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Why do SWE principles matter?



Why do SWE principles matter?

It helps scale/amplify human efforts; & humans are $$$.
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Example: Creating a dataframe (e.g. for ML training)

df = loader.load actuals(dates) # e.g. spend, signups




>

Example: Creating a dataframe (e.g. for ML training)

df = loader.load actuals(dates) # e.g. spend, signups
if config| == :
df [ ] = is uk holiday(df][ ], df[

else:
bl ] is holiday (df]| ], df[
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Example: Creating a dataframe (e.g. for ML training)

df = loader.load actuals(dates) # e.g. spend, signups
if config| == :

df [ 1 is uk holiday (df]| ], df[
else:

df [ 1 is holiday (df][ ], df[ 1)

df [ = df[ ] .rolling(3) .mean()
df [ 1 = df| 1 / dfl ]
df [ ] = df[ ] .shift (3)




df = loader.load actuals(dates) # e.g. spend, signups
if config| == :

df [ 1 is uk holiday (df]| ], df[
else:

df [ ] is holiday (df]| ], df]| 1)

df [ = df]| ] .rolling(3) .mean()

df [ 1 = df| 1 / dfl ]

df [ ] = df[ ] .shift (3)

df [ ] = compute bespoke feature (df)

df [ ] = multiply columns (df] ], df[ 1)




df = loader.load actuals(dates) # e.g. spend, signups
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df [ 1 = df| 1 / dfl ]
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save df (df, )
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df = loader.load actuals(dates) # e.g. spend, signups
if config| == :

df [ ] is uk holiday (df]| ], df[
else:

df [ ] is holiday (df][ ], df[ 1)
df [ = df]| ] .rolling(3) .mean()
df [ ] = df] 1 / df[ ]
df[ ] = df]| ] .shift(3)
df [ ] = compute bespoke feature (df)
df [ ] = multiply columns (df] ], df[
save df (df, )

* Now picture the passage of time: personnel A, sophistication [, etc
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Problem: code readability & documentation 8

df = loader.load actuals(dates) # e.g. spend, signups
if config| == :

df [ ] is uk holiday (df]| ], df[
else:

df [ ] is holiday (df][ ], df[ 1)
df [ = df]| ] .xrolling (%) .mean ()
df [ ] = df] 1 / df] ]
df[ ] = df]| ] .shift(3)
df [ ] = compute bespoke feature (df)
df [ ] = multiply columns (df] ], df[
save df (df, )

* Now picture the passage of time: personnel A, sophistication [, etc
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Problem: difficulty in tracing lineage *3

df = loader.load actuals(dates) # e.g. spend, signups
if config| :

df [ ] is uk holiday (df]| ], df[
else:

df [ ] is holiday (df][ ], df[ 1)
df [ = df]| ] .rolling(3) .mean()
df [ ] = df] 1 / df[ ]
df[ ] = df]| ] .shift(3)
df [ ] = compute bespoke feature (df)
df [ ] = multiply columns (df] ], df[
save df (df, )

* Now picture the passage of time: personnel A, sophistication [, etc
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Problem: code reuse and duplication

df = loader.load actuals(dates) # e.g. spend, signups
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df [ 1 is uk holiday (df]| ], df[
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* Now picture the passage of time: personnel A, sophistication [, etc
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Question for you!

1. Are any of these pains familiar to you? If so, which ones?
2. Do you have some other pains related to pipelines/modeling?

- Raise hand | Yamute |
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What is Hamilton?

Micro-orchestration framework
for defining dataflows
using declarative functions

SWE best practices: [%g testing [%d documentation [%d modularity/reuse

pip install sf-hamilton [came from Stitch Fix]

www.tryhamilton.dev ¢ uses pyodide!



http://www.tryhamilton.dev

>

Mirco-orchestration vs Macro-orchestration

Macro-orchestration is handling this whole thing:

my_other_sql_model

source.table my._sgl_model my_python_model

my_external_tool

Micro-orchestration is handling what happens within this step



What's a dataflow?

Fancy way of saying:
How data + computation “flow”

Can be expressed as a directed acyclic graph (DAG).

e.g., this is a dataflow:

df[ ] = df[ ] .rolling
df [ ] = df] 1/df]
spend mean = df] ] .mean ()

df [ ] = df[
spend _std dev = df] ].std()
df [ ] = df[




Declarative functions?

Functions declare:

e \What they create in the dataflow.
e \What dependencies are required for computation.
e You don't run the functions directly.

> When you read the function, you'll understand what it does
and what it needs.
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A-ha moment: debugging a dataframe

Idea: What if every output (column) corresponded to exactly
one Python fn?

Addendum: What if you could determine the dependencies
from the way that function was written?

In Hamilton, the output (e.g., column)
is determined by the name of the function.

The dependencies are determined by the input parameters.



Old Way vs. Hamilton Way:

Instead of df['a'] + df['b']
transform (df [ 1)

Outputs == Function Name Inputs == Function Arguments

U ' 4

def cia: pd.Series, b: pd.Series) -> pd.Series:

You declare

return a + b

def d(c: pd.Series) -> pd.Series:

new _column = transform logic(c)
return new_column

26



Full Hello Worlid

# feature logic.py

Functions

return a + b
def d(c: pd.Series)

new_column =

Driver says what/when to execute

# run.py

def c(a: pd.Series, b: pd.Series)

_transform logic(c)
return new_column

>

(Note: works for any python object type)

-> pd.Series:

-> pd.Series:

from hamilton import driver

import feature logic

dr = driver.Driver ({

df result = dr.execute ([
print (df_result)

...}, feature logic)

27



Things to mention, butl won’t cover:

We also have decorators that you add to functions that...

® (tag # attach metadata

® (@parameterize # curry + repeat a function

® (extract columns # one dataframe -> multiple series
® (@extract outputs # one dict -> multiple outputs

® (check output # data validation; very lightweight
® (@config.when # conditional transforms

® (@subdag # parameterize parts of your DAG

& more... Hamilton code is portable & runs & scales anywhere python runs.

“ o3 RAY rﬂdaSk Squl\z orastarl |2y Flask ':Jupyter



Some Hamilton stats

~1.6K Unique Stargazers
200+ slack members
100K+ downloads

Star History

® ® dagworks=inc/hamilton
® i stitchfix/hamilton

800

[0
o
o

GitHub Stars
g
I}
S

200

2022  April  July October 2023  April  July
Date % star—history.com

Note: dbt took 3.5 years to get to 600 stars
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Hamilton is used by many, including:
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Government
Digital Service

HABITAT Opend()()r

> ENERGY

Pacific @ LexisNexis:
Northwest RISK SOLUTIONS

NATIONAL LABORATORY
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When should | not consider Hamilton?

You can’t draw a flowchart (DAG)...

Or if you have code that depends on inspecting the value output of a
transform, e.g.

output 1 = transform 1(a, Db)
if output 1 < 0.5:

output 2 = transform 2 (output 1)
else:

output 2 = transform 3 (output 1

If it’s minor, you can break this up into separate DAGs ... otherwise not a fit.

[though we can build this capability in...]



When should | consider Hamilton?

If you can draw a flowchart (DAG), you can put it into Hamilton:

Time-series feature engineering (origin)

Tired of managing scripts that do transformations...
Describing E2E ML Pipelines + MLOps integrations
Web request flows.

LLM Workflows!

Code & software best practices enthusiasts:

e Hamilton f§ Code Complexity



> s
Example Hamilton use case: Feature Engineering

holidays (year: pd.Series, week: pd.Series) -> pd.Series:

some_library(year, week)
avg 3wk spend(spend: pd.Series) -> pd.Series:

.
features.py
spend per signup(spend: pd.Series, signups: pd.Series) -> pd.Series:

spend / signups
spend shift 3weeks(spend: pd.Series) -> pd.Series:

Feature code:

spend shift 3weeks_per_ signup(spend_shift 3weeks: pd.Series, signups: pd.Series) -> pd.Series:

spend_shift 3weeks / signups

UD: signups
spend_shift_3weeks spend_per_signup
spend_shift_3weeks_per_signup

Via
Driver: Coottars )

Year Week Sign ups Spend Holiday
2015 2 57 123 0 r u n
F t 2015 3 58 72 0 .
e a u re 2015 4 59 123 1
2015 5 59 123 i,

Dataframe:

2021 16 1000 1234 0


https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/3?callback=close&name=slides&callback_type=back&v=28289&s=493.77721456692916

Example Hamilton use case: Feature Engineering

Code that needs to be written:

Data
, Loaders
1. Functions to load data
a. normalize/create common index to join on
2. Feature functions
a. Unit test these easily! Feature

b. Optional: model functions. Functions

3. Drivers materialize data

a. DAG is walked for only what’s needed.
b. E.g.place this code in wherever you run your

python. Drivers
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Example Hamilton use case: Feature Engineering

Code that needs to be written:

Data
, Loaders
1. Functions to load data
a. normalize/create common index to join on
2. Feature functions
a. Unit test these easily! Feature

b. Optional: model functions. Functions

3. Drivers materialize data

a. DAG is walked for only what’s needed.
b. E.g.place this code in wherever you run your

python. Drivers
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General: Testing & Documentation



General: Testing & Documentation

# client features.py

def height zero mean unit variance (height zero mean: pd.Series,
height std dev: float) -> pd.Series:
return height zero mean / height std dev

Testing: easier to unit & integration test.

# test client features.py

def test height zero mean unit variance():
actual = height zero mean unit variance(pd.Series([1,2,3]), 2.0)
expected = pd.Series([0.5,1.0, 1.5])
assert actual == expected




General: Testing & Documentation

# client features.py

@check output ( =np.floaté64, =(-5.0, 5.0),

=False)

def height zero mean unit variance (height zero mean: pd.Series,

height std dev: float)
return height zero mean / height std dev

-> pd.Series:

Testing: easier to unit & integration test.

Data Quality Tests: runtime checks via annotation*.



General: Testing & Documentation

# client features.py

@tag( = ; = )
@check output ( =np.floaté64, =(-5.0, 5.0), =False)

def height zero mean unit variance (height zero mean: pd.Series,
height std dev: float) -> pd.Series:

return height zero mean / height std dev

Testing: easier to unit & integration test.
Data Quality Tests: runtime checks via annotation*.

Self-documenting: naming, doc strings, annotations, & visualization




General: Testing & Documentation

# client features.py

@tag( = ; = )
@check output ( =np.floaté64, =(-5.0, 5.0), =False)

def height zero mean unit variance (height zero mean: pd.Series,
height std dev: float) -> pd.Series:

return height zero mean / height std dev

Testing: easier to unit & integration test.
Data Quality Tests: runtime checks via annotation*.
Self-documenting: naming, doc strings, annotations, & visualization

Scale: all these enable you to scale the team & code.




Visualizationis first class

titanic_data

“Lineage as Code”

UD: target_col

embarked

cabin_encoder
cabin_category

embarked_category

UD: max_depth

dr.visualize_execution(...):

fit_random_forest
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KISS (keep it simple, stupid)



KISS (keep it simple, stupid)

data['hzmuv'] = data['height zero mean'] / height std dev

def height zero mean unit variance (height zero mean: pd.Series,
height std dev: float) -> pd.Series:

return height zero mean / height std dev

No object-oriented code: don’t need to learn much to write a function.
Testing story: can change with confidence.

Complexity is contained: function, including naming, defines the boundaries



YAGNI (You Aren’'t Gonna Need It)

“Premature optimization is the root of all evil” - Donald Knuth



YAGNI (You Aren't Gonna Need It)

def height zero mean unit variance (height zero mean: pd.Series,
height std dev: float) -> pd.Series:

return height zero mean / height std dev

Hard to over engineer: functions force simplicity.

Declarative structure: easy to modify when needed.



YAGNI (You Aren't Gonna Need It)

E.g. easy to refactor when needed:

def embedding (query: ) —-> List[
response = openail.Embedding.create (
return response | 1][0]1[

def embedding (query: , embedding client:
return embedding client.get embedding (query)

- "

7 Input: query ‘. Input: query 9 ’: Input: embedding_client  ~,

e R ~ ot -
7

N

{  Input: vdb_client ) ‘. Input: top_k ) embedding




Native SWE o—Kiss
e DRY
e SOLID
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DRY (don’t repeat yourself)



DRY (don't repeat yourself)

data| ] = datal ] .rolling(3) .mean()
data[ ] = datal ]/data[ ]
spend mean = datal ] .mean ()

data| ] = datal ] - spend mean

spend std dev = datal ].std()

datal ] = data] 1/spend_std dev

VS

def spend zero mean(spend: pd.Series, spend mean: ) -> pd.Series:

return spend - spend mean

def spend std dev(spend: pd.Series) ->

return spend.std()

def spend zero mean unit variance (spend zero mean: pd.Series, spend std dev: )
-> pd.Series:

return spend zero mean / spend std dev




SOLID Principles:
Single Responsibility Principle



Single Responsibility Principle

Functions: single task; “hamed piece of business logic”

def embedding (query: ) —-> List[
response = openail.Embedding.create (
return response | 1][0]1[

Driver: no logic; just handling context of what & where

dr = driver.Driver (config, modulel, module2)
outputs = [ , yoee -]

result = dr.execute (outputs, =input data)




SOLID Principles:
Open Closed Principle



Open for Extension

Can use @config to modify; adding new functions is straightforward.

def embedding (query: ) -> List]| ]:
response = openail.Embedding.create ( =query, = )
return response | 1[0][ ]
@config.when (provider= )
def embedding anthropic(query: ) —-> List[ ]:
response = antropic_api.get embedding ( =query)
return response| 11 ]

def nn_ids(

embedding: List] 1, vectordb client: Client, top k: ) -> List]| ]:
results = vectordb client.search( =embedding, =top k)
return results



Open for Extension

U Input: index_col U Input: location )

Can easily integration test o \ /

a distinct path T

Y
target sibsp parch embarked
fare age family embarked _encoder

pclass embarked_category

g Input: validation_size fraction e training_set vl

train_test_split_func

y_train X_train

fit_random_forest

Sex

sex_encoder

encoders

N Input: random_state

—

sex_category

>

cabin_encoder

N

cabin_category

~
)



Closed for Modification

Hard to break existing logic; or if you do, it's clear why.

def height zero mean unit variance (height zero mean: pd.Series,
height std dev: float) -> pd.Series:

return height zero mean / height std dev

Things Hamilton checks:

- Type annotations match
- You have the right inputs for the outputs you want

- Can add runtime data quality checks via @check output
- e.g. with Pandera



SOLID Principles:
Liskov Substitution Principle



Liskov Substitution Principle

import data_ loader, feature_ transforms, model pipeline

# DAG for training/inferring on titanic data
titanic_dag = driver.Driver (config,
data loader, feature transforms, model pipeline,
=base.DefaultAdapter (),
)
# execute & get output
result = titanic_dag.execute([ 1,
={ : raw_passengers_df}

)

Options to swap:

- @config.when
- module swap
- swap where this code runs




SOLID Principles:
Interface Segregation Principle

“clients can choose to depend only on the functionalities they need.”



import data_ loader, feature_ transforms, model pipeline

# DAG for training/inferring on titanic data
titanic_dag = driver.Driver (config,
data loader, feature transforms, model pipeline,
=base.DefaultAdapter (),
)
# execute & get output full pipeline
result = titanic_dag.execute([ 1,
={ : raw_passengers_df}

)

# execute & get output just data set
result = titanic_dag.execute ([ 1,
={ : raw_passengers_df}

) ‘. Input: test size )

1. Functions only depend on what they need.
2. Don’t needit? Don’t runiit.



SOLID Principles:
Dependency Inversion Principle

“use interfaces instead of concrete implementations wherever possible”
“avoid tight coupling between software modules”



Dependency Inversion Principle

Hamilton does this by definition.

Functions & parameters have type annotatic

import data_loader, feature transforms, model pipeline

# DAG for training/inferring on titanic data
titanic_dag = driver.Driver(config,
data_loader, feature_transforms, model pipeline,
=base.DefaultAdapter (),

)
# execute & get output
result = titanic_dag.execute ([ 1,
={ : raw_passengers_df}

)

The driver requests what should be computed &
delegates to underlying functions.




5. Summary
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TL;DR: Summary

1. Hamilton is a micro-orchestration framework for dataflows in Python.
2. Good SWE practices improve the value of your (human) work and

Hamilton promotes them by design:
General: Testing & Docs.
KISS DRY
YAGNI SOLID

3. You'll get more value with Hamilton because:

o It's straightforward to test & document.
o It’s hard to do bad things when adding/removing/adjusting dataflows.
o It fosters reuse so you can move faster.
o Standardizes the way to iterate and add to the code base.



>
TL;DR: Summary

Good SWE practices improve the value of human work hours, and Hamilton
promotes them by design.

Hamilton is a micro-orchestration framework for dataflows in Python.

e |t was created to tame a code base (& therefore process).

e |[t's opinionated (e.g. dbt for Python).
o Use it for data processing, ML, to LLM workflows.

e SWE best practices come natively, without really thinking about it.



7 Hamilton Dataflow Hub

Introduction

Users

Example Template
zilto
peek - .
text_summarization
Official
hari
dataflows:
o

hub.dagworks.io

Dataflows

v

Changelog

A > Users > zilto > text_summarization

text_summarization

rencoding L) ] lnput max_token_length )

i @im‘mﬂ_ﬂ_lcxl ‘ED
\ T

; prompt_and_text_coatent

summarized_text

To get started:

Dynamically pull and run

from hamilton import dataflow, driver
# downloads into ~/.hamilton/dataflows and loads the module -— WARN
text_summarization = dataflow.import_module("text_summarization", "
dr =4
driver.Builder()
.with_config({}) # replace with configuration as appropriate
.with_modules(text_summarization)
.build()
)
# execute the dataflow, specifying what you want back. Will return .
result = dr.execute(
[text_summarization.CHANGE_ME, ...], # this specifies what you
inputs={...} # pass in inputs as appropriate

DAGWorks Blog [

GitHub 2 -0-

To get started:

Dynamically pull and
run

Use published library
version

Purpose of this module
Configuration Options
Limitations

Source code

Requirements


http://hub.dagworks.io

Fin. Thanks for listening!

>pip install sf-hamilton oOr EE on tryhamilon.dev

Questions”?

& join us on on Slack or subscribe to blog.dagworks.io!

Wl documentation: hamilton.dagworks.io

Follow us: https://twitter.com/hamilton os

Star vr: https://qithub.com/dagworks-inc/hamilton

https://www.dagworks.io (sign up! We're building on top of Hamilton!)

https://twitter.com/stefkrawczyvk https://www.linkedin.com/in/skrawczyk/



https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg
https://blog.dagworks.io/
https://hamilton.dagworks.io
https://twitter.com/hamilton_os
https://github.com/dagworks-inc/hamilton
https://www.dagworks.io
https://twitter.com/stefkrawczyk
https://www.linkedin.com/in/skrawczyk/
https://www.tryhamilton.dev/

