
Feature Engineering with Hamilton

March 2023 @ Women Who Code: Data Science
Stefan Krawczyk - DAGWorks Inc. (YCW23)

whoami
Stefan Krawczyk

Co-creator of Hamilton &&
CEO DAGWorks Inc. (YCW23)

12+ years in ML & Data platforms

whoami
Stefan Krawczyk

Co-creator of Hamilton &&
CEO DAGWorks Inc. (YCW23)

12+ years in ML & Data platforms
100+ DS

TL;DR: talk overview in 5 slides

Here is 1% of some
project you’re inheriting

&
You have two choices…

Left RightOR

Here is 1% of some
project you’re inheriting

&
You have two choices…

Left

Left Right
Unit/Int. testing ❌ ✅
Documentation ❌ ✅
Lineage ❌ ✅
Reuse/
Modularity

❌ ✅

RightOR

Right: Hamilton
Standardizes how you
describe your work:

Data, ML, LLM, Web workflows

Right

Right: Hamilton
Write Code → Get a DAG.

Right

Backstory
How Hamilton came to be

1. Motivating pain
2. Hamilton
3. Feature Eng.
4. Summary

Motivating Pain

11

● You’re a DS team that provides operational forecasts for the business.
● The business makes decisions based on your numbers.
● You need to constantly model change in the world.

Problem:

What Hamilton helped solve!

Biggest problems here

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/1?callback=close&name=slides&callback_type=back&v=28289&s=717.8858267716536

Example: Creating a dataframe (e.g. for ML training)

12

df = loader.load_actuals(dates) # e.g. spend, signups

Example: Creating a dataframe (e.g. for ML training)

13

df = loader.load_actuals(dates) # e.g. spend, signups

Example: Creating a dataframe (e.g. for ML training)

14

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
 df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
 df['holidays'] = is_holiday(df['year'], df['week'])

Example: Creating a dataframe (e.g. for ML training)

15

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
 df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
 df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)

Example: Creating a dataframe (e.g. for ML training)

16

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
 df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
 df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])

Example: Creating a dataframe (e.g. for ML training)

17

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
 df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
 df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])
save_df(df, "some_location")

Example: Creating a dataframe (e.g. for ML training)

18

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
 df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
 df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])
save_df(df, "some_location")

 😬 Now picture the passage of time: personnel 𝚫, sophistication ⬆, etc

Problem: unit & integration testing; data quality 👎

19

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
 df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
 df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])
save_df(df, "some_location")

 😬 Now picture the passage of time: personnel 𝚫, sophistication ⬆, etc

Problem: code readability & documentation 🧐

20

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
 df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
 df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])
save_df(df, "some_location")

?

 😬 Now picture the passage of time: personnel 𝚫, sophistication ⬆, etc

Problem: difficulty in tracing lineage 🤯

21

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
 df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
 df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])
save_df(df, "some_location")

 😬 Now picture the passage of time: personnel 𝚫, sophistication ⬆, etc

Problem: code reuse and duplication

22

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
 df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
 df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])
save_df(df, "some_location")

✂📋

 😬 Now picture the passage of time: personnel 𝚫, sophistication ⬆, etc

Problem: onboarding 📈 & debugging 📈

23

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
 df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
 df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])
save_df(df, "some_location")

 😬 Now picture the passage of time: personnel 𝚫, sophistication ⬆, etc
 At Stitch Fix there was 1000+ features…

Question for you!

1. Are any of these pains familiar to you? If so, which ones?
2. Would you be in anguish if you suddenly had to inherit your colleagues

code that looked like this?

✋ Raise hand | Unmute !

What is
Hamilton?

1. Motivating pain
2. Hamilton
3. Feature Eng.
4. Summary

What is Hamilton?

Micro-orchestration framework
 for defining dataflows

using declarative functions
SWE best practices: ☑ testing ☑ documentation ☑ modularity/reuse

 pip install sf-hamilton [came from Stitch Fix]

www.tryhamilton.dev ← uses pyodide!

http://www.tryhamilton.dev

Mirco-orchestration vs Macro-orchestration

Macro-orchestration is handling this whole thing

e.g. airflow, or DBT, etc.:

Micro-orchestration is handling what happens within this step

e.g. code that Airflow / DBT runs.

What’s a dataflow?

Fancy way of saying:

How data + computation “flow”
Can be expressed as a directed acyclic graph (DAG).

e.g., this is a dataflow:
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['spend_per_signup'] = df['spend']/df['signups']
spend_mean = df['spend'].mean()
df['spend_zero_mean'] = df['spend'] - spend_mean
spend_std_dev = df['spend'].std()
df['spend_zero_mean_unit_variance'] = df['spend_zero_mean']/spend_std_dev

Declarative functions?

Functions declare:

● What they create in the dataflow.
● What dependencies are required for computation.
● You don’t run the functions directly.

> When you read the function, you’ll understand what it does
and what it needs.

A-ha moment: debugging a dataframe

Idea: What if every output (column) corresponded to exactly
one Python fn?

Addendum: What if you could determine the dependencies
from the way that function was written?

In Hamilton, the output (e.g., column)

is determined by the name of the function.

The dependencies are determined by the input parameters.

Instead of

You declare

Inputs == Function Arguments

Old Way vs. Hamilton Paradigm:

31

df['c'] = df['a'] + df['b']
df['d'] = transform(df['c'])

def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

Outputs == Function Name

Full Hello World (Note: works for any python object type)

32

feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

run.py
from hamilton import driver
import feature_logic
dr = driver.Driver({'a': ..., 'b': ...}, feature_logic)
df_result = dr.execute(['c', 'd'])
print(df_result)

Functions

Driver says what/when to execute

When should I consider Hamilton?

If you can draw a flowchart (DAG), you can put it into Hamilton:

● Feature engineering (Hamilton’s roots) ← Focus of today
● Tired of managing scripts that do transformations…
● Describing E2E ML Pipelines + MLOps integrations
● Web request flows
● LLM Workflows! (e.g. replace langchain)

Code & software best practices enthusiasts:

● Hamilton ⬇ Code Complexity

Things to mention, but I really won’t cover:

We also have decorators that you add to functions that…

● @tag # attach metadata

● @parameterize # curry + repeat a function
● @extract_columns # one dataframe -> multiple series
● @extract_outputs # one dict -> multiple outputs
● @check_output # data validation; very lightweight
● @config.when # conditional transforms
● @subdag # parameterize parts of your DAG

& more… Hamilton code is portable & runs & scales anywhere python runs.

Some Hamilton stats
~1.8K Unique Stargazers
 295+ slack members
 173K+ downloads

Hamilton is used by many, including:

Note: dbt took 3.5 years to get to 600 stars

Feature
Engineering

1. Motivating pain
2. Hamilton
3. Feature Eng.
4. Summary

Hamilton @ Stitch Fix

Running in production since 2019

One team manages 4000+ feature definitions

Data science teams ❤ it

● Enabled 4x faster monthly model + feature update
● Easy to onboard new team members - lineage & docs!
● Code reviews are faster
● Finally have unit tests
● Auto-generated sphinx documentation

37

Data loading &
Feature code:

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
 """Some docs"""
 return some_library(year, week)
def avg_3wk_spend(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.rolling(3).mean()
def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend / signups
def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.shift(3)
def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend_shift_3weeks / signups

Via
Driver:

Feature
Dataframe:

Feature Engineering with Hamilton

features*.py

run.py

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/3?callback=close&name=slides&callback_type=back&v=28289&s=493.77721456692916

Code that needs to be written:

1. Functions to load data
2. Feature functions
3. Drivers materialize data

Feature Engineering with Hamilton

Data
Loaders

Feature
Functions

Drivers

loader.py

transform.py

run.py

Code that needs to be written:

1. Functions to load data
2. Feature functions
3. Drivers materialize data

Feature Engineering with Hamilton

Data
Loaders

Drivers

Feature
Functions

loader.py

transform.py

run.py

Code that needs to be written:

1. Functions to load data
2. Feature functions
3. Drivers materialize data

Code base implications:

- Natural structure emerges
- Logic modules vs execution contexts

Feature Engineering with Hamilton

Data
Loaders

Drivers

Feature
Functions

loader.py

transform.py

run.py

Benefits of using Hamilton:

General: Testing & Documentation

Testing: easier to unit & integration test.

client_features.py

def height_zero_mean_unit_variance(height_zero_mean: pd.Series,
 height_std_dev: float) -> pd.Series:
 return height_zero_mean / height_std_dev

test_client_features.py

def test_height_zero_mean_unit_variance():
 actual = height_zero_mean_unit_variance(pd.Series([1,2,3]), 2.0)
 expected = pd.Series([0.5,1.0, 1.5])
 assert actual == expected

General: Testing & Documentation

Testing: easier to unit & integration test.

Data Quality Tests: runtime checks via annotation*; Pandera supported.

client_features.py

@check_output(data_type=np.float64, range=(-5.0, 5.0), allow_nans=False)
def height_zero_mean_unit_variance(height_zero_mean: pd.Series,
 height_std_dev: float) -> pd.Series:
 return height_zero_mean / height_std_dev

General: Testing & Documentation

Testing: easier to unit & integration test.

Data Quality Tests: runtime checks via annotation*; Pandera supported.

Self-documenting: naming, doc strings, annotations, & visualization

client_features.py

@tag(owner='Data-Science', pii='False')
@check_output(data_type=np.float64, range=(-5.0, 5.0), allow_nans=False)
def height_zero_mean_unit_variance(height_zero_mean: pd.Series,
 height_std_dev: float) -> pd.Series:
 """Zero mean unit variance value of height"""
 return height_zero_mean / height_std_dev

General: Testing & Documentation

Testing: easier to unit & integration test.

Data Quality Tests: runtime checks via annotation*; Pandera supported.

Self-documenting: naming, doc strings, annotations, & visualization

Scale: all these enable you to scale the team & code.

client_features.py

@tag(owner='Data-Science', pii='False')
@check_output(data_type=np.float64, range=(-5.0, 5.0), allow_nans=False)
def height_zero_mean_unit_variance(height_zero_mean: pd.Series,
 height_std_dev: float) -> pd.Series:
 """Zero mean unit variance value of height"""
 return height_zero_mean / height_std_dev

Visualization is first class

“Lineage as Code”

dr.visualize_execution(...):

General: Deployment & Reuse

This code is runnable everywhere python runs:

● Jupyter Notebooks, Python Scripts, Airflow, Ray, PySpark, web-services

→ Can share features definitions in multiple contexts

See https://blog.dagworks.io/p/feature-engineering-with-hamilton
 https://blog.dagworks.io/p/expressing-pyspark-transformations

client_features.py

@tag(owner='Data-Science', pii='False')
def height_zero_mean_unit_variance(height_zero_mean: pd.Series,
 height_std_dev: float) -> pd.Series:
 """Zero mean unit variance value of height"""
 return height_zero_mean / height_std_dev

https://blog.dagworks.io/p/feature-engineering-with-hamilton
https://blog.dagworks.io/p/expressing-pyspark-transformations

Comparing to the code from earlier:

49

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
 df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
 df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])
save_df(df, "some_location")

👎 : testing, documentation, visualization, lineage, portability, …

Comparing to the code from earlier:

50

@extract_columns("year", "week", "spend", "signups", "col_a")
@check_output(schema=..., target_=”load_actuals”)
def load_actuals(dates: list) -> pd.DataFrame:
 """Loads the actual data for given dates."""
 return loader.load_actuals(dates)

@config.when(country="UK")
def holidays__uk(year: pd.Series, week: pd.Series) -> pd.Series:
 """UK holiday feature."""
 return _is_uk_holiday(year, week)

@config.when(country="US")
def holidays__us(year: pd.Series, week: pd.Series) -> pd.Series:
 """US holiday feature."""
 return _is_holiday(year, week)

def avg_3wk_spend(spend: pd.Series) -> pd.Series:
 """Calculates the rolling 3-week average spend. 3 is important because…"""
 return spend.rolling(3).mean()

Comparing to the code from earlier:

51

def acquisition_cost(spend: pd.Series, signups: pd.Series) -> pd.Series:
 """Calculates the acquisition cost."""
 return spend / signups

def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
 """Shifts the spend by 3 weeks."""
 return spend.shift(3)

def special_feature1(col_a: pd.Series, B: pd.Series) -> pd.Series:
 """Computes a bespoke feature."""
 return _compute_bespoke_feature(col_a, B)

def spend_b(acquisition_cost: pd.Series, B: pd.Series) -> pd.Series:
 """Multiplies acquisition cost with column B."""
 return _multiply_columns(acquisition_cost, B)

Comparing to the code from earlier:

52

Notes:

● Unit testable
● Documentation friendly
● Lineage is clear
● Visualization →
● Reusable code
● Simpler to maintain

Benefit: can model whole ML/LLM Pipeline too
Can group functions into modules, e.g.:

1. Data loading & preprocessing
2. Feature engineering
3. Model fitting

Recap of this
Talk

1. Motivating pain
2. Hamilton
3. General Usage
4. Native SWE
5. Summary

TL;DR: Summary - F.E. with Hamilton

1. Hamilton is a lightweight library to declaratively express transforms
○ Great for feature engineering!

○ Write code that people aren’t terrified of inheriting!

2. The Hamilton paradigm: ⬆ SWE Best Practices ⬆ value of your work
○ Understand features: naturally testable & documentation friendly functions with lineage.

○ Reuse features: naturally reusable and modular code so you can move faster.

○ Standardized way to iterate and add to a code base.

3. Can integrate anywhere that python runs
○ Develop in a notebook, deploy on PySpark, reuse in a web-service.

○ Can help DS & Engineering teams collaborate more efficiently

What I’m building on top of Hamilton

With a one-line code change you get:
● Versioning (code)
● Lineage (code & artifacts)
● Catalog (code & artifacts)
● Observability (code & data)

Sign up for free @ www.dagworks.io

Fin. Thanks for listening!

Questions?

⭐ Star us please: https://github.com/dagworks-inc/hamilton
📣 Join us on on Slack or subscribe to blog.dagworks.io!

📚 Documentation: hamilton.dagworks.io

🎓 Self-paced tutorial https://github.com/DAGWorks-Inc/hamilton-tutorials/tree/main/2023-10-09

🛣 Follow us: https://twitter.com/hamilton_os

👉 https://www.dagworks.io (sign up! We’re building on top of Hamilton!)

📯 https://twitter.com/stefkrawczyk ⛓ https://www.linkedin.com/in/skrawczyk/

> pip install sf-hamilton or ⌨ on tryhamilon.dev

https://github.com/dagworks-inc/hamilton
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg
https://blog.dagworks.io/
https://hamilton.dagworks.io
https://github.com/DAGWorks-Inc/hamilton-tutorials/tree/main/2023-10-09
https://twitter.com/hamilton_os
https://www.dagworks.io
https://twitter.com/stefkrawczyk
https://www.linkedin.com/in/skrawczyk/
https://www.tryhamilton.dev/

