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Driver code - how do you get a result?
from hamilton import driver
config_and_initial_data = {  # pass in config, initial data (or load data via funcs)
   'C': 3,  # a config variable 
   'signups': ...,  # can pass in initial data – or pass in at execute time.

...
   'year': ...
}
module_name = 'my_functions'  # e.g. my_functions.py; can instead `import my_functions`
module = importlib.import_module(module_name)  # The python file to crawl 

dr = driver.Driver(config_and_initial_data, module)  # can pass in multiple modules

output_columns = ['year','week',...,'spend_shift_3weeks_per_signup','special_feature']

df = dr.execute(output_columns) # only walk DAG for what is needed; default obj. is DF.

dr.execute_visualization(output_columns, './dag.dot', {...render config…})
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Can visualize what we’re executing too!



Implications for your code base 

1. Functions are always in modules.
2. Execution script is decoupled from functions.

#sfhamilton #MLOps #machinelearning 36

Module B

Module C

Module A

Features driver script



Implications for your code base 

1. Functions are always in modules.
2. Execution script is decoupled from functions.
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Module B

Module C

Module A
Features driver script

Features driver script^

Features driver script^^

> Modules enable reuse from day 1.
> Easy to support different “driver”
    scripts 



Note: Hamilton is not an orchestration system

1. Hamilton does not replace an orchestration system
e.g. airflow, kubeflow pipelines, etc.

2. Hamilton instead helps you run/model/execute a single step 
in your workflow.

e.g. you would run Hamilton in a step(s) of your ETL.

⇒  Hamilton is a “micro-framework”
#sfhamilton #MLOps #machinelearning 38



Open Source: try it for yourself!

> pip install sf-hamilton

#sfhamilton #MLOps #machinelearning 39

Get started in <15 minutes!  

Documentation - https://hamilton-docs.gitbook.io/

Example 
https://github.com/stitchfix/hamilton/tree/main/examples/hello_world

https://hamilton-docs.gitbook.io/
https://github.com/stitchfix/hamilton/tree/main/examples/hello_world


Hamilton: Summary

1. A declarative dataflow paradigm.

2. Users write declarative functions that create a 

DAG  through function & parameter names.

3. Hamilton handles execution of the DAG; 

bye bye monolithic scripts.
#sfhamilton #MLOps #machinelearning 40

https://en.wikipedia.org/wiki/Dataflow
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Hamilton @ SF - after 2+ years in production
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Stitch Fix FED + Hamilton:

Original project goals:
● Improve ability to test
● Improve documentation
● Improve development workflow

#sfhamilton #MLOps #machinelearning 43

✅
✅
✅



Why was it a home run?

44



Testing & Documentation

Output “column” → One function:
1. Single place to find logic.
2. Single function that needs to be tested.
3. Function signature makes providing inputs very easy!

a. Function names & input parameters mean something!
4. Functions naturally come with a place for documentation!

⇒ Everything is naturally unit testable!
⇒ Everything is naturally  documentation friendly!
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Workflow improvements
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What Hamilton also easily enabled:
● Ability to visualize computation
● Faster debug cycles
● Better Onboarding / Collaboration

○ Bonus:
■ Central Feature Definition Store  



What if you have 4000+ columns to compute?

Visualization
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What if you have 4000+ columns to compute?

Hamilton makes this easy to visualize!
(zoomed out here to obscure names)

Visualization
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What if you have 4000+ columns to compute?

Hamilton makes this easy to visualize!
(zoomed out here to obscure names)

Visualization
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can create `DOT` files for export to 
other visualization packages →



Debugging these functions is easy!

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
   """Some docs"""
   return some_library(year, week)

def avg_3wk_spend(spend: pd.Series) -> pd.Series:
   """Some docs"""
   return spend.rolling(3).mean()

def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
   """Some docs"""
   return spend / signups

def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
   """Some docs"""
   return spend.shift(3)

def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
   """Some docs"""
   return spend_shift_3weeks / signups

#sfhamilton #MLOps #machinelearning 50

my_functions.py

Can also import functions into other contexts to help debug.
e.g. in your REPL:
from my_functions import spend_shift_3weeks 
output = spend_shift_3weeks(...)



Collaborating on these functions is easy!

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
   """Some docs"""
   return some_library(year, week)

def avg_3wk_spend(spend: pd.Series) -> pd.Series:
   """Some docs"""
   return spend.rolling(3).mean()

def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
   """Some docs"""
   return spend / signups

def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
   """Some docs"""
   return spend.shift(3)

def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
   """Some docs"""
   return spend_shift_3weeks / signups
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my_functions.py

Easy to assess impact & changes when:
● names mean something
● adding a new input
● changing the name of a function
● adding a brand new function
● deleting a function

⇒ Code reviews are much faster!
⇒ Easy to pick up where others left off!



Stitch Fix FED’s Central Feature Definition Store 

A nice byproduct of using Hamilton!

How they use it:
1. Function names follow team convention.

a. e.g. D_ prefix indicates date feature

#sfhamilton #MLOps #machinelearning 52



Stitch Fix FED’s Central Feature Definition Store 

A nice byproduct of using Hamilton!

How they use it:
1. Function names follow team convention.
2. It’s organized into thematic modules, e.g. date_features.py.

a. Allows for working on different part of the DAG easily

#sfhamilton #MLOps #machinelearning 53

https://lucid.app/documents/edit/cc7f8ae3-3980-4703-8669-242ea8bcd674/3?callback=close&name=slides&callback_type=back&v=1082&s=720


Stitch Fix FED’s Central Feature Definition Store 

A nice byproduct of using Hamilton!

How they use it:
1. Function names follow team convention.
2. It’s organized into thematic modules, e.g. date_features.py.
3. It’s in a central repository & versioned by git: 

a. Can easily find/use/reuse features!
b. Can recreate features from different points in time easily.

#sfhamilton #MLOps #machinelearning 54



FED Testimonials
Just incase you don’t believe me

#sfhamilton #MLOps #machinelearning 55



Testimonial (1)

Danielle Q.

“the encapsulation of the logic in a single named function makes 
adding nodes/edges simple to understand, communicate, and transfer 
knowledge”

E.g.:
● Pull Requests are easy to review.
● Onboarding is easy.

#sfhamilton #MLOps #machinelearning 56



Testimonial (2) 

Shelly J. 

“I like how easy-breezy it is to add new nodes/edges to the DAG to 
support evolving business needs.”

E.g. 
● new marketing push & we need to add a new feature:

○ this takes minutes, not hours!
#sfhamilton #MLOps #machinelearning 57



Hamilton @ Stitch Fix
FED Impact Summary

#sfhamilton #MLOps #machinelearning 58



FED Impact Summary

With Hamilton, the FED Team gained:
● Naturally testable code. Always. ✅
● Naturally documentable code. ✅
● Dataflow visualization for free. ✅
● Faster debug cycles. ✅
● A better onboarding & collaboration experience ✅

○ Central Feature Definition Store as a by product! ✅
         -----------------------------------------------------------------------

Total ⚾ Home Run!
#sfhamilton #MLOps #machinelearning 59



FED Impact Summary

With Hamilton, the FED Team gained:
● Naturally testable code. Always. ✅
● Naturally documentable code. ✅
● Dataflow visualization for free. ✅
● Faster debug cycles. ✅
● A better onboarding & collaboration experience ✅

○ Central Feature Definition Store as a by product! ✅
         -----------------------------------------------------------------------

Total ⚾ Home Run!
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[claim]
By using Hamilton, the FED team can
continue to scale their code base, 
without impacting team productivity
[/claim]
Question: is that true of your feature code base?
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What can you do with Hamilton? 

1. Using it within any ETL system
2. Scale to big data 
3. Model any dataflow

#sfhamilton #MLOps #machinelearning 62



1. Using Hamilton within any ETL system

ETL Framework compatibility:

● all ETL systems that run python 3.6+.

E.g. Airflow ✅
Metaflow ✅
Dagster ✅
Prefect ✅
Kubeflow ✅
etc. ✅
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1. Using Hamilton within any ETL system

ETL Recipe:
1. Write Hamilton functions & “driver” code.

2. Publish your Hamilton functions in a package, 

or import via other means (e.g. checkout a repository).

3. Include sf-hamilton as a python dependency

4. Have your ETL system execute your “driver” code.

5. Profit.
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2. Scale to big data

Hamilton comes with the following integrations:

● Dask
● Ray
● Pandas on Spark (3.2+)

Coming soon:
● Modin
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Cool thing:
● Only  driver code needs to be 

changed.
● Makes it easy to switch 

“backends”.



Take this code – and scale it without changing it

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
   """Some docs"""
   return some_library(year, week)

def avg_3wk_spend(spend: pd.Series) -> pd.Series:
   """Some docs"""
   return spend.rolling(3).mean()

def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
   """Some docs"""
   return spend / signups

def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
   """Some docs"""
   return spend.shift(3)

def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
   """Some docs"""
   return spend_shift_3weeks / signups
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my_functions.py



Just how easy it is:
Example using Dask – only modify the “driver” script
from dask.distributed import Client
from hamilton import driver
from hamilton.experimental import h_dask
dag_config = {...}

bl_module = importlib.import_module('my_functions')  # business logic functions
loader_module = importlib.import_module('data_loader')  # functions to load data

client = Client(...)
adapter = h_dask.DaskGraphAdapter(client)

dr = driver.Driver(dag_config, bl_module, loader_module, adapter=adapter) 

output_columns = ['year','week',...,'spend_shift_3weeks_per_signup','special_feature']

df = dr.execute(output_columns) # only walk DAG for what is needed
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3. Model any dataflow

Hamilton allows you to model any dataflow!

● Pandas?  ✅
● Scikit-learn models? ✅
● Numpy matrices? ✅
● Ibis Project ? ✅
● Custom python object? ✅
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What Hamilton provides:
● lineage insights for free
● ability to attach “tags” to functions
● ask meta questions
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What Hamilton provides:
● lineage insights for free
● ability to attach “tags” to functions
● ask meta questions

Would love contributions here!



A common Hamilton pattern
Here’s a common pattern
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3. Model any dataflow - common pattern

Python Modules:          Driver Scripts:
                                                (responsible for data you want to save/use)

Save data/artifact.

#sfhamilton #MLOps #machinelearning 71

Transforms 1

Transforms 2

Data Loading
Features/data driver 
code

Plotting/debugging 
driver script



3. Model any dataflow - common pattern

Python Modules:          Driver Scripts:
                                                (responsible for data you want to save/use)

Save data/artifact.

        <-advanced
        uses  ->
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Transforms 1

Transforms 2

Data Loading
Features/data driver 
code

Plotting/debugging 
driver script

Group By 
Transforms

Chained drivers code



Talk Outline:
Backstory: who, what, & why
Hamilton
Hamilton @ Stitch Fix
What can you do with Hamilton?
> Future Roadmap



Future Roadmap 

Data Quality:
- Runtime inspection of data is a possibility.

Task: incorporate expectations, ala Pandera, on functions. 
e.g. 

or:
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@check_output({'type': float, 'range': (0.0, 10000.0)})
def SOME_IMPORTANT_OUTPUT(input1: pd.Series, input2: pd.Series) -> pd.Series:
   """Does some complex logic"""

schema = …
@check_output.pandera(schema=schema)
def SOME_IMPORTANT_OUTPUT(input1: pd.Series, input2: pd.Series) -> pd.Series:
   """Does some complex logic"""

https://pandera.readthedocs.io/en/stable/


Future Roadmap

Numba:
- Numba  makes your code run much faster. 

Task: wrap Hamilton functions with numba.jit  and compile 
the graph for speedy execution!

E.g. Scale your numpy & simple python code to:
● GPUs
● C/Fortran like speeds!
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https://numba.pydata.org/


Future Roadmap

Responding to feedback / feature requests:
- If you have ideas/issues, would love to hear them.

Best way:
● come chat with us on discord
● file issues on github 
● we like to understand your use case too!
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https://discord.gg/wCqxqBqn73


Future Roadmap

Graduating dask/ray/spark support:
- To do so, we need feedback on the APIs!

Would love to hear:
● if they do or don’t work for you?
● what documentation needs to be improved/added?
● etc.
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Future Roadmap

We have few more things :
https://github.com/stitchfix/hamilton/issues 

Please vote (❤, 👍, etc) for what we should prioritize!
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https://github.com/stitchfix/hamilton/issues


To Conclude
Some TL:DRs
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To Conclude

1. Hamilton is a new paradigm to describe data flows.

2. It grew out of a need to tame a feature code base; it’ll make 
yours better too!

3. The Hamilton paradigm can provide teams with multiple 
productivity improvements & scales with code bases.
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Thanks for listening – would love your feedback!
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> pip install sf-hamilton

⭐ on github
☑ create & vote on issues on github
📣 join us on discord 
(https://discord.gg/wCqxqBqn73)

https://discord.gg/wCqxqBqn73


Thank you!  Questions?

Try out Stitch Fix → goo.gl/Q3tCQ3@stefkrawczyk
linkedin.com/in/skrawczyk

https://goo.gl/Q3tCQ3
https://twitter.com/stefkrawczyk
http://www.linkedin.com/skrawczyk

