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LLMs��



Classic ML
E.g. 
   LTV prediction
   Fraud detection
   Spam classification
   Personalization

LLMs
E.g. 
  Text summarization
  Q&A Help bot
  Generating text

��
🧠 + 🛠



Part I: 🧠 
Classic ML Pipelines ≈ LLM Pipelines



Let’s compare some pipelines



Input Prompt LLM 
Inference Output

Input Feature 
Engineering

Model 
Inference Output

Classic ML
E.g. LTV prediction

LLMs
E.g. Text summarization

Let’s compare: inference



Input
Prompt = 

Template + 
input

LLM 
Inference Output

Input Feature 
Engineering

Model 
Inference Output

Classic ML
E.g. LTV prediction

LLMs
E.g. Text summarization

“model”

Let’s compare: inference

● Iteration pace is different!
● Model Versioning
● Observability
● Evaluation
● APIs vs GPUs vs CPUs



Classic ML

LLMs

Let’s compare: “Training” 1/2

Feature 
Engineering Model FittingRaw Data 

+ Labels
Evaluation

LLM 
Inference EvaluationPrompt

“Hyperparameter tuning”



Fine tuning Evaluation

Classic ML

LLMs

Let’s compare: “Training” 2/2

● Evaluation fuzzier with LLMs
● CPUs vs GPUs

Feature 
Engineering Model FittingRaw Data 

+ Labels
Evaluation

Inputs & 
Outputs

(eventually)



List of 
documents 

Optional: 
Rank/Filter

Prompt + 
LLM 

Inference to 
“Rank”

Output

Query Optional: 
Rank/Filter Model to rank Output

Classic ML
E.g. Recommending clothes

LLMs
E.g. Knowledge Q&A

Let’s compare: Rec. Sys. vs RAG

● Query → candidate set → model
● Same debugging, observability, evaluation needs
● DBs: Feature Stores vs Vector DBs vs DBs
● ETL: processes need to be built

List of Items 
+ Feature 

Engineering

Query



Classic ML requires a lot of software engineering

Classic ML image:

Pipeline inheritance 😱
Why?

- Overengineered 
abstractions

General challenges:
● Testing
● Change/Modularity
● Reuse



All of this requires a lot of software engineering

Prompts

Embeddings Vector 
Databases Human Eval.

Foundational 
Model Platform

Filters

Document 
Curation

Fine Tuning

Classic ML image:

Pipeline inheritance 😱
Why?

- Overengineered 
abstractions

General challenges:
● Testing
● Change/Modularity

LLM world is no different:
LLM Systems



A simple unifying abstraction:
Directed Acyclic Graphs (DAGs)

Node 
(Computation)

Node 
(Computation)



In general, Code, e.g. Pandas: it’s a (micro) DAG

df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['spend_per_signup'] = df['spend']/df['signups']
spend_mean = df['spend'].mean()
df['spend_zero_mean'] = df['spend'] - spend_mean
spend_std_dev = df['spend'].std()
df['spend_zero_mean_unit_variance'] = df['spend_zero_mean']/spend_std_dev



LLMs: Using Langchain

from langchain.llms import OpenAI

llm = OpenAI(temperature=0.9)

 

text = "Explain the concept of machine learning in" 

one paragraph"

print(llm(text))



LLMs: Using Langchain, it’s a (micro) DAG

from langchain.llms import OpenAI

llm = OpenAI(temperature=0.9)

 

text = "Explain the concept of machine learning in" 

one paragraph"

print(llm(text))

Text Prompt OpenAI API Call

See https://www.reddit.com/r/LangChain/comments/13fcw36/langchain_is_pointless/



ML Pipelines are a (macro) DAG

In Airflow:

Feature 
Engineering Model Fitting Model 

Inference OutputRaw 
Data

Create 
training 

& test set

Extract 
data

Fit 
Model

Use 
model for 
inference



ML Pipelines are a DAG of DAGs

In Airflow:

Feature 
Engineering Model Fitting Model 

Inference OutputRaw 
Data

Create 
training 

& test set

Extract 
data

Fit 
Model

Use 
model for 
inference



LLM Pipelines are also a DAG of DAGs

In Langchain/Custom code:

ProcessGet list of 
documents

Prompt 
+LLM 

Filters
/checks

List of 
documents 

Optional: 
Rank/Filter

Prompt + 
LLM 

Inference to 
“Rank”

OutputQuery



Part I Summary: ML Pipelines ≈ LLMs Pipelines 

1. Pipelines: LLM world is broadly equivalent to Classic ML 
a. Shared software engineering challenges
b. But, with LLMs:

i. Applications can be be developed much faster.
ii. So you need to design for change (modularity)

2. At their core, they can (and should!) be both modeled by DAGs.

🔥 Hot take:

 “A DAG is all you need – the rest is an overengineered abstraction”



Part II: 🛠 Hamilton



What is Hamilton?



What is Hamilton?

Micro-orchestration framework
 for defining DAGs

using declarative functions
SWE best practices: ☑ testing ☑ documentation ☑ modularity/reuse

     
  pip install sf-hamilton [came from Stitch Fix]

www.tryhamilton.dev ← uses pyodide!

http://www.tryhamilton.dev


Micro-orchestration vs Macro-orchestration

Macro-orchestration handles this whole thing:

Micro-orchestration handles what happens within this step



What type of DAGs?

DAGs that represent your procedural code (i.e. the micro):
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['spend_per_signup'] = df['spend']/df['signups']
spend_mean = df['spend'].mean()
df['spend_zero_mean'] = df['spend'] - spend_mean
spend_std_dev = df['spend'].std()
df['spend_zero_mean_unit_variance'] = df['spend_zero_mean']/spend_std_dev



Declarative functions?

Functions declare:
● What they create in the DAG.
● What dependencies are required for computation.

You don’t run the functions directly.

> When you read the function, you’ll understand what it does 
and what it needs.



A-ha moment: debugging a dataframe

Idea What if every output (column) corresponded to exactly 
one Python fn?

And… What if you could determine the dependencies from the 
way that function was written?

In Hamilton, the output (e.g., column) 

is determined by the name of the function. 

The dependencies are determined by the input parameters.



Instead of

You declare

Inputs == Function Arguments

Old Way vs. Hamilton Paradigm:

29

df['c'] = df['a'] + df['b']
df['d'] = transform(df['c'])

def c(a: pd.Series, b: pd.Series) -> pd.Series:
   """Sums a with b"""
   return a + b

def d(c: pd.Series) -> pd.Series:
   """Transforms C to ..."""
   new_column = _transform_logic(c)
   return new_column

Outputs == Function Name



Full Hello World          (Note: works for any python object type)

30

# llm_chain.py
def c(a: str, b: int) -> str:
   """Creates prompt"""
   return f"Some prompt using {a} & {b}"

def d(c: str) -> str:
   """Transform/send to LLM ..."""
   llm_response = _llm_api_call(c)
   return llm_response

# run.py
from hamilton import driver
import llm_chain
dr = driver.Driver({'a': ..., 'b': ...}, llm_chain)
df_result = dr.execute(['c', 'd']) 
print(df_result)

Functions

Driver says what/when to execute
str

str

str
str



Things to mention, but won’t cover:

We also have decorators that you add to functions that…

● @tag # attach metadata
● @parameterize # curry + repeat a function
● @extract_columns # one dataframe -> multiple series
● @extract_outputs # one dict -> multiple outputs
● @check_output # data validation; very lightweight 
● @config.when # conditional transforms
● @subdag # parameterize parts of your DAG 

& more… Hamilton code is  portable & runs & scales anywhere python runs. 



Hamilton Examples



Hamilton for ML (feature engineering)

TL;DR

1. Define one function per feature
2. Join together as part of the Hamilton Driver
3. Utilize @config.when to swap between online/offline implementations
4. Expand to more components of the ML lifecycle



Hamilton for Classic ML (feature engineering)



Hamilton for Classic ML (feature engineering)



Hamilton for Classic ML (feature engineering)

Swap between batch/online with @config



Hamilton for Classic ML (feature engineering)

Add in ML inference/training as needed…



Hamilton for LLM pipelines

Define capabilities (chains) as DAGs. Nodes (fns) are:

- Prompts
- API calls
- External data queries
- Data transformation

[optional] Control flow (agent) to tie them together:

- Take result, feed to next execution
- Use LLM to decide next DAG

Swap between foundational models, vector stores, etc… with @config.when



Hamilton for LLMs

Caption an Image



Hamilton for LLMs

Generate an Image:



Hamilton for LLMs

Build out a toolbox

- Select which DAG to execute based on context  
- Run in process
- Do something with the outputs

- Display to user
- Store as state/context, feed back to next execution
- Write back to storage for fine-tuning

Embrace chaos – feed a caption from chatGPT to an image in DallE with a 
while loop + two lines of Hamilton code…*

*Blog post coming soon!



Hamilton for LLMs

In a mesmerizing collision of cosmic and terrestrial vistas, we gaze upon an 
otherworldly landscape where the impossible becomes possible. The scene is 
divided into two striking halves by a brilliant, vertical beam of light, 
signifying a rift between two dimensions or realities. On the left, we are 
treated to the familiar serenity and natural beauty of an earthly beach 
under a night sky. Foam-laced waves gently kiss the sandy shore, swirling 
around pockets of calm water that reflect the celestial wonders above. A 
crescent moon, accompanied by a scatter of twinkling stars and a nebulous 
galactic canvas, hangs suspended in the quiet darkness. Rich hues of blue 
and browns palette the tranquil nocturnal beach.

Transitioning through the radiant divide, the right paints a stark contrast, 
an epic swirl of galactic clouds in an astonishing dance of light and color. 
We are catapulted into the vastness of space, witnessing the ethereal beauty 
of a swirling blue galaxy adorned with starbursts and clouds of interstellar 
dust, which emit a myriad of colors: from warm golds to cool purples, 
embodying the chaotic and ever-evolving nature of the universe. This 
otherworldly skyscape also bathes a duplicate beach in its surreal light, 
but here, the sea churns with greater ferocity, infused with the tumultuous 
energy of the cosmos.

This scene, likely the work of digital artistry, offers a vision bordering 
on science fiction, encouraging the viewer to contemplate the beauty and 
mystique of both our own planet and the infinite universe that embraces it. 
The composition speaks of contrasts: tranquil versus tumultuous, warm versus 
cool colors, the familiar versus the unknown, and the possible versus the 
fantastical. The contrast is not just visual; it's thematic, exploring the 
intersection of our reality with the boundless realms of the imagination



Hamilton for both

Many problems you hit will require both…

E.G: customize embeddings:

- Pass in pairs of similar/dissimilar text
- [LLM] Query foundational model for embeddings
- [ML] Train a model on your pairs
- [ML] Project onto that space



Hamilton for both



Hamilton for both

Hamilton for LLM + ML workflows enables you to:

- Allows you to BYO tooling (LLMs, ML, your DB, …)
- Swap out components, implementations, etc
- Visualize, test, reuse components
- Do ^^^ with one tool



Part II: Hamilton Summary

Modeling your DAGs as self-descriptive functions allows you to:

● Use the same tooling for LLM + ML + data processing
● Rerun in multiple contexts to save code, headaches
● Reuse DAGs to build really cool things!
● Build all of ^^ as modular, testable, self-documenting software

○ Never fear inheriting someone else code; 😱 → 😎



Overall Summary



Talk Summary

● 🧠 Pipelines: LLMs are broadly equivalent to classic ML
○ But LLM field is moving/changing quickly; 

■ Traditional ML isn’t going away. 
● 🧠 You can model ML pipelines as DAGs as well as LLM pipelines
● 🛠 Hamilton is your unifying toolset

○ SW best practices for free!
○ Can do both LLMs + ML and is made to handle change



Next steps:

1. Download Hamilton  pip install sf-hamilton <10 mins to get started.

2. https://www.tryhamilton.dev/ to learn the basics.

3. hub.dagworks.io to get started with something quickly 

4. Star the repository - https://github.com/DAGWorks-Inc/hamilton 

5. Join slack if you have questions!

https://www.tryhamilton.dev/
https://hub.dagworks.io
https://github.com/DAGWorks-Inc/hamilton
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg


Fin. Questions?


