DAGWORKS

Feature Engineering with Hamilton

March 2023 @ Women Who Code: Data Science
Stefan Krawczyk - DAGWorks Inc. (YCW23)

12+ years in ML & Data platforms

B
D>> 2> IDIBON
STITCH FIX

VICTORIA UNIVERSITY OF

yosd WELLINGTON

TE HERENGA WAKA

12+ years in ML & Data platforms

STITCH FIX

] VICTORIA UNIVERSITY OF
=3 WELLINGTON
N\~ TE HERENGA WAKA

TL:DR: talk overview in 5 slides

1 # new_way.py
2~ def avg_3wk_spend(spend: pd.Series) -> pd.Series:

3 """Rolling 3 day average spend."""
4 return spend.rolling(3).mean()
5
x 6
1 # load_data defined off screen... 7 -~ def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
2 data = load_data() 8 """The cost per signup in relation to spend."""
3 data['avg_3wk_spend'] = data['spend'].rolling(3).mean() 9 return spend / signups
4 data['spend_per_signup'] = data['spend']/data['signups"'] 10
5 spend_mean = data['spend'].mean() 1
6 data['spend_zero_mean'] = data['spend'] - spend_mean 12~ def spend_mean(spend: pd.Series) -> float:)
7 spend_std_dev = data['spend'].std() 13 """Shows funct?on creatlngnﬁ scalar. In this case it computes the mean
8 data['spend_zero_mean_unit_variance'] = data['spend_zero_mean'] of'tha dnbiry Gole
) 14 return spend.mean()
/spend_std_dev 15
9 print(data.to_string()) 16
17 - def spend_zero_mean(spend: pd.Series, spend_mean: float) -> pd.Series:
18 """Shows function that takes a scalar. In this case to zero mean spend
19 return spend - spend_mean
20
21
22 - def spend_std_dev(spend: pd.Series) -> float:
23 """Function that computes the standard deviation of the spend column

24 return spend.std()
25

Here is 1% of some -

o 5 . o o 27 - def spend_zero_mean_unit_variance(spend_zero_mean: pd.Series,
project you re |nher|t|ng spend_std_dev: float) -> pd.Series:
28 """Function showing one way to make spend have zero mean and unit
variance."""
& 29 return spend_zero_mean / spend_std_dev

You have two choices...

1 # new_way.py

2~ def avg_3wk_spend(spend: pd.Series) -; . @eries:
3 """Rolling 3 day average spend."""
4 return spend.rolling(3).mean() Ig
5
x 6
1 # load_data defined off screen... 7 -~ def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
2 data = load_data() 8 """The cost per signup in relation to spend."""
3 data['avg_3wk_spend'] = data['spend'].rolling(3).mean() 9 return spend / signups
4 data['spend_per_signup'] = data['spend']/data['signups"'] 10
5 spend_mean = data['spend'].mean() 1
6 data['spend_zero_mean'] = data['spend'] - spend_mean 12~ def spend_mean(spend: pd.Series) -> float:)
7 spend_std_dev = data['spend'].std() 13 """Shows funct?on creatlngnﬁ scalar. In this case it computes the mean
8 data['spend_zero_mean_unit_variance'] = data['spend_zero_mean'] of'tha dnbiry Gole
) 14 return spend.mean()
/spend_std_dev 15
9 print(data.to_string()) 16
17 - def spend_zero_mean(spend: pd.Series, spend_mean: float) -> pd.Series:
18 """Shows function that takes a scalar. In this case to zero mean spend
19 return spend - spend_mean
20
21
22 - def spend_std_dev(spend: pd.Series) -> float:
23 """Function that computes the standard deviation of the spend column

24 return spend.std()
25

Here is 1% of some -

o 5 . o o 27 - def spend_zero_mean_unit_variance(spend_zero_mean: pd.Series,
project you re |nher|t|ng spend_std_dev: float) -> pd.Series:
28 """Function showing one way to make spend have zero mean and unit
variance."""
& 29 return spend_zero_mean / spend_std_dev

You have two choices...

1 # new_way.py

2~ def avg_3wk_spend(spend: pd.Series) -; . @eries:
3 """Rolling 3 day average spend."""
4 return spend.rolling(3).mean() Ig
5
x 6
1 # load_data defined off screen... 7 -~ def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
2 data = load_data() 8 """The cost per signup in relation to spend."""
3 data['avg_3wk_spend'] = data['spend'].rolling(3).mean() 9 return spend / signups
4 data['spend_per_signup'] = data['spend']/data['signups"'] 10
5 spend_mean = data['spend'].mean() 1
6 data['spend_zero_mean'] = data['spend'] - spend_mean 12~ def spend_mean(spend: pd.Series) -> float:)
7 spend_std_dev = data['spend'].std() 13 """Shows funct?on creatlngnﬁ scalar. In this case it computes the mean
8 data['spend_zero_mean_unit_variance'] = data['spend_zero_mean'] of'tha dnbiry Gole
) 14 return spend.mean()
/spend_std_dev 15
9 print(data.to_string()) 16
17 - def spend_zero_mean(spend: pd.Series, spend_mean: float) -> pd.Series:
18 """Shows function that takes a scalar. In this case to zero mean spend
19 return spend - spend_mean
20
21
22 - def spend_std_dev(spend: pd.Series) -> float:
23 """Function that computes the standard deviation of the spend column

24 return spend.std()

. . 7 25

Unit/Int. testing 26

27 -~ def spend_zero_mean_unit_variance(spend_zero_mean: pd.Series,
spend_std_dev: float) -> pd.Series:

A 28 """Function showing one way to make spend have zero mean and unit
Documentation
29 return spend_zero_mean / spend_std_dev

Lineage

Reuse/
Modularity

ney .py
~ def avg_3wk_spend(spend: pd.Series) -: . @eries:
"""Rolling 3 day average spend."""
return spend.rolling(3).mean()

~ def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
"""The cost per signup in relation to spend."""
return spend / signups

Woo~NOUV A WN -

10
11
12 - def spend_mean(spend: pd.Series) -> float:
13 """Shows function creating a scalar. In this case it computes the mean
of the entire column."""
return spend.mean()

17 - def spend_zero_mean(spend: pd.Series, spend_mean: float) -> pd.Series:
18 """Shows function that takes a scalar. In this case to zero mean spend

19 return spend - spend_mean

20

21

22 - def spend_std_dev(spend: pd.Series) -> float:

23 """Function that computes the standard deviation of the spend column

24 return spend.std()

25

26

27 -~ def spend_zero_mean_unit_variance(spend_zero_mean: pd.Series,
spend_std_dev: float) -> pd.Series:

28 """Function showing one way to make spend have zero mean and unit

variance."""
29 return spend_zero_mean / spend_std_dev

And a simple 'driver' to run it:

from hamilton import driver
import new_way
dr = driver.Driver({}, new_way)
outputs = ["spend", "signups", "avg_3wk_spend", "spend_per_signup",
"spend_zero_mean", "spend_zero_mean_unit_variance"]
result = dr.execute(
outputs,
inputs=load_data().to_dict(orient="series")
P
print(result.to_string())

spend_per_signup

spend_std_dev

spend_zero_mean_unit_variance

spend_zero_mean

avg_3wk_spend

1

2~

Woo~NOWU» AW

10
11

12~

13

17 -

18

19
20
21

22~

23

24
25
26

27 ~

28

29

S wWN e

O~y W

new_way.py
def avg_3wk_spend(spend: pd.Series) -: . @eries:
"""Rolling 3 day average spend."""
return spend.rolling(3).mean() Ig

def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
"""The cost per signup in relation to spend."""
return spend / signups

def spend_mean(spend: pd.Series) -> float:
"""Shows function creating a scalar. In this case it computes the mean
of the entire column."""
return spend.mean()

def spend_zero_mean(spend: pd.Series, spend_mean: float) -> pd.Series:
"""Shows function that takes a scalar. In this case to zero mean spend

return spend - spend_mean

def spend_std_dev(spend: pd.Series) -> float:
"""Function that computes the standard deviation of the spend column

return spend.std()

def spend_zero_mean_unit_variance(spend_zero_mean: pd.Series,
spend_std_dev: float) -> pd.Series:
"""Function showing one way to make spend have zero mean and unit
variance."""
return spend_zero_mean / spend_std_dev

And a simple 'driver' to run it:

from hamilton import driver
import new_way
dr = driver.Driver({}, new_way)
outputs = ["spend", "signups", "avg_3wk_spend", "spend_per_signup",
"spend_zero_mean", "spend_zero_mean_unit_variance"]
result = dr.execute(
outputs,
inputs=load_data().to_dict(orient="series")
P
print(result.to_string())

. Motivating pain
. Hamilton

. Feature Eng.
. Summary

Motivating Pain

D

e You're a DS team that provides operational forecasts for the business.

e [he business makes decisions based on your numbers.

e You need to constantly model change in the world.

Data, e.g.
Business
Actuals

Biggest problems here

Featurized
Dataframe

Fit TS
Models

Predict
Future

=
with Forecast

Dataframe

T

What Hamilton helped solve!

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/1?callback=close&name=slides&callback_type=back&v=28289&s=717.8858267716536

>

Example: Creating a dataframe (e.g. for ML training)

df = loader.load actuals(dates) # e.g. spend, signups

>

Example: Creating a dataframe (e.g. for ML training)

df = loader.load actuals(dates) # e.g. spend, signups

>

Example: Creating a dataframe (e.g. for ML training)

df = loader.load actuals(dates) # e.g. spend, signups
if config| == :
df [] = is uk holiday(df][], df[

else:
bl] is holiday (df]|], df[

>

Example: Creating a dataframe (e.g. for ML training)

df = loader.load actuals(dates) # e.g. spend, signups
if config| == :

df [1 is uk holiday (df]|], df[
else:

df [1 is holiday (df][], df[1)

df [= df[] .rolling(3) .mean()
df [1 = df| 1 / dfl]
df [] = df[] .shift (3)

df = loader.load actuals(dates) # e.g. spend, signups
if config| == :

df [1 is uk holiday (df]|], df[
else:

df [] is holiday (df]|], df]| 1)

df [= df]|] .rolling(3) .mean()

df [1 = df| 1 / dfl]

df [] = df[] .shift (3)

df [] = compute bespoke feature (df)

df [] = multiply columns (df]], df[1)

df = loader.load actuals(dates) # e.g. spend, signups
if config| == :

df [1 is uk holiday (df]|], df[
else:

df [] is holiday (df]|], df]| 1)

df [= df]|] .rolling(3) .mean()

df [1 = df| 1 / dfl]

df [] = df[] .shift (3)

df [] = compute bespoke feature (df)

df [] = multiply columns (df]], df[
save df (df,)

1)

df = loader.load actuals(dates) # e.g. spend, signups
if config| == :

df [] is uk holiday (df]|], df[
else:

df [] is holiday (df][], df[1)
df [= df]|] .rolling(3) .mean()
df [] = df] 1 / df[]
df[] = df]|] .shift(3)
df [] = compute bespoke feature (df)
df [] = multiply columns (df]], df[
save df (df,)

*9 Now picture the passage of time: personnel A, sophistication {3, etc

1)

df = loader.load actuals(dates) # e.g. spend, signups
if config| == :

df [] is uk holiday (df]|], df[
else:

df [] is holiday (df][], df[1)
df [= df]|] .rolling(3) .mean()
df [] = df] 1 / df[]
df[] = df]|] .shift(3)
df [] = compute bespoke feature (df)
df [] = multiply columns (df]], df[
save df (df,)

*9 Now picture the passage of time: personnel A, sophistication {3, etc

1)

Problem: code readability & documentation ¢

df = loader.load actuals(dates) # e.g. spend, signups
if config| == :

df [] is uk holiday (df]|], df[
else:

df [] is holiday (df][], df[1)
df [= df]|] .xrolling (%) .mean ()
df [] = df] 1 / df]]
df[] = df]|] .shift(3)
df [] = compute bespoke feature (df)
df [] = multiply columns (df]], df[
save df (df,)

*9 Now picture the passage of time: personnel A, sophistication {3, etc

1)

Problem: difficulty in tracing lineage %3

df = loader.load actuals(dates) # e.g. spend, signups
if config| :

df [] is uk holiday (df]|], df[
else:

df [] is holiday (df][], df[1)
df [= df]|] .rolling(3) .mean()
df [] = df] 1 / df[]
df[] = df]|] .shift(3)
df [] = compute bespoke feature (df)
df [] = multiply columns (df]], df[
save df (df,)

*9 Now picture the passage of time: personnel A, sophistication {3, etc

1)

Problem: code reuse and duplication

df = loader.load actuals(dates) # e.g. spend, signups
if config| :
df [] is uk holiday (df]| 1, df|
else:
df [] is holiday (df][], df][1)
df [= df|] .rolling(3) .mean() i

df [1 = df| 1 / dfl]
df [] = df[] .shift (3)

df [] = compute bespoke feature (df)
df [] = multiply columns (df]], df[1)
save df (df,)

*9 Now picture the passage of time: personnel A, sophistication {3, etc

Problem: onboarding ./ & debugging ./

df = loader.load actuals(dates) # e.g. spend, signups
if config| :

df [] is uk holiday (df]|], df[
else:

df [] is holiday (df][], df[1)
df [= df]|] .rolling(3) .mean()
df [] = df] 1 / df[]
df[] = df]|] .shift(3)
df [] = compute bespoke feature (df)
df [] = multiply columns (df]], df[
save df (df,)

*9 Now picture the passage of time: personnel A, sophistication {3, etc
At Stitch Fix there was 1000+ features...

1)

Question for you!

1. Are any of these pains familiar to you? If so, which ones?
2. Would you be in anguish if you suddenly had to inherit your colleagues
code that looked like this?

!/ Raise hand | Unmute !

L Motivat .

2. Hamilton

3. Feature Eng.
4. Summary

What is Hamilton?

Micro-orchestration framework
for defining dataflows
using declarative functions

SWE best practices: [%4 testing ["4 documentation [%4 modularity/reuse

pip install sf-hamilton [came from Stitch Fix]

www.tryhamilton.dev ¢ uses pyodide!

http://www.tryhamilton.dev

>

Mirco-orchestration vs Macro-orchestration

Macro-orchestration is handling this whole thing
e.g. airflow, or DBT, etc.:

my_other_sql_model

source.table my._sgl_model my_python_model

my_external_tool

Micro-orchestration is handling what happens within this step

e.g. code that Airflow / DBT runs.

What's a dataflow?

Fancy way of saying:
How data + computation “flow”

Can be expressed as a directed acyclic graph (DAG).

e.g., this is a dataflow:

df[] = df[] .rolling
df [] = df] 1/df]
spend mean = df]] .mean ()

df [] = df[
spend _std dev = df]].std()
df [] = df[

Declarative functions?

Functions declare:

e \What they create in the dataflow.
e \What dependencies are required for computation.
e You don't run the functions directly.

> When you read the function, you'll understand what it does
and what it needs.

>

A-ha moment: debugging a dataframe

Idea: What if every output (column) corresponded to exactly
one Python fn?

Addendum: What if you could determine the dependencies
from the way that function was written?

In Hamilton, the output (e.g., column)
is determined by the name of the function.

The dependencies are determined by the input parameters.

Old Way vs. Hamilton Paradigm:

Instead of df['a'] + df['b']
transform (df [1)

Outputs == Function Name Inputs == Function Arguments

U ' 4

def cia: pd.Series, b: pd.Series) -> pd.Series:

You declare

return a + b

def d(c: pd.Series) -> pd.Series:

new _column = transform logic(c)
return new_column

31

>

Full Hello World (Note: works for any python object type)
_ # feature logic.py mmmmmomm 3
Functions def c(a: pd.Series, b: pd.Series) -> pd.Series: ! : :
| a Series !
return a + b i b Series i

def d(c: pd.Series) -> pd.Series:

new_column = _transform logic(c)
return new_column

Driver says what/when to execute

run.py

from hamilton import driver

import feature logic

dr = driver.Driver ({ ... : ...}, feature logic)
df result = dr.execute ([1)

print (df_result) 32

Series

When should | consider Hamilton?

If you can draw a flowchart (DAG), you can put it into Hamilton:

Feature engineering (Hamilton’s roots) < Focus of today
Tired of managing scripts that do transformations...

Describing E2E ML Pipelines + MLOps integrations

Web request flows

LLM Workflows! (e.g. replace langchain)

Code & software best practices enthusiasts:

e Hamilton 4 Code Complexity

>

Things to mention, but | really won't cover:

We also have decorators that you add to functions that...

@tag # attach metadata

@parameterize # curry + repeat a function
@extract columns one dataframe -> multiple series
dextract outputs one dict -> multiple outputs
@check output data validation; very lightweight

@config.when conditional transforms

H= = P

dsubdag parameterize parts of your DAG

& more... Hamilton code is portable & runs & scales anywhere python runs.

” o3 RAY r‘daSk Squl\z orastarl |2y Flask ':Jupyter

Some Hamilton stats

~1.8K Unique Stargazers
295+ slack members
173K+ downloads

Star History

1000 1 4 ® dagworke=inc/hamilton
® & stitchfix/hamilton

800
e
S 600
©
=
=}
B
© 400

200

2022 April July October 2023 April July October
Date %} star—history.com

Note: dbt took 3.5 years to get to 600 stars

\"/

>

Hamilton is used by many, including:

%
/; X z:\
- “Joby
STITCH FIX

\ BRITISH
MCYCUNG

'&‘ L

AXIOM CLOUD

—_— -—®

eriff V' &
Hj?m- Opendoor

> ENERGY

Pacific @ LexisNexis
Northwest RISK SOLUTIONS

NATIONAL LABORATORY

=
“w

Government
Digital Service

L Motiva .
2Z—HoFHeR

3. Feature Eng.
4. Summary

Hamilton @ Stitch Fix

Running in production since 2019
One team manages 4000+ feature definitions
Data science teams €@ it

Enabled 4x faster monthly model + feature update
Easy to onboard new team members - lineage & docs!
Code reviews are faster

Finally have unit tests

Auto-generated sphinx documentation

37

Feature Engineering with Hamilton

holidays (year: pd.Series, week: pd.Series) -> pd.Series:

some_library(year, week)
avg 3wk spend(spend: pd.Series) -> pd.Series:

) X
features*py
spend per signup(spend: pd.Series, signups: pd.Series) -> pd.Series:

spend / signups
spend shift 3weeks(spend: pd.Series) -> pd.Series:

Feature code:

spend shift 3weeks_per_ signup(spend_shift 3weeks: pd.Series, signups: pd.Series) -> pd.Series:

spend_shift 3weeks / signups

UD: signups
spend_shift_3weeks spend_per_signup
spend_shift_3weeks_per_signup

Via
Driver;| &

Year Week Sign ups Spend Holiday
2015 2 57 123 0 r u n
F t 2015 3 58 72 0 .
e a u re 2015 4 59 123 1
2015 5 59 123 i,

Dataframe:

2021 16 1000 1234 0

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/3?callback=close&name=slides&callback_type=back&v=28289&s=493.77721456692916

>

Feature Engineering with Hamilton

Code that needs to be written:

Data loader.py
Loaders

1. Functions to load data
2. Feature functions
3. Drivers materialize data

Feature
Functions

transform.py

Drivers run.py
vy

>

Feature Engineering with Hamilton

Code that needs to be written:

Data loader.py
Loaders

1. Functions to load data
2. Feature functions
3. Drivers materialize data

Feature
Functions

transform.py

Drivers run.py

>

Feature Engineering with Hamilton

Code that needs to be written:

Data loader.py
Loaders

1. Functions to load data
2. Feature functions
3. Drivers materialize data

Feature
Functions

transform.py

Code base implications: ,
Drivers run.py
- Natural structure emerges

- Logic modules vs execution contexts

Benefits of using Hamilton:

General: Testing & Documentation

client features.py

def height zero mean unit variance (height zero mean: pd.Series,
height std dev: float) -> pd.Series:
return height zero mean / height std dev

Testing: easier to unit & integration test.

test client features.py

def test height zero mean unit variance():
actual = height zero mean unit variance(pd.Series([1,2,3]), 2.0)
expected = pd.Series([0.5,1.0, 1.5])
assert actual == expected

General: Testing & Documentation

client features.py

@check output (=np.floaté64, =(-5.0, 5.0), =False)
def height zero mean unit variance (height zero mean: pd.Series,
height std dev: float) -> pd.Series:
return height zero mean / height std dev

Testing: easier to unit & integration test.

Data Quality Tests: runtime checks via annotation*; Pandera supported.

General: Testing & Documentation

client features.py

@tag(= ; =)
@check output (=np.floaté64, =(-5.0, 5.0), =False)

def height zero mean unit variance (height zero mean: pd.Series,
height std dev: float) -> pd.Series:

return height zero mean / height std dev

Testing: easier to unit & integration test.
Data Quality Tests: runtime checks via annotation*; Pandera supported.

Self-documenting: naming, doc strings, annotations, & visualization

General: Testing & Documentation

client features.py

@tag(= ; =)
@check output (=np.floaté64, =(-5.0, 5.0), =False)

def height zero mean unit variance (height zero mean: pd.Series,
height std dev: float) -> pd.Series:

return height zero mean / height std dev

Testing: easier to unit & integration test.
Data Quality Tests: runtime checks via annotation*; Pandera supported.
Self-documenting: naming, doc strings, annotations, & visualization

Scale: all these enable you to scale the team & code.

Visualizaticm is first class

fare

Series

: /\‘
input sex
i MpU 4 sex_encoder
Series LabelEncoder
function

sex_category

Series

pclass
Series

embarked_encoder

[T T T AT, ncod i
index_col str ' titanic_data GRS it =
location str : DataFrame Series

e d

\ embarked_category

) Series

<

~
cabin cabin_

Series LabelEncoder
" 4

cabin_category

Series

sibsp

Series .
\ 4 family

Series
parch

Series
. 4
S
| : target
| \ Series

4

dr.visualize_execution(...):

validation_size_fraction float

“Lineage as Code”

training_set_v1

DataFrame

X_train

DataFrame

train_test_split_func

dict

y_train

Series

fit_random_forest

ClassifierMixin

random_state int

prefit_random_forest

ClassifierMixin

max_depth typing.Union
random_state int

General: Deployment & Reuse

client features.py

@tag(= , =)
def height zero mean unit variance (height zero mean: pd.Series,
height std dev: float) -> pd.Series:

return height zero mean / height std dev

This code is runnable everywhere python runs:
e Jupyter Notebooks, Python Scripts, Airflow, Ray, PySpark, web-services
- Can share features definitions in multiple contexts

See https://blog.dagworks.io/p/feature-engineering-with-hamilton
https://blog.dagworks.io/p/expressing-pyspark-transformations

https://blog.dagworks.io/p/feature-engineering-with-hamilton
https://blog.dagworks.io/p/expressing-pyspark-transformations

Comparing to the code from earlier:

df = loader.load actuals(dates) # e.g. spend, signups
if config| == :

df [] is uk holiday (df]|], df[
else:

df [] is holiday (df][], df[1)
df [= df]|] .rolling(3) .mean()
df [] = df] 1 / df[]
df[] = df]|] .shift(3)
df [] = compute bespoke feature (df)
df [] = multiply columns (df]], df[
save df (df,)

: testing, documentation, visualization, lineage, portability, ...

1)

Comparing to the code from earlier:

@extract columns (, , ,
@check output(schema=..., target ="load actuals”)
def load actuals(dates:) -> pd.DataFrame:

return loader.load actuals(dates)

@config.when (=)
def holidays uk(year: pd.Series, week: pd.Series) -> pd.Series:

return _is uk holiday(year, week)

@config.when (=)
def holidays us(year: pd.Series, week: pd.Series) -> pd.Series:

return _is holiday(year, week)
def avg 3wk spend(spend: pd.Series) -> pd.Series:

return spend.rolling(3) .mean()

Comparing to the code from earlier:

def acquisition cost(spend: pd.Series, signups: pd.Series) -> pd.Series:
return spend / signups

def spend shift 3weeks (spend: pd.Series) -> pd.Series:
return spend.shift (3)

def special featurel(col_a: pd.Series, B: pd.Series) -> pd.Series:
return _compute bespoke feature(col_a, B)

def spend b (acquisition_cost: pd.Series, B: pd.Series) -> pd.Series:

return multiply columns(acquisition_cost, B)

Comparing to the code from earlier:

Notes: @

Legend

Unit testable ' input :

Documentation friendly

Lineage is clear
. . . country
Visualization - _ \

typing.Any
Reusable code
Simpler to maintain . |

load_actuals

DataFrame

special_featurel
Series

avg_3wk_spend
Series

spend_shift_3weeks
o
Series

=

signups
Series

acquisition_cost
Series

>

Benefit: can model whole ML/LLM Pipeline too

Can group functions into modules, e.g.:

1. Data loading & preprocessing
2. Feature engineering
3. Model fitting

Is.
mily. Gz
al o)
categorical df |-
one_hot_encoder fit_categorical_encoder DataFrame
OneHotEncoder OneHotEncoder

survived
Series.

5. Summary

TL:DR: Summary - F.E. with Hamilton

1. Hamilton is a lightweight library to declaratively express transforms
o Great for feature engineering!
o Write code that people aren’t terrified of inheriting!

2. The Hamilton paradigm: # SWE Best Practices 4 value of your work

o Understand features: naturally testable & documentation friendly functions with lineage.
o Reuse features: naturally reusable and modular code so you can move faster.

o Standardized way to iterate and add to a code base.
3. Canintegrate anywhere that python runs

o Develop in a notebook, deploy on PySpark, reuse in a web-service.

o Can help DS & Engineering teams collaborate more efficiently

What I'm building on top of Hamilton

With a one-line code change you get:

e Versioning (code)

e Lineage (code & artifacts)
e Catalog (code & artifacts)
e Observability (code & data)

Sign up for free @ www.dagworks.io

DAGWORKS

Fin. Thanks for listening!

>pip install sf-hamilton oOr = on tryhamilon.dev

Questions?

r Star us please: https://qgithub.com/dagworks-inc/hamilton

#\ Join us on on Slack or subscribe to blog.dagworks.io!

= Documentation: hamilton.dagworks.io

? Self-paced tutorial https:/github.com/DAGWorks-Inc/hamilton-tutorials/tree/main/2023-10-09

'ﬁzﬁ' Follow us: https://twitter.com/hamilton_os

< https://www.dagworks.io (sign up! We're building on top of Hamilton!)

@ https://twitter.com/stefkrawczyk $8 https://www.linkedin.com/in/skrawczyk/

https://github.com/dagworks-inc/hamilton
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg
https://blog.dagworks.io/
https://hamilton.dagworks.io
https://github.com/DAGWorks-Inc/hamilton-tutorials/tree/main/2023-10-09
https://twitter.com/hamilton_os
https://www.dagworks.io
https://twitter.com/stefkrawczyk
https://www.linkedin.com/in/skrawczyk/
https://www.tryhamilton.dev/

