
Stefan Krawczyk - DAGWorks Inc.

Getting Higher ROI on MLOps Initiatives:
Five Lessons Learned While Building Out
the MLOps Platform for 100+ Data Scientists

whoami
Stefan Krawczyk

Co-creator of Hamilton &&
CEO DAGWorks Inc.

12+ years in ML & Data platforms

whoami
Stefan Krawczyk

Co-creator of Hamilton &&
CEO DAGWorks Inc.

12+ years in ML & Data platforms

USED
BUILT

BUILT
BUILTBUILDING

whoami
Stefan Krawczyk

Co-creator of Hamilton &&
CEO DAGWorks Inc.

12+ years in ML & Data platforms

USED
BUILT

BUILT
BUILTBUILDING

100+ DS

For me:
*Ops Initiative == Platform initiative

Why *Ops/Platform?

Delivering sustained value over time is hard without good abstractions

Why *Ops/Platform?

Delivering sustained value over time is hard without good abstractions

Some reasons:

Why *Ops/Platform?

Delivering sustained value over time is hard without good abstractions

Some reasons:

1. Repetitive tasks

Why *Ops/Platform?

Delivering sustained value over time is hard without good abstractions

Some reasons:

1. Repetitive tasks
2. No standardization

Why *Ops/Platform?

Delivering sustained value over time is hard without good abstractions

Some reasons:

1. Repetitive tasks
2. No standardization
3. Duplication of work across teams

Why *Ops/Platform?

Delivering sustained value over time is hard without good abstractions

Some reasons:

1. Repetitive tasks
2. No standardization
3. Duplication of work across teams
4. Fragmented workflow experience

Why *Ops/Platform?

Delivering sustained value over time is hard without good abstractions

Some reasons:

1. Repetitive tasks
2. No standardization
3. Duplication of work across teams
4. Fragmented workflow experience

Let's increase
your ROI*

5 lessons

Lesson breakdown:

1. Users:
a. Adoption
b. Sophisticated Users

2. What to build:
a. Product Management

3. Technical approaches:
a. Vendor APIs
b. API Layers

Users
Lesson 1 & Lesson 2

Lesson 1.
Focus on Adoption,
Not Completeness

VS

Lesson 1. Focus on Adoption, Not Completeness

VS

Lesson 1. Focus on Adoption, Not Completeness

My tactics for adoption:
1. Adopt existing user tooling
2. Partner closely with a team and a specific use case

Tactic 1: Adopt existing user tooling

e.g. someone’s internal abstraction/script, etc.

Lesson 1. Focus on Adoption, Not Completeness

Tactic 1: Adopt existing user tooling

e.g. someone’s internal abstraction/script, etc.

Perfect case is Team B asking Team A for that script/tool/abstraction.

Lesson 1. Focus on Adoption, Not Completeness

Tactic 1: Adopt existing user tooling

e.g. someone’s internal abstraction/script, etc.

Perfect case is Team B asking Team A for that script/tool/abstraction.

Why is this a good idea?

- Derisked product; you have a defacto users.
- Value to business should be proven.

Lesson 1. Focus on Adoption, Not Completeness

Tactic 1: Adopt existing user tooling

e.g. someone’s internal abstraction/script, etc.

Perfect case is Team B asking Team A for that script/tool/abstraction.

Why is this a good idea?

- Derisked product; you have a defacto users.
- Value to business should be proven.

Caveats:

- Must see bigger picture.
- Some people don’t like giving things up.

Lesson 1. Focus on Adoption, Not Completeness

Tactic 2:
Partner closely with a team for a specific use case

Lesson 1. Focus on Adoption, Not Completeness

Tactic 2:
Partner closely with a team for a specific use case

Ideals:

- Narrow use case.
- That team needs it; has a deadline.
- Can incrementally deliver to bring them

along.

Lesson 1. Focus on Adoption, Not Completeness

Tactic 2:
Partner closely with a team for a specific use case

Ideals:

- Narrow use case.
- That team needs it; has a deadline.
- Can incrementally deliver to bring them

along.

Goal:

- You have users
- Users see business value

Lesson 1. Focus on Adoption, Not Completeness

Lesson 2.
Your Users are Not
All Equal

It’s tempting to think like this:

Feature
Request

A
User

A
User

B

Feature
Request

B

Value to you Burden on Platform

Lesson 2. Your Users are Not All Equal

Two facts

1. Users fall on a spectrum.
2. Requests aren’t equal in development or maintenance costs.

Feature
Request

A Feature
Request

B

Skill

Va
lu

e

Lesson 2. Your Users are Not All Equal

→ Don’t be egalitarian

Lesson 2. Your Users are Not All Equal

Don’t be egalitarian

No is probably a good answer when:

1. It’s speculative work and on the periphery of the business.
2. The user is sophisticated and they’re asking for something complex.

Lesson 2. Your Users are Not All Equal

Don’t be egalitarian

No is probably a good answer when:

1. It’s speculative work and on the periphery of the business.
2. The user is sophisticated and they’re asking for something complex.

If “the ask” leads to failure:

- No investment spent by you.

Lesson 2. Your Users are Not All Equal

Don’t be egalitarian

No is probably a good answer when:

1. It’s speculative work and on the periphery of the business.
2. The user is sophisticated and they’re asking for something complex.

If “the ask” leads to failure:

- No investment spent by you.

If “the ask” leads to success:

- Can then plan to adopt it.

Lesson 2. Your Users are Not All Equal

What to build
Lesson 3

Lesson 3.
Live Your Users' Life
Cycle

Q: How do you know where to invest?

Directionally:

Lesson 3. Live Your Users' Life Cycle

Q: How do you know where to invest?

Q: Do you know how your work impacts users?

Directionally:

Lesson 3. Live Your Users' Life Cycle

→ Build Empathy

Lesson 3. Live Your Users' Life Cycle

Build Empathy

1. Drink your own champagne / eat your own dog food.

Lesson 3. Live Your Users' Life Cycle

Build Empathy

1. Drink your own champagne / eat your own dog food.

2. Bring in an end user.

Lesson 3. Live Your Users' Life Cycle

Build Empathy

1. Drink your own champagne / eat your own dog food.

2. Bring in an end user.

3. Build relationships.

Lesson 3. Live Your Users' Life Cycle

Technical Approaches
Lesson 4 & Lesson 5

Lesson 4.
Don’t let users
couple directly to
“Vendor” APIs

Things you could integrate with:

Lesson 4. Don’t let users couple directly to “Vendor” APIs

Things you could integrate with:

Expose these directly and get:
- 🔒 Vendor lock-in
- 😓 Painful migrations

Lesson 4. Don’t let users couple directly to “Vendor” APIs

What you should do instead

1. Wrap that API and don’t leak what you’re using underneath.
2. [Optional] Make common decisions for the user.

s3_resource = boto3.resource('s3')
bucket='your_bucket'
key= 'pickle_model.pkl'
pickle_byte_obj = pickle.dumps(model)
s3_resource.Object(bucket,key).put(Body=pickle_byte_obj)

import platform_lib

platform_lib.save(model, …)

Lesson 4. Don’t let users couple directly to “Vendor” APIs

What you should do instead

1. Wrap that API and don’t leak what you’re using underneath.
2. [Optional] Make common decisions for the user.

s3_resource = boto3.resource('s3')
bucket='your_bucket'
key= 'pickle_model.pkl'
pickle_byte_obj = pickle.dumps(model)
s3_resource.Object(bucket,key).put(Body=pickle_byte_obj)

import platform_lib

platform_lib.save(model, …)

Benefits: ⬇ tech-debt; ⬇ switching costs

Lesson 4. Don’t let users couple directly to “Vendor” APIs

Lesson 5.
The Two Layer API Trick

Platform API

Lesson 5. The Two Layer API Trick

User Code

Common Approach:

FoundationFoundational API

Higher Level API

Lesson 5. The Two Layer API Trick

Two Layer API Trick

User Code

Bottom API Layer

● Allows anyone to build anything, but
in a bounded way.

● Primary user is your team.

E.g. what you want to
expose on top of “Vendors”.

Foundational API

Higher Level API

Lesson 5. The Two Layer API Trick

User Code

Top API Layer

● Main API for users.
● Goal is to simplify the experience.
● Built solely off of Foundational API.

E.g. one line to save and deploy a model,
one line to save a prompt, etc.

Foundational API

Higher Level API

Lesson 5. The Two Layer API Trick

User Code

Two Layer API Examples

Model
Envelope API

Configuration Driven Model
Pipelines

Orchestration
API

S3 + RDS Airflow

Model Pipelines

Foundational API

Higher Level API

User Code User Pipeline

Lesson 5. The Two Layer API Trick

Two Layer API Examples

Model
Envelope API

Configuration Driven Model
Pipelines

Orchestration
API

S3 + RDS Airflow

Model Pipelines

Foundational API

Higher Level API

User Code User Pipeline

FastAPI

Python function to
micro-service

Web-serving

Docker

User python functions

Lesson 5. The Two Layer API Trick

Two Layer API Benefits

● 🥷 You can be more nimble.

● ⬇ Coupling & ⬇ tech-debt maintenance.

● 🤠 Provide escape-hatch for sophisticated users.

● 😌 Simpler APIs reduce time to value.Foundational API

Higher Level API

Lesson 5. The Two Layer API Trick

Summary:
Getting more ROI on your
MLOPs (& LLMOps)
initiatives

Summary: Getting more ROI on your initiatives

1. Build for immediate adoption → show value sooner.

Summary: Getting more ROI on your initiatives

1. Build for immediate adoption → show value sooner.

2. Don’t build for every user equally → use time more effectively.

Summary: Getting more ROI on your initiatives

1. Build for immediate adoption → show value sooner.

2. Don’t build for every user equally → use time more effectively.

3. Build empathy → know what is impactful.

Summary: Getting more ROI on your initiatives

1. Build for immediate adoption → show value sooner.

2. Don’t build for every user equally → use time more effectively.

3. Build empathy → know what is impactful.

4. Wrap vendor/cloud APIs → ⬇ technical debt; ⬇ switching costs

Summary: Getting more ROI on your initiatives

1. Build for immediate adoption → show value sooner.

2. Don’t build for every user equally → use time more effectively.

3. Build empathy → know what is impactful.

4. Wrap vendor/cloud APIs → ⬇ technical debt; ⬇ switching costs

5. Provide two layers of APIs → ⬇ technical debt; ⬆ iteration speed;
a. foundational layer.
b. opinionated higher level layer.

⬇ time to value for a user

Want to see 👀 some of this in action?

https://github.com/DAGWorks-Inc/hamilton

www.dagworks.io

https://github.com/DAGWorks-Inc/hamilton
http://www.dagworks.io

Thanks for
listening!

Questions?

Connect with me:

https://twitter.com/stefkrawczyk

https://www.linkedin.com/in/skrawczyk/

https://blog.dagworks.io/

https://twitter.com/stefkrawczyk
https://www.linkedin.com/in/skrawczyk/
https://blog.dagworks.io/

