A
nnnnnnnnn > !"

MLOPS WORLD
CONFERENCE & EXPO

OCTOBER 25-26

> DAGWORKS

Getting Higher ROl on MLOps Initiatives:
Five Lessons Learned While Building Out
the MLOps Platform for 100+ Data Scientists

Stefan Krawczyk - DAGWorks Inc.

12+ years in ML & Data platforms

P e

VICTORIA UNIVERSITY OF

yosd WELLINGTON

TE HERENGA WAKA

12+ years in ML & Data platforms

STITCH FIX

"ﬁ

VICTORIA UNIVERSITY OF

yosd WELLINGTON

TE HERENGA WAKA

12+ years in ML & Data platforms

STITCH FIX

in]

s] VICTORIA UNIVERSITY OF

yosd WELLINGTON

TE HERENGA WAKA

For me:
*Ops Initiative == Platform initiative

>

Why *Ops/Platform?

Delivering sustained value over time is hard without good abstractions

>

Why *Ops/Platform?

Delivering sustained value over time is hard without good abstractions

Some reasons:

>

Why *Ops/Platform?

Delivering sustained value over time is hard without good abstractions

Some reasons:

1. Repetitive tasks

>

Why *Ops/Platform?

Delivering sustained value over time is hard without good abstractions

Some reasons:

1. Repetitive tasks
2. No standardization

>

Why *Ops/Platform?

Delivering sustained value over time is hard without good abstractions

Some reasons:

1. Repetitive tasks
2. No standardization
3. Duplication of work across teams

>

Why *Ops/Platform?
Delivering sustained value over time is hard without good abstractions

Some reasons:

Repetitive tasks

No standardization

Duplication of work across teams
Fragmented workflow experience

B~ Wb -

>

Why *Ops/Platform?

Delivering sustained value over time is hard without good abstractions

Some reasons: Leverage
N

Repetitive tasks

No standardization

Duplication of work across teams
Fragmented workflow experience

B~ Wb -

Lesson breakdown:

1. Users:

a. Adoption
b. Sophisticated Users

2. What to build:

a. Product Management

3. Technical approaches:

a. Vendor APls
b. APl Layers

» A

Users

Lesson 1 & Lesson 2

Lesson.
Focus on Adoption,
Not Completeness

Lesson 1. Focus on Adoption, Not Completeness

My tactics for adoption:
1. Adopt existing user tooling
2. Partner closely with a team and a specific use case

Lesson 1. Focus on Adoption, Not Completeness

Tactic 1: Adopt existing user tooling

e.g. someone’s internal abstraction/script, etc.

Lesson 1. Focus on Adoption, Not Completeness

Tactic 1: Adopt existing user tooling

e.g. someone’s internal abstraction/script, etc.

Perfect case is Team B asking Team A for that script/tool/abstraction.

Lesson 1. Focus on Adoption, Not Completeness

Tactic 1: Adopt existing user tooling

e.g. someone’s internal abstraction/script, etc.
Perfect case is Team B asking Team A for that script/tool/abstraction.
Why is this a good idea?

- Derisked product; you have a defacto users.
- Value to business should be proven.

Lesson 1. Focus on Adoption, Not Completeness

Tactic 1: Adopt existing user tooling

e.g. someone’s internal abstraction/script, etc.
Perfect case is Team B asking Team A for that script/tool/abstraction.
Why is this a good idea?

- Derisked product; you have a defacto users.
- Value to business should be proven.

Caveats:
- Must see bigger picture.

- Some people don't like giving things up.

Lesson 1. Focus on Adoption, Not Completeness

>
Tactic 2:
Partner closely with a team for a specific use case

Lesson 1. Focus on Adoption, Not Completeness

D
Tactic 2:
Partner closely with a team for a specific use case

Ideals:

- Narrow use case.

- That team needs it; has a deadline.

- Can incrementally deliver to bring them
along.

Lesson 1. Focus on Adoption, Not Completeness

D
Tactic 2:
Partner closely with a team for a specific use case

Ideals:

- Narrow use case.

- That team needs it; has a deadline.

- Can incrementally deliver to bring them
along.

Goal:

- You have users
- Users see business value

Lesson 1. Focus on Adoption, Not Completeness

Lesson 2.
Your Users are Not
All Equal

It's tempting to think like this:

User

User

Feature
Request
A

Value to you

Lesson 2. Your Users are Not All Equal

Feature
Request
B

Burden on Platform

Two facts

1. Users fall on a spectrum.
2. Requests aren’t equal in development or maintenance costs.

Value

Feature
Request
A

i
6

skl

Lesson 2. Your Users are Not All Equal

0.8

.

Feature
Request
B

L e

- Don’t be egalitarian

Don't be egalitarian

No is probably a good answer when:

1. It's speculative work and on the periphery of the business.
2. The user is sophisticated and they’re asking for something complex.

Lesson 2. Your Users are Not All Equal

Don't be egalitarian

No is probably a good answer when:

1. It's speculative work and on the periphery of the business.
2. The user is sophisticated and they’re asking for something complex.

If “the ask” leads to failure:

- No investment spent by you.

Lesson 2. Your Users are Not All Equal

Don't be egalitarian

No is probably a good answer when:

1. It's speculative work and on the periphery of the business.
2. The user is sophisticated and they’re asking for something complex.

If “the ask” leads to failure:
- No investment spent by you.
If “the ask” leads to success:

- Can then plan to adopt it.

Lesson 2. Your Users are Not All Equal

What to build

Lesson 3

» A

Lesson 3.
Live Your Users'Life
Cycle

Directionally:

Q: How do you know where to invest?

Lesson 3. Live Your Users'Life Cycle

Directionally:

Q: How do you know where to invest?

Q: Do you know how your work impacts users?

Lesson 3. Live Your Users'Life Cycle

- Build Empathy

Build Empathy

1. Drink your own champagne / eat your own dog food.

Lesson 3. Live Your Users'Life Cycle

Build Empathy

1. Drink your own champagne / eat your own dog food.

2. Bringin an end user.

Lesson 3. Live Your Users'Life Cycle

Build Empathy

1. Drink your own champagne / eat your own dog food.
2. Bringin an end user.

3. Build relationships.

Lesson 3. Live Your Users'Life Cycle

Technical Approaches

Lesson 4 & Lesson 5

» A

Lesson 4.

Don’'t let users
couple directly to
“Vendor” APIs

-
=
S
o
=
©
[
=
0
[
=
S
=
(=]
©
-
<
=
)
=
=
=
-

\ intrastructure

| il
=
i
ml-m
s
algt
([
10,
11
TITY
-m._mm?
: -—m o
ik
| TH
W,__”:_m,__.__ m_“_
L
1glao o g ““_ n I Buel
pgiliin ST TERRH [
paldfe g Baglly | "
T iy aian” g 10 Ohll
8 . fAfc
af 0] 0= QOOI0 g ogec
Iy _"“ Biyale @ T
g TNTHTEIT
LI “:_m___ T
-_ _ 0 -m mm .
- 1. “.u lsf
il HLNTI
pigely .mm“,nu_m_ (L EE]
_..u__ gl Hafgt wppy
L TR
Spgagedang D pulll
LA L g [

LT
nlulNA0ER
peaging
nBanAng
LILLL
._.___
Hulggn

i
A =
"
—-m A\m
N
I 2 i

m

o e e (D ([) N [[0
(P TT T S P T A T S TR T VAT

=
=
S
@
o=
®
P
ol
Q
i)
E
S
=
(=
o
—
(=
—
W
&l
£
=
-

agle mn— B0 R —-—- L1
oL A, B
TINTY by 4 Loagat 000aD
o 0 g |l D g S
_mn__ T fy __u gl
wlll _:_ e

a

i, UGG, daoad
el {° liy I
ungpe QHHEEE g ___.. Aennd
m.m. _m____ Bggd gy =__ T

m____m m_m r . _.m_
| i -
— aiegn w——- _-m
ofli
4 __m _m_um- __ -m_-_-

:mmm i
_

on I T E s) O e
oo B Geci 1" o] Vertsfirvera] o o] & veme] Sasco}
R £ = s O) = .
YT T e
m
oo 5 oo e e s e

) Vendor lock-in
2o Painful migrations

Expose these directly and get:

i bl 1§
_- | g - m .. i
____n_m m_ .

| fogel’ |
m--n ——- nEj mmm-m- -m—-——
I :_ m.mm__mg

._EE .__... LI W_.g. _.__m_

[a—J.efi J ool i oo] snees | nosenraf ouument o=
o J. Joo . Juechoxinecu o f Jou]

o EEEmrnoEEE & =
84 Consaming

o e e D e () o [G Y [)
Blleigerdcounlefcacihiia o

What you should do instead

1
|

= = = RERWVEINE - 5.5
=== [Optional] M =05

i
!

s3_resource = boto3.resource(
bucket=

key= s i
pickle_byte_obj = pickle.dumps(model) pe—r SlRETLIS EENETIREE, oo

) platform_lib

=3

N O g EEEDES peenon o 0w EEmeEmE — e [—

e e T = m — e e e e CEEEEE o o S CCommon o e

))))) (s ey N O s e = = == = o e | e e |—————_ST—

= o =5 - pp— . = S ————

-ﬂ- Y mappen D05 OS5 EEEnr Esmoen m m_ e o= &m o= m-- O D = EEE gereean mEm
S o mm IS EZE — UL — EDEENED CENIET RS e D o

11 mEm ODDEND D0 EDEnn E e o S £ e — CT 1]

s om cm Emom 0N o eum o o BN manm oy gy OO GmENG 0 00 . | B o e e

mom o B S g pgmmoen jareea} B O s o o BN 00 o e GEECDOEE B O O gpm @om B8 =2

T L p— P —] O D O O D I O e e e O O O o [))) T ([e [

] S - 0 e o Do o s [OO (I o O T (0 O) (o)) e () e (T) e) 5 2 (o

X3 np MKIMITEEA SR T ERIITEEI TATW VAT gy a0 D N e E D am [=] = [:] == =] [] [] [-]

What you should do instead

1
|

i_:':_] 1. Wrap tha - 5.5
=== [Optional] M =05

i
!

s3_resource = boto3.resource(
bucket=
key=

pickle_byte_obj = pickle.dumps(model) ——
& s3_resource.Object(bucket, key).put(=pickle_byte_obj) [

oo TS mmmmmm e e e R e e (T OO (S 0 G
— e T = = | N GS EZD EED EEm

)

platform_lib

platform_lib.save(model, ...)

[==l e ulee o e |] == [fown [J = Jucio] oo |
ovr —

ebt; switchi

— e N
s EN moames _- -_ . , == T D

EEEREE i) - = o DommDmE MO B pmem T e =

0 o= 3 Ca=—] = [~ ==

mom o B S g pgmmoen jareea} BoDEm om e ED OO0 pom o EEEOOOEE @ E gpm == =8 ==

e =

TR N e p— [rp——— L D D O O D O D O e G I e O O O o T e D)) R D e ()

D O ED o= -_-m : g C e oo oo e 5 O T 0 O e (O T e e O e D)) £) 5 £
X3 g MKIMITEEAEAG T ARIITEEITATW AT gy D N e E D am [=] = [:] == =] [] [] [-]

Lesson 5.
The Two Layer API Trick

Common Approach:

Lesson 5. The Two Layer API Trick

Y

User Code

A

Platform API

Two Layer API Trick

User Code

Y

A

Higher Level API

Y4

Foundational API

-

/
<

J

Lesson 5. The Two Layer API Trick

~
o

{ Foundation J

Bottom API Layer
(User Code |

Higher Level API

> Foundational API

A\ J

E.g. what you want to

expose on top of “Vendors”.

Lesson 5. The Two Layer API Trick

Allows anyone to build anything, but
in a bounded way.
Primary user is your team.

Top API Layer
User Code
> Higher Level API

e

-

Foundational API

<

J

Main API for users.
Goal is to simplify the experience.
Built solely off of Foundational API.

E.g. one line to save and deploy a model,

one line to save a prompt, etc.

Lesson 5. The Two Layer API Trick

Two Layer APl Examples

User Code

Higher Level API

e

-

Foundational API

\‘

Model Pipelines

User Pipeline

Configuration Driven Model

J

Lesson 5. The Two Layer API Trick

Pipelines
Model Orchestration
Envelope API AP
S3 + RDS Airflow

Two Layer APl Examples

User Code

Higher Level API

e

-

Foundational API

\‘

Model Pipelines

User Pipeline

37

Web-serving

Configuration Driven Model

User python functions

J

Lesson 5. The Two Layer API Trick

Python function to
micro-service

Pipelines
Model Orchestration
Envelope API AP
S3 + RDS Airflow

FastAPI

Docker

Two Layer APl Benefits

Higher Level API

>

-

Foundational API

\‘

J

Lesson 5. The Two Layer API Trick

@ You can be more nimble.
Coupling & EY tech-debt maintenance.
Y& Provide escape-hatch for sophisticated users.

= Simpler APIs reduce time to value.

Summary:
Getting more ROl on your

MLOPs (& LLMOps)
initiatives

>

Summary: Getting more ROl on your initiatives

1. Build for immmediate adoption - show value sooner.

>

Summary: Getting more ROl on your initiatives

1. Build for immmediate adoption - show value sooner.

2. Don’t build for every user equally - use time more effectively.

Summary: Getting more ROl on your initiatives

1. Build for immmediate adoption - show value sooner.
2. Don’t build for every user equally - use time more effectively.

3. Build empathy - know what is impactful.

>

Summary: Getting more ROl on your initiatives

1. Build for immmediate adoption - show value sooner.

2. Don’t build for every user equally - use time more effectively.

3. Build empathy - know what is impactful.

4. Wrap vendor/cloud APIs - Y technical debt; §Y switching costs

>

Summary: Getting more ROl on your initiatives

1.

a M Wb

Build for immediate adoption

Don’t build for every user equally

Build empathy

Wrap vendor/cloud APIs

Provide two layers of APIs

a.
b.

foundational layer.
opinionated higher level layer.

- show value sooner.

- use time more effectively.

- know what is impactful.

> B4 technical debt; §§ switching costs
- technical debt; # iteration speed,

time to value for a user

>

Want to see ¢¢ some of this in action?

https://github.com/DAGWorks-Inc/hamilton

www.dagworks.io

https://github.com/DAGWorks-Inc/hamilton
http://www.dagworks.io

Connect with me:

hitps://twitter.com/stefkrawczyk

https://www.linkedin.com/in/skrawczvk

https://blog.dagworks.io/

https://twitter.com/stefkrawczyk
https://www.linkedin.com/in/skrawczyk/
https://blog.dagworks.io/

