A Why you should build your
GenAl/LLM apps using Hamilton

& Five reasons why

Stefan Krawczyk historically: ¢ n
CEO & Co-Founder 5 G
»DAGWORKS (YCW23) |

AlCamp December 2023

Some questions
fromme:)

Do

Agenda

1. Challenges
2. Hamilton

E

1. Challenges

Do

(1) Everything's new...

||||||||||||

Do

||||||||||||

(2) Pace of change
& development

Do

||||||||||||

(3) All this requires
SWE skills

Do

Anyone remember this?

1. Challenges

Hidden Technical Debt in Machine Learning Systems

D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips
{dsculley, gholt, dgg, edavydov, toddphillips}@google.com

Google, Inc.
Machine
Resource Monitoring
: Management
Configuration Data Collection Serving
Infrastructure
Analysis Tools
EFeatun"e Process
xtraction Management Tools

D

GenAl/LLM Apps are no different

Hidden Technical Debt in Machine Learning Systems

Sculley, Gary Holt, Daniel Go dov, T i
P.rompt ulley, gholt, dgg, edavy Vector ps}e Foundational
Tuning Tools Go¢ DBs Model
Document Serving
Control Flow Curation .
& Reasoning
Machine
Loo pPS Resource Monitoring
: Management
Configuration Data Collection g Sering
Synthetic Infrastructure A :
D ty ti “ Analysis Tools Fine tumng
ata creation - Infrastructure
Feature
: Process
RFO mpt Extraction Managerment Tools
Tuning Tools . Human eval | Safety Filters
Embeddings SUAILISHIE
d Validation
1. Challenges

D

Slide inspired by D. Sculley CEO of Kaggle

is less this:

and more this:

Challenges

D

(3) SWE challenges

Get it wrong:

1. IC: Tech debt & pipeline/workflow/code inheritance @
2. Business: High cost to change & slower to develop.

Getitright:

1. IC: Ship more & get faster promotions.
2. Business: higher ROl

1. Challenges

(3) SWE challenges

Get it wrong:

Do

Characteristics:

Change with confidence
Swappable parts

Make tweaks/warm start
Layer on your concerns

el N

- testing

- modularity

— reusability

- portability, pluggability, & extensibility

2. Business: higher ROl

1. Challenges

2. Hamilton

Do

What is Hamilton? D

Micro-orchestration framework
for defining dataflows
using declarative functions

SWE best practices: [%g testing [%d documentation [¥%d modularity/reuse [%g iteration

pip install sf-hamilton [came from Stitch Fix]

www.tryhamilton.dev ¢ uses pyodide!

2. Hamilton

http://www.tryhamilton.dev

2.

D

Micro-orchestration vs Macro-orchestration

Macro-orchestration is this whole thing (ETLs, web service requests, etc):

my_other_sqgl_model

source.table my._sgl_model my_python_model

my_external_tool

Micro-orchestration handles what happens within this step

Hamilton

>

What do you mean by dataflow?

Dataflows represent how your procedural code flows:

df [] = df|[] .rolling(3) .mean ()
df [= df[1/df]]
spend mean = df]] .mean ()

df [df [] - spend mean
spend std dev = df]].std()

df [L= df[]1/spend _std dev

,,,,,,,, s

-~ . Qi N g . SN
. Input: signups) o Input: spend J

@ avg_3wk_spend

spend_per_signup
spend_std_dev

spend_zero_mean_unit_variance

spend_zero_mean

2. Hamilton

D

Declarative functions?

Functions declare:

e \What they create in the dataflow.
e \What dependencies are required for computation.

You don’t run the functions directly.

> When you read the function, you'll understand what it does
and what it needs.

2. Hamilton

D

Old Way vs. Hamilton Paradigm:

Instead of : a b
: custom logic(llm api call(c))

Outputs == Function Name Inputs == Function Arguments

U 4

def cia:| str, [b: int) -> str:

You declare

return

def d(c:| str) -> str:

response = custom logic(llm api call(c))
return response

2. Hamilton 20

>

Full Hello World (Note: works for any python object type)

_ # 1llm chain.py
Functions def c(a: str, b: int) -> str:

return
def d(c: str) -> str:

response = custom logic(llm api call(c))
return response

Driver says what/when to execute

run.py
from hamilton import driver

import llm;chain

dr = driver.Driver ({ ... : ...}, 1lm chain, adapter=...)
result = dr.execute (]|
print(result) 21

D
Full Hello World (Note: works for any python object type)

_ # 1llm chain.py
Functions def c(a: str, b: int) -> str:

¥ Yes, you can use it to
replace (even use with):
Langchain
Llama Index
etc.

Driver says wi

import 1llm chain

dr = driver.Driver ({
result = dr.execute (]| ,
print(result)

: ...}, 1lm chain, adapter=...)

22

D

Things to mention, but won't really cover:

We also have decorators that you add to functions that...

dtag
dparameterize
Cextract columns
Cextract outputs
Gcheck output
@config.when

@subdag

2. Hamilton

#

H= = F I

attach metadata

curry + repeat a function

one dataframe -> multiple series
one dict -> multiple outputs

data validation; very lightweight
conditional transforms

parameterize parts of your DAG

D

Some Hamilton users we know of

N
£ 9 yBRmSH 7 7
> O)CYCULING Joby TRANSFIX’
STITCH FIX

EEE{;:@ ena "‘ A&D
OAK "
RIDGE & a4 A
National Laboratory HABITAT g%\{gngﬁefcitce T

ENERGY

{

AAAAAAAAAAAAAAAAAA

Pacifi @ LexisNexis
N?)ﬂ:f‘ll&est @ RISK SOLUTIONS Opendoor K i

2. Hamilton

2. Hamilton

Five Reasons

Do

1: One less tool to learn

With Hamilton you can describe & glue together:

Data processing
Feature engineering
Machine learning
GenAl/LLM

Web request

Etc

O O e A

pipelines / workflows / dataflows / etc.

2. Hamilton

2: Portable, Pluggable &
Extensible

Your code is portable & runs & scales
anywhere python runs:

os» RAY figdask $park
Y Flask

O FastAPI

Jjupyter

2. Hamilton

Hamilton: a modular open source declarative paradigm for high
level modeling of dataflows

Stefan Krawczyk
skrawczyk@stitchfix.com
stefank@cs.stanford.edu
Stitch Fix
San Francisco, California, USA

ABSTRACT

As the role of data in industry has grown, the need for specific data

tooling has followed. While a hello world example
for a typical machine learning workflow might look trivial, once
one layers in industry concerns such as data & computational lin-
cage, data quahly/observabmty, scalability, unit testing, code base

and d this mel. of specific tooling
often results in a poor end to end user experience with high en-

Elijah ben Izzy
elijah.benizzy @stitchfix.com
Stitch Fix
San Francisco, California, USA

was build a model and prescribe the recipe for an engineering team
to implement. In a “full stack” model, however, the data scientist has
to pick up the engineering work and und, d the 1
of implementing a production pipeline. This has made it all the
more important to build streamlined experiences that reduce the
complexity of their engineering work, while still enabling them to
move quickly and adjust their pipelines as the business requires.
At Stitch Fix, the Hamilton framework[5] was conceived to miti-

gineering effort.
solve a subset of

=eieed 0)6) \LDB Workshop Papers |

unified interface

ific

m’s

late,

way that facilitates T [y of dala management system tooling
by forcing a clear decoupling of concerns. It does this by requiring a
pmgrammmg paradigm change on part of the user that enables easy

AT CXCTUTe COTT TOT tatr in
the case of highly complex data transformation dependency chains.
Hamilton does this by deriving a directed acyclic graph (DAG) of de-

dencies from specially defined declarative Python functions that

and ion of dataflow graphs. Hamilton therefc
represen(s a novel high level approach to modeling dataflows, and
presents an industry pragmatic avenue for building a simpler user
experience that can easily integrate with existing data management
tooling in a modular fashion. Hamilton is available as open source
code.

PVLDB Reference Format:

Stefan Krawczyk and Elijah ben Izzy. Hamilton: a modular open source
declarative paradigm for high level modeling of dataflows. PVLDB, 14(1):
XXX-XXX, 2022.

doiXX XX/XXX.XX

1 INTRODUCTION

An industry trend that we have lived through at Stitch Fix is the shift
to "Full Stack Data Science"[1], where data scientists are expected
to not only do data science, but also engineer and manage data
pipelines for their producti hine learning models. This ap-
proach places additional burdens on data scientists, who no longer
hand off their ideas off to a software engineering team for imple-

and mail Previously, hand-offs allowed data
scientists to focus on a specific domain and set of tooling to accom-
plish their work. They did not have to worry about such production
concerns as, lineage, scalability, or data quality. All they had to do

This work islicensed under the Creative Commons BY-NC-ND 40 International
License. Visit http: 0/ to view a copy of
this license. For any use beyond those covered by this In:cnse obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.

doi XX XX/XXX XX

describe the user’s intended dataflow. Al her, Hamilton makes
incremental development, code reuse, unit testing, lineage tracking,
data quality checks, and code documentation natural and straight-
forward. Furthermore, its modularity provxdes avenues to qmckly
and easily scale ion onto various distrit ks,
e.g. Ray[4]/Spark[11]/Dask(7], as well as extend the platform to
integrate with other data management tools, e.g. lineage/gover-
nance and data quality. Hamilton has enabled data science teams
at Stitch Fix to scale modeling dataflows to support 4000+ data
transformations without impacting team and user productivity.

We will first ground ourselves with a basic extract, transform,
load (ETL) approach to machine learning, then explain the require-
ments that guided Hamilton, and finally spend the rest of this paper
diving into Hamilton’s programming paradigm. We will show the
benefits this paradigm brings, briefly discuss evaluation, propose
future extensions, and finish with a summary.

2 CURRENT ETL APPROACHES

Bringing a machine learning model to production at Stitch Fix re-
quires building an ETL workflow. One has to extract data (SQL or
Python), transform it for input into a model (SQL or Python), trans-
form it into a model (Python), transform data with the help of the
model (Python), and finally load the results somewhere to connect
it back with the business (SQL or Python). Furthermore, this has to
be run on a cadence. If modeled as discrete steps then data/artifacts
have to be ialized b them. An orck ion system,
e.g. [6, 10], is responsible for scheduling and ing these steps.

€

3:Lineage as Code

1. Version your whole flow in git.

a. Prompts
b. Model/API versions
c. Processing logic

fa ster. | content_type str |

file_type
typing.Any

str

! {summarize_chunk_,of_text_promptj !

tokenizer_encoding str
max_token_length int

[summarize_text_from_summaries _prompt : 1

str | J str

2. Hamilton

raw_text

str

chunked_text

list

4

I
i lm_name str |
! str

""" S

summarized_text
str

2.

4: Modularity & Reuse

Hamilton

V&
N

iy -

T s e

-

~
\

/

/
N

- TS e
-
|
N

R

-~ e - -

R s o

nput: top k

-

T

~

-~y -——

nput: query > ’: Input: embedding_client B :

- il

v i

embedding

- -
- o -

4: Modularity & Reuse

1. Straightforward to compose & reuse flows.

_-—— - |
- o -

13 = . - s ¢~ . ino ol R
. Input: query 3% Input: embedding_client)

~ - -
-~ e e - prict

o —

7 Input: vdb_client /) ‘. Input: top_k '

Input: tokenizer type h z ~ ‘ ~

- —_—— —-—— -

def relevant docs (

nn _ids: list[int],
db client: object) -> str:
return

2. Hamilton

2.

D

4: Modularity & Reuse

1. Straightforward to compose & reuse flows.
2. Easy to switch between multiple “implementations”

-
/

-~ - -

~ - ' 3 : x - <
Input: query , 7_ nput: embedding client y
- = E

- 2 o -

cmhuddin:_.f)

-

-
e

Input: vdb_client 3 Input: top_k %

=

I

- —_—— —-—— -

def nn_ids_vl(top k: int,
embedding: list[float],
vdb client: object) -> str:
return

Hamilton

5: Testing & Documentation

use case.py
def example system prompt(a: str, b: int) -> str:

return a o)

Testing: easier to unit & integration test (e.g. evals in CI/CD)

test use case.py

def test example system prompt():
actual = example system prompt (
expected =
assert actual == expected

D

5: Testing & Documentation

use case.py

@check output (=str, =value)
def example system prompt(a: str, b: int) -> str:

return a o)

Testing: easier to unit & integration test (e.g. evals in CI/CD)

Data Quality Tests: runtime checks via annotation*; Pandera supported.
Pydantic on roadmap.

2. Hamilton

D

5: Testing & Documentation

use case.py

@tag(= =)

4

@check output(=str, =value)

def example system prompt(a: str, b: int) -> str:

return a b

Testing: easier to unit & integration test (e.g. evals in CI/CD)

Data Quality Tests: runtime checks via annotation*; Pandera supported.
Pydantic on roadmap.

Self-documenting: naming, doc strings, annotations, & visualization

2. Hamilton

5: Testing & Documentation

|
|

file_type

| input :
typing.Any

use case.py

@tag(
@check output
def example_ s

raw_text

max_token_length int

: tokenizer_encoding str
: str

return
str

:_ T _: [summarize_chunk__of_text_promptj .r T T T T T
| I
I

chunked_text
1 lim_name str
1 list

{summarize_text_from_summaries_prom pt} : 1

Testing: ea

str

Data Qualii
Pydantic orn

str

[summarized_chunks

str
4

Self-docun

2. Hamilton

summarized_text
str

dr.visualize _execution(...)

Hamilton: build your GenAl/LLM apps on Hamilton

Problem:

e Pace of change & iteration - need good SWE practices to not 3%

With Hamilton > _, :

One tool — for data, web request, ML, and GenAl/LLM work.
You can port, plug and extend your code and the framework.
Version, debug & understand faster with /ineage as code.
Naturally have modular and reusable, without much &.
Never complain again about testing & documentation.

a bk wbh -

Summary

D>

Want the “langsmith” equivalent but for Hamilton?

(1) Stop by our table
for a demo
(2) Come see atoy GenAl app
built with Hamilton

(3) # we'relooking for a
GenAl/LLM partner

DAGWORKS

www.dagworks.io
Versioning, Lineage, Catalog, Observability
[Free trial]

http://www.dagworks.io

Get started:

pip install sf-hamilton

p: tryhamilton.dev < runs 7. in the browser!

P : hub.dagworks.io ¢ our bank of dataflows to get started in 3 lines

. blog.dagworks.io ¢« various posts e.g. RAG, prompts, etc.

: https://github.com/dagworks-inc/hamilton (see examples/)

#: Join us on slack

I DAGWORKS ,
Questions?

http://tryhamilton.dev
https://hub.dagworks.io
https://blog.dagworks.io
https://github.com/dagworks-inc/hamilton
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg

Get started:

pip install sf-hamilton

p: tryhamilton.dev <« runs - in the browser!

P : hub.dagworks.io ¢ our bank of dataflows to get started in 3 lines

. blog.dagworks.io ¢« various posts e.g. RAG, prompts, etc.

: https://github.com/dagworks-inc/hamilton (see examples/)

#: Join us on slack

I DAGWORKS ,
Questions?

http://tryhamilton.dev
https://hub.dagworks.io
https://blog.dagworks.io
https://github.com/dagworks-inc/hamilton
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg

Get started:

pip install sf-hamilton

p: tryhamilton.dev < runs 7. in the browser!

P : hub.dagworks.io ¢ our bank of dataflows to get started in 3 lines

. blog.dagworks.io ¢« various posts e.g. RAG, prompts, etc.

: https://github.com/dagworks-inc/hamilton (see examples/)

#: Join us on slack

I DAGWORKS ,
Questions?

http://tryhamilton.dev
https://hub.dagworks.io
https://blog.dagworks.io
https://github.com/dagworks-inc/hamilton
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg

Get started:

pip install sf-hamilton

p: tryhamilton.dev < runs 7. in the browser!

P : hub.dagworks.io ¢ our bank of dataflows to get started in 3 lines

2o blog.dagworks.io ¢« various posts e.g. RAG, prompts, etc.

: https://github.com/dagworks-inc/hamilton (see examples/)

#: Join us on slack

I DAGWORKS ,
Questions?

http://tryhamilton.dev
https://hub.dagworks.io
https://blog.dagworks.io
https://github.com/dagworks-inc/hamilton
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg

D
Get started:

pip install sf-hamilton

p: tryhamilton.dev < runs 7. in the browser!

P : hub.dagworks.io ¢ our bank of dataflows to get started in 3 lines

. blog.dagworks.io ¢« various posts e.g. RAG, prompts, etc.

: https://qgithub.com/dagworks-inc/hamilton (see examples/)

#: Join us on slack

I DAGWORKS ,
Questions?

http://tryhamilton.dev
https://hub.dagworks.io
https://blog.dagworks.io
https://github.com/dagworks-inc/hamilton
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg

Get started:

pip install sf-hamilton

p: tryhamilton.dev < runs 7. in the browser!

P : hub.dagworks.io ¢ our bank of dataflows to get started in 3 lines

. blog.dagworks.io ¢« various posts e.g. RAG, prompts, etc.

: https://github.com/dagworks-inc/hamilton (see examples/)

#: Join us on slack

) DAGWORKS ,
Questions?

http://tryhamilton.dev
https://hub.dagworks.io
https://blog.dagworks.io
https://github.com/dagworks-inc/hamilton
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg

