
April 2024

Hamilton Global User Group
April 2024 Meetup

What is Hamilton?
Hamilton helps data scientists and engineers define testable, modular,
self-documenting dataflows, that encode lineage and metadata.
Runs and scales everywhere python does.

Icebreaker: Name and what you’re using Hamilton for/looking for.

Agenda
1. Community

Spotlight
2. The “news”
3. Deep Dive
4. Open 🎤

Community Spotlight:
🔎 "Modular dataflows and experiment
management for ML evaluation"
by Thierry Jean.

📰 The “News”

● FunctionInputOutputTypeChecker
● SlackNotifier 🙏 Swapnil Dewalkar
● @ray_remote_options 🙏 Fran Boon
● Polars Lazyframe support 🙏 Tom Barber
● Polars DB I/O 🙏 Swapnil Dewalkar
● Polars Spreadsheet I/O 🙏 Swapnil Dewalkar
● Pandas SPSS Reader 🙏 Swapnil Dewalkar
● YAML I/O 🙏 Walber Moreira
● …

Some Recent Features Released

● FunctionInputOutputTypeChecker

Some Recent Features Released

from hamilton import base, driver, lifecycle

dr = (
 driver.Builder()
 .with_config({})
 .with_modules(my_functions)
 .with_adapters(
 # this is a strict type checker for the input and output of each function.
 lifecycle.FunctionInputOutputTypeChecker(),
 # this will make execute return a pandas dataframe as a result
 base.PandasDataFrameResult(),
)
 .build()
)

● FunctionInputOutputTypeChecker

Some Recent Features Released

from hamilton import base, driver, lifecycle

dr = (
 driver.Builder()
 .with_config({})
 .with_modules(my_functions)
 .with_adapters(
 # this is a strict type checker for the input and output of each function.
 lifecycle.FunctionInputOutputTypeChecker(),
 # this will make execute return a pandas dataframe as a result
 base.PandasDataFrameResult(),
)
 .build()
)

● SlackNotifier 🙏 Swapnil Dewalkar

Some Recent Features Released

from hamilton import driver
from hamilton.plugins.h_slack import SlackNotifier

import some_module

api_key = "YOUR_API_KEY"
channel = "YOUR_CHANNEL"
dr = (
 driver.Builder()
 .with_modules(some_module)
 .with_adapters(SlackNotifier(api_key=api_key, channel=channel))
 .build()
)

● @ray_remote_options 🙏 Fran Boon

Some Recent Features Released

@ray_remote_options(
 num_gpus=1,
 resources={"my_custom_resource": 1},
)
def example() -> pd.DataFrame:
 ...

● Polars Lazyframe support 🙏 Tom Barber
● Polars DB I/O 🙏 Swapnil Dewalkar
● Polars Spreadsheet I/O 🙏 Swapnil Dewalkar
● Pandas SPSS Reader 🙏 Swapnil Dewalkar
● YAML I/O 🙏 Walber Moreira

All pushed some form of data saver & data loader!

Some Recent Features Released

● Updated Parallelism documentation (guide)
● Pandas (example) 🙏 Nicolas Huray
● Ibis (example) 🙏 Thierry Jean
● dlt (example) 🙏 Thierry Jean
● AWS: (integration guide) 🙏 Konstantin Tyapochkin

○ Lambda
○ Glue
○ Sagemaker

● Document chunking for RAG (example)
● ChatGPT + DALLE telephone game (example)

Some Documentation & Example Updates

Roadmap: 🚀 Hamilton UI & More!

Open sourcing what we’ve been building with DAGWorks Inc.

Key features:

● Visualize
● Version
● Catalog
● Telemetry

Looking for a few from the community to ensure it all works!

Roadmap: 🚀 Hamilton UI & More!

Open sourcing what we’ve been building with DAGWorks Inc.

Key features:

● Visualize
● Version
● Catalog
● Telemetry

Looking for a few from the community to ensure it all works!

Roadmap: 🚀 Hamilton UI & More!

Open sourcing what we’ve been building with DAGWorks Inc.

Key features:

● Visualize
● Version
● Catalog
● Telemetry

Looking for a few from the community to ensure it all works!

Roadmap: 🚀 Hamilton UI & More!

Open sourcing what we’ve been building with DAGWorks Inc.

Key features:

● Visualize
● Version
● Catalog
● Telemetry

Looking for a few from the community to ensure it all works!

Roadmap: 🚀 Hamilton UI & More!

Open sourcing what we’ve been building with DAGWorks Inc.

Key features:

● Visualize
● Version
● Catalog
● Telemetry

Looking for a few from the community to ensure it all works!

Roadmap: 🚀 Hamilton UI & More!

Open sourcing what we’ve been building with DAGWorks Inc.

Key features:

● Visualize
● Version
● Catalog
● Telemetry

Looking for a few from the community to ensure it all works!

Deep Dive:
Data Savers / Loaders
a.k.a. Materializers

https://hamilton.dagworks.io/en/latest/concepts/materialization/
https://blog.dagworks.io/p/separate-data-io-from-transformation
https://blog.dagworks.io/p/enterprise-ready-data-pipelines-with
https://blog.dagworks.io/p/from-dev-to-prod-a-ml-pipeline-reference

https://hamilton.dagworks.io/en/latest/concepts/materialization/
https://blog.dagworks.io/p/separate-data-io-from-transformation
https://blog.dagworks.io/p/enterprise-ready-data-pipelines-with
https://blog.dagworks.io/p/from-dev-to-prod-a-ml-pipeline-reference

Motivation: every dataflow reads and writes data

With Hamilton you:

1. Write functions
2. Functions are organized into modules.

But, depending on how you approach loading & saving data it can:

(a) Couple you to infrastructure/platform concerns
(b) Making your code less portable & maintainable

Data Saving & Loading
from first principles

With Hamilton

Data Saving & Loading
from first principles

With Hamilton

Watch for .execute() versus .materialize()

Mental Model: Hamilton/DAGs

Materialization

Data Saving with Hamilton

Three general approaches:

● Write a function in the DAG [.execute()]
● Do it outside of the DAG [.execute()]
● Use “materializers” and kind of do both [.materialize(), @save_to +

 .execute()]

Materialization

Approach 1: Encode within Hamilton

Materialization

Approach 1: Encode within Hamilton

def save_model(digits_model: svm.SVC,
 experiment_name: str,
 run_name: str) -> dict:
 """Saves a model to MLFlow"""
 mlflow.set_experiment(experiment_name)
 with mlfow.start_run(run_name=run_name) as run:
 model_info = mlflow.log_model(digits_model)
 # log more things, etc
 return {"model_info": model_info.__dict__}Materialization

Approach 1: Encode within Hamilton

def save_model(digits_model: svm.SVC,
 experiment_name: str,
 run_name: str) -> dict:
 """Saves a model to MLFlow"""
 mlflow.set_experiment(experiment_name)
 with mlfow.start_run(run_name=run_name) as run:
 model_info = mlflow.log_model(digits_model)
 # log more things, etc
 return {"model_info": model_info.__dict__}Materialization

.execute(
 [“save_model”])

Approach 2: Outside of Hamilton

dr = driver.Driver({}, simple_pipeline)
result = dr.execute(["digits_model", "..."],
 inputs={"input_digits": load_some_digits().sample(5)}
)

Materialization

Approach 2: Outside of Hamilton
Materialize

dr = driver.Driver({}, simple_pipeline)
result = dr.execute(["digits_model", "..."],
 inputs={"input_digits": load_some_digits().sample(5)}
)
with mlflow.start_run(run_name=...) as run:
 # log model and stuff here.
 run.log_model(result[...])

In Hamilton

Outside Hamilton

Materialization

Approach 3: Inject a “materializer” into the DAG

Materialize

Approach 3: Inject a “materializer” into the DAG

Materialize

from hamilton.io.materialization import to

results = dr.materialize(
 to.pickle(
 id="digits_materializer",
 dependencies=[simple_pipeline.digits_model],
 path="model.pkl"
),
 inputs={
 "input_digits": load_some_digits().sample(5)
 }
)

Materialization

Approach 3: Inject a “materializer” into the DAG

Materialize

from hamilton.io.materialization import to

results = dr.materialize(
 to.pickle(
 id="digits_materializer",
 dependencies=[simple_pipeline.digits_model],
 path="model.pkl"
),
 inputs={
 "input_digits": load_some_digits().sample(5)
 }
)

Materialization

.materialize()⟶

Note:
@save_to.pickle
decorator is
equivalent.

What about data loading?

Materialization

Three general approaches:

● Write a function in the DAG [.execute()]
● Do it outside of the DAG [.execute(..., inputs=)]
● Use “materializers” and kind of do both [.materialize(), @load_from

 + .execute()]

Approach 1: Encode within Hamilton

def digits_df(path: str) -> pd.DataFrame:
 """Loads a digits DF"""
 df = pd.read_csv(path)
 .. # some other transforms.
 return df

Materialization

Approach 2: Outside of Hamilton

input_df = load_some_digits(path, ...)

dr = driver.Driver({}, simple_pipeline)
result = dr.execute(["digits_model", "..."],
 inputs={"digits_df": input_df}
)

Materialization

In Hamilton

Outside Hamilton

Approach 2: Outside of Hamilton

input_df = load_some_digits(path, ...)

dr = driver.Driver({}, simple_pipeline)
result = dr.execute(["digits_model", "..."],
 inputs={"digits_df": input_df}
)

Materialization

In Hamilton

Outside Hamilton

Materialize

Approach 3: Inject a “materializer” into the DAG

Materialize
from hamilton.io.materialization import from_

results = dr.materialize(
 from_.csv(
 target="digits_df",
 path="digits_csv_path.csv"
),
 additional_vars=[...],
 inputs={
 "input_digits": load_some_digits().sample(5)
 }
)

Materialization

Approach 3: Inject a “materializer” into the DAG

Materialize
from hamilton.io.materialization import from_

results = dr.materialize(
 from_.csv(
 target="digits_df",
 path="digits_csv_path.csv"
),
 additional_vars=[...],
 inputs={
 "input_digits": load_some_digits().sample(5)
 }
)

Materialization

.materialize()⟶

Approach 3: Inject a “materializer” into the DAG

Materialize
from hamilton.function_modifiers import load_from, source

@load_from.csv(path=source(“path”))
def digits_df(raw_df: pd.DataFrame) -> pd.DataFrame:
 """Loads a digits DF"""
 df = pd.read_csv(path)
 .. # some other transforms.
 return df

Materialization

Alternative:

Could use
.execute() here

Let’s look at some code:
● April Meet-up
● Pandas one
● MLFlow one

Let’s look at some code

Materialization

https://github.com/DAGWorks-Inc/hamilton-tutorials/blob/main/2024-04-16/april-meetup.ipynb
https://github.com/DAGWorks-Inc/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L258
https://github.com/DAGWorks-Inc/hamilton/blob/dde59f937ae2af8f7a1137ed21b5251337c24c4f/hamilton/plugins/mlflow_extensions.py

Recap: Data saving & loading with Hamilton
Hamilton:

- Three main approaches:
- Embed within Hamilton
- Embed outside Hamilton
- Inject with from_.* & to.* or @load_from & @save_to

Benefits:

- All approaches allow you to swap out implementations.
- You have your choice of “coupling” and you can mix & match
- Side-by-side comparison: https://hamilton.dagworks.io/en/latest/concepts/materialization/

- Read more here:

Materialization

https://blog.dagworks.io/p/separate-data-io-from-transformation
https://blog.dagworks.io/p/enterprise-ready-data-pipelines-with
https://blog.dagworks.io/p/from-dev-to-prod-a-ml-pipeline-reference

https://hamilton.dagworks.io/en/latest/concepts/materialization/
https://blog.dagworks.io/p/separate-data-io-from-transformation
https://blog.dagworks.io/p/enterprise-ready-data-pipelines-with
https://blog.dagworks.io/p/from-dev-to-prod-a-ml-pipeline-reference

Why use Hamilton’s I/O abstraction?

Benefits of the data savers / loaders (i.e. materializers):

- “Platform” approach to encapsulating & centralizing I/O
- Less technical debt & simpler migrations

- E.g. can dual write for migrations

- Logging of artifacts:
- Track & store lineage, metadata on artifacts, & provenance

- can build CI/CD, reporting/alerting functionality

Materialization

🗓 Next month - May ??:
Looking for community spotlight!

🎤 Open Mic.

FIN. Thanks for coming!

