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For me:
*Ops Initiative == Platform initiative
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Delivering sustained value over time is hard without good abstractions
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Repetitive tasks

No standardization

Duplication of work across teams
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Lesson breakdown:

1. Users:

a. Adoption
b. Sophisticated Users

2. What to build:

a. Product Management

3. Technical approaches:

a. Vendor APls
b. APl Layers




» A

Users

Lesson 1 & Lesson 2



Lesson.
Focus on Adoption,
Not Completeness



Lesson 1. Focus on Adoption, Not Completeness



My tactics for adoption:
1. Adopt existing user tooling
2. Partner closely with a team and a specific use case
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Tactic 1: Adopt existing user tooling

e.g. someone’s internal abstraction/script, etc.
Perfect case is Team B asking Team A for that script/tool/abstraction.
Why is this a good idea?

- Derisked product; you have a defacto users.
- Value to business should be proven.

Caveats:
- Must see bigger picture.

- Some people don't like giving things up.

Lesson 1. Focus on Adoption, Not Completeness
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Partner closely with a team for a specific use case
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Tactic 2:
Partner closely with a team for a specific use case

Ideals:

- Narrow use case.

- That team needs it; has a deadline.

- Can incrementally deliver to bring them
along.
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D
Tactic 2:
Partner closely with a team for a specific use case

Ideals:

- Narrow use case.

- That team needs it; has a deadline.

- Can incrementally deliver to bring them
along.

Goal:

- You have users
- Users see business value

Lesson 1. Focus on Adoption, Not Completeness



Lesson 2.
Your Users are Not
All Equal



It's tempting to think like this:

User

User

Feature
Request
A

Value to you

Lesson 2. Your Users are Not All Equal

Feature
Request
B

Burden on Platform



Two facts

1. Users fall on a spectrum.
2. Requests aren’t equal in development or maintenance costs.

Value

Feature
Request
A

i
6

skl

Lesson 2. Your Users are Not All Equal
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- Don’t be egalitarian



Don't be egalitarian

No is probably a good answer when:

1. It's speculative work and on the periphery of the business.
2. The user is sophisticated and they’re asking for something complex.
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Don't be egalitarian

No is probably a good answer when:

1. It's speculative work and on the periphery of the business.
2. The user is sophisticated and they’re asking for something complex.

If “the ask” leads to failure:
- No investment spent by you.
If “the ask” leads to success:

- Can then plan to adopt it.

Lesson 2. Your Users are Not All Equal



What to build

Lesson 3

» A



Lesson 3.
Live Your Users'Life
Cycle



Directionally:

Q: How do you know where to invest?

Lesson 3. Live Your Users'Life Cycle



Directionally:

Q: How do you know where to invest?

Q: Do you know how your work impacts users?

Lesson 3. Live Your Users'Life Cycle



- Build Empathy



Build Empathy

1. Drink your own champagne / eat your own dog food.
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Build Empathy

1. Drink your own champagne / eat your own dog food.

2. Bringin an end user.
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Build Empathy

1. Drink your own champagne / eat your own dog food.
2. Bringin an end user.

3. Build relationships.

Lesson 3. Live Your Users'Life Cycle




Technical Approaches

Lesson 4 & Lesson 5

» A



Lesson 4.

Don’'t let users
couple directly to
“Vendor” APIs
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What you should do instead
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What you should do instead
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s3_resource = boto3.resource(
bucket=
key=

pickle_byte_obj = pickle.dumps(model) ——
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Lesson 5.
The Two Layer API Trick



Common Approach:

Lesson 5. The Two Layer API Trick

Y

User Code

A

Platform API




Two Layer API Trick

User Code

Y

A

Higher Level API

Y4

Foundational API

-

/
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Lesson 5. The Two Layer API Trick
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Bottom API Layer
( User Code |

Higher Level API

> Foundational API

A\ J

E.g. what you want to

expose on top of “Vendors”.

Lesson 5. The Two Layer API Trick

Allows anyone to build anything, but
in a bounded way.
Primary user is your team.



Top API Layer
User Code
> Higher Level API

e

-

Foundational API

<

J

Main API for users.
Goal is to simplify the experience.
Built solely off of Foundational API.

E.g. one line to save and deploy a model,

one line to save a prompt, etc.

Lesson 5. The Two Layer API Trick



Two Layer APl Examples

User Code

Higher Level API

e

-

Foundational API

\‘

Model Pipelines

User Pipeline

Configuration Driven Model

J

Lesson 5. The Two Layer API Trick

Pipelines
Model Orchestration
Envelope API AP
S3 + RDS Airflow




Two Layer APl Examples

User Code

Higher Level API

e

-

Foundational API

\‘

Model Pipelines

User Pipeline

37

Web-serving

Configuration Driven Model

User python functions

J

Lesson 5. The Two Layer API Trick

Python function to
micro-service

Pipelines
Model Orchestration
Envelope API AP
S3 + RDS Airflow

FastAPI

Docker




Two Layer APl Benefits

Higher Level API

>

-

Foundational API

\‘

J

Lesson 5. The Two Layer API Trick

@ You can be more nimble.
Coupling & EY tech-debt maintenance.
Y& Provide escape-hatch for sophisticated users.

= Simpler APIs reduce time to value.



Summary:
Getting more ROl on your

MLOPs (& LLMOps)
initiatives
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Summary: Getting more ROl on your initiatives

1.

a M Wb

Build for immediate adoption

Don’t build for every user equally

Build empathy

Wrap vendor/cloud APIs

Provide two layers of APIs

a.
b.

foundational layer.
opinionated higher level layer.

- show value sooner.

- use time more effectively.

- know what is impactful.

> B4 technical debt; §§ switching costs
- technical debt; # iteration speed,

time to value for a user
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Want to see ¢¢ some of this in action?

https://github.com/DAGWorks-Inc/hamilton

www.dagworks.io



https://github.com/DAGWorks-Inc/hamilton
http://www.dagworks.io

Connect with me:

hitps://twitter.com/stefkrawczyk

https://www.linkedin.com/in/skrawczvk

https://blog.dagworks.io/
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