
Modular Dataflows 
& Experiment Management
for Machine Learning Evaluation 



Modular dataflows for research

Context

- Train ML models for time series 
forecasting

- Benchmark 200+ models and conduct 
statistical tests

- Reproducibility is paramount, requiring 
lineage for code and data

1

2

3



Who Am I ?

- My name is Thierry, I’m based in Montréal, QC, Canada

- Using Hamilton since ~2021-11, it launched in 2021-10

- Working with Stefan and Elijah since 2023-06

- Previous experiences: 

teaching ML/DS, AI consulting, HR tech SaaS



Creating
Modular Dataflows



- A single function

Limitations

- Hard-coded values

- Assumptions about 
columns

- Unrelated steps within 
same scope

Level 0: spaghetti



Level 1: functions

- Functions to define features

- Passing DataFrames to add 
columns

Limitations

- Implicit dependencies 
between features

- Imperative: need to 
manually order functions in 
main()



Level 2: checking schemas

- Make dependencies explicit 
via custom decorator.

- Exactly what pandera does 
with @check_input

Limitations

- Still imperative



Level 3: Hamilton

- Forces the use of type hints 
and encourages docstrings

- Dependencies are explicit

- Separation between inputs 
and transformations

- Declarative script! Simply 
request what you want



Adding
Configurability



Training an XGBoost model



Configuration dimensions
Experiment Dimension Execution `inputs` Driver `config` Driver `modules`

3 forecast horizon
(one dataset each)

set `offset` to compute (or 
select) the dataset

2 model architecture
(XGBoost, LSTM)

one dataflow (.py 
file) per model type

4 learning tasks
(binary, multiclass, 
ordinal, continuous)

set `task` config to one 
of the 4 tasks

10 target variables set `label` to select a 
column from the dataset

2 execution mode
(development, evaluation)

set `mode` to change 
dataset loading behavior



Configuration at the Driver level
- Pass config at the “driver level”

- Driver config
- Driver modules
- inputs
- overrides

- Breakdown large dataflows
into multiple scripts
- prepare_data.py
- train_model.py
- benchmark.py



Tracking
Experiment Results



MLFlow and Weights&Biases - Direct integrations with many ML 
libraries

- Provides a web UI to explore 
results

- Facilitate collaboration

Limitations
- Integrations are actually 

confusing

- Hard to trace the code producing 
an artifact

- Weak code-artifact versioning



Node level Driver level



Building the ExperimentTracker adapter

- artifacts == Hamilton nodes

- Specify artifacts with .materialize()

- Artifact versioned according to 
executed code

- Bundled with an extensible UI



Quick
Live Demo



Extras



Extra: Project structure

- Separate “packages” from script/notebook

execution

- Separate input and output data

- Breakdown your project into several 

dataflows



Things I’ve tried
- Hydra is a yaml-first config 

system

- Popular for deep learning 
research

- Metaflow is a Python 
orchestrator

- Easy to deploy yourself 
on AWS 


