

Hamilton: Natively bringing SWE best practice to Python data transformations

September 2023 @ BayPlGgies Stefan Krawczyk - DAGWorks Inc.

whoami

Stefan Krawczyk
Co-creator of Hamilton &&
CEO DAGWorks Inc.

12+ years in ML & Data platforms

Why do SWE principles matter?

Why do SWE principles matter?

It helps scale/amplify human efforts; & humans are \$\$\$.

Agenda

1. Motivating pain

- 2. Hamilton
- 3. General Usage
- 4. Native SWE
- 5. Summary

A story of motivating pain


```
df = loader.load_actuals(dates) # e.g. spend, signups
```



```
df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
    df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
    df['holidays'] = is_holiday(df['year'], df['week'])
```



```
df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
    df['holidays'] = is_uk_holiday(df['year'], df['week'])
else:
    df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
```



```
df = loader.load actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
   df['holidays'] = is uk holiday(df['year'], df[' week'])
else:
   df['holidays'] = is holiday(df['year'], df['week'])
df['avg 3wk spend'] = df['spend'].rolling(3).mean()
df['acquisition cost'] = df['spend'] / df['signups']
df['spend shift 3weeks'] = df['spend'].shift(3)
df['special feature1'] = compute bespoke feature(df)
df['spend b'] = multiply columns(df['acquisition cost'], df['B'])
```



```
df = loader.load actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
   df['holidays'] = is uk holiday(df['year'], df[' week'])
else:
   df['holidays'] = is holiday(df['year'], df['week'])
df['avg 3wk spend'] = df['spend'].rolling(3).mean()
df['acquisition cost'] = df['spend'] / df['signups']
df['spend shift 3weeks'] = df['spend'].shift(3)
df['special feature1'] = compute bespoke feature(df)
df['spend b'] = multiply columns(df['acquisition cost'], df['B'])
save df(df, "some location")
```



```
df = loader.load actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
   df['holidays'] = is uk holiday(df['year'], df[' week'])
else:
   df['holidays'] = is holiday(df['year'], df['week'])
df['avg 3wk spend'] = df['spend'].rolling(3).mean()
df['acquisition cost'] = df['spend'] / df['signups']
df['spend shift 3weeks'] = df['spend'].shift(3)
df['special feature1'] = compute bespoke feature(df)
df['spend b'] = multiply columns(df['acquisition cost'], df['B'])
save df(df, "some location")
```


Problem: unit & integration testing; data quality

```
df = loader.load actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
   df['holidays'] = is uk holiday(df['year'], df[' week'])
else:
   df['holidays'] = is holiday(df['year'], df['week'])
df['avg 3wk spend'] = df['spend'].rolling(3).mean()
df['acquisition cost'] = df['spend'] / df['signups']
df['spend shift 3weeks'] = df['spend'].shift(3)
df['special feature1'] = compute bespoke feature(df)
df['spend b'] = multiply columns(df['acquisition cost'], df['B'])
save df(df, "some location")
```


Problem: code readability & documentation **(29)**

```
df = loader.load actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
   df['holidays'] = is uk holiday(df['year'], df[' week'])
else:
   df['holidays'] = is holiday(df['year'], df['week'])
df['avg 3wk spend'] = df['spend'].rolling(3).mean()
df['acquisition cost'] = df['spend'] / df['signups']
df['spend shift 3weeks'] = df['spend'].shift(3)
df['special feature1'] = compute bespoke feature(df)
df['spend b'] = multiply columns(df['acquisition cost'], df['B'])
save df(df, "some location")
```


Problem: difficulty in tracing lineage

```
df = loader.load actuals(dates) # e.g. spend, signups
  if config['region'] == 'UK':
     df['holidays'] = is uk holiday(df['year'], df[' week'])
  else:
     df['holidays'] = is holiday(df['year'], df['week'])
  df['avg 3wk spend'] = df['spend'].rolling(3).mean()
df['acquisition cost'] = df['spend'] / df['signups']
  df['spend shift 3weeks'] = df['spend'].shift(3)
  df['special feature1'] = compute bespoke feature(df)
df['spend b'] = multiply columns(df['acquisition cost'], df['B'])
  save df(df, "some location")
```


Problem: code reuse and duplication

```
df = loader.load actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
   df['holidays'] = is uk holiday(df['year'], df[' week'])
else:
   df['holidays'] = is holiday(df['year'], df['week'])
df['avg 3wk spend'] = df['spend'].rolling(3).mean()
df['acquisition cost'] = df['spend'] / df['signups']
df['spend shift 3weeks'] = df['spend'].shift(3)
df['special feature1'] = compute bespoke feature(df)
df['spend b'] = multiply columns(df['acquisition cost'], df['B'])
save df(df, "some location")
```


Problem: onboarding 📈 & debugging 📈

```
df = loader.load actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
   df['holidays'] = is uk holiday(df['year'], df[' week'])
else:
   df['holidays'] = is holiday(df['year'], df['week'])
df['avg 3wk spend'] = df['spend'].rolling(3).mean()
df['acquisition cost'] = df['spend'] / df['signups']
df['spend shift 3weeks'] = df['spend'].shift(3)
df['special feature1'] = compute bespoke feature(df)
df['spend b'] = multiply columns(df['acquisition cost'], df['B'])
save df(df, "some location")
```


Question for you!

- 1. Are any of these pains familiar to you? If so, which ones?
- 2. Do you have some other pains related to pipelines/modeling?

Raise hand | Unmute !

Agenda

- 1. Motivating pain
- 2. Hamilton
- 3. General Usage
- 4. Native SWE
- 5. Summary

Hamilton

What is Hamilton?

Micro-orchestration framework for defining dataflows using declarative functions

SWE best practices: 🗸 testing 🗸 documentation 🗸 modularity/reuse

pip install sf-hamilton [came from Stitch Fix]

<u>www.tryhamilton.dev</u> ← uses pyodide!

Mirco-orchestration vs Macro-orchestration

Macro-orchestration is handling this whole thing:

Micro-orchestration is handling what happens within this step

What's a dataflow?

Fancy way of saying:

How data + computation "flow"

Can be expressed as a directed acyclic graph (DAG).

Declarative functions?

Functions declare:

- What they create in the dataflow.
- What dependencies are required for computation.
- You don't run the functions directly.

> When you read the function, you'll understand what it does and what it needs.

A-ha moment: debugging a dataframe

Idea: What if every output (column) corresponded to exactly one Python fn?

Addendum: What if you could determine the dependencies from the way that function was written?

In Hamilton, the **output** (e.g., column)

is determined by the name of the function.

The **dependencies** are determined by the **input parameters**.

Old Way vs. Hamilton Way:

```
Instead of
                     df['c'] = df['a'] + df['b']
                     df['d'] = transform(df['c']
Outputs == Function Name Inputs == Function Arguments
You declare
              def c a: pd.Series, b: pd.Series) -> pd.Series:
                 Sums a with b"""
                 return a + b
              def d(c: pd.Series) -> pd.Series:
                 Transforms C to ..."""
                 new column = transform logic(c)
                 return new column
```


UD: a

Full Hello World

(Note: works for any python object type)

UD: b

C

Functions

```
# feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
    """Sums a with b"""
    return a + b

def d(c: pd.Series) -> pd.Series:
    """Transforms C to ..."""
    new_column = _transform_logic(c)
    return new_column
```

Driver says what/when to execute

```
# run.py
from hamilton import driver
import feature logic
dr = driver.Driver({'a': ..., 'b': ...}, feature_logic)
df_result = dr.execute(['c', 'd'])
print(df_result)
```


Things to mention, but I won't cover:

We also have decorators that you add to functions that...

```
@tag
                     # attach metadata
@parameterize
                     # curry + repeat a function
@extract columns
                     # one dataframe -> multiple series
@extract outputs
                     # one dict -> multiple outputs
@check output
                     # data validation; very lightweight
@config.when
                     # conditional transforms
```

& more... Hamilton code is **portable** & runs & scales anywhere python runs.

@subdag

parameterize parts of your DAG

Some Hamilton stats

~1.6K Unique Stargazers 200+ slack members 100K+ downloads

Star History

Note: dbt took 3.5 years to get to 600 stars

Hamilton is used by many, including:

Agenda

- 1. Motivating pain
- 2. Hamilton
- 3. General Usage
- 4. Native SWE
- 5. Summary

Hamilton: General Usage

When should I <u>not</u> consider Hamilton?

You can't draw a flowchart (DAG)...

Or if you have code that depends on inspecting the value output of a transform, e.g.

```
output_1 = transform_1(a, b)
if output_1 < 0.5:
  output_2 = transform_2(output_1)
else:
  output_2 = transform_3(output_1</pre>
```

If it's minor, you can break this up into separate DAGs ... otherwise not a fit.

[though we can build this capability in...]

When <u>should I</u> consider Hamilton?

If you can draw a flowchart (DAG), you can put it into Hamilton:

- Time-series feature engineering (origin)
- Tired of managing scripts that do transformations...
- Describing E2E ML Pipelines + MLOps integrations
- Web request flows.
- LLM Workflows!

Code & software best practices enthusiasts:

Hamilton U Code Complexity

Example Hamilton use case: Feature Engineering

Data loading & Feature code:

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
 """Some docs"""
 return some library(year, week)
def avg 3wk spend(spend: pd.Series) -> pd.Series:
 """Some docs""
 return spend.rolling(3).mean()
def spend per signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs""
 return spend / signups
def spend shift 3weeks(spend: pd.Series) -> pd.Series:
 """Some docs""
 return spend.shift(3)
def spend shift 3weeks per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs""
 return spend.shift(3)

features.py

Via Driver:

Feature
Dataframe:

			~		
Year	Week	Sign ups		Spend	Holiday
2015	2	57		123	0
2015	3	58		123	0
2015	4	59		123	1
2015	5	59		123	1
2021	16	1000		1234	0

run.py

Example Hamilton use case: Feature Engineering

Code that needs to be written:

- Functions to load data
 - a. normalize/create common index to join on
- 2. Feature functions
 - a. Unit test these easily!
 - b. Optional: model functions.
- Drivers materialize data
 - a. DAG is walked for only what's needed.
 - b. E.g. place this code in wherever you run your python.

Example Hamilton use case: Feature Engineering

Code that needs to be written:

- Functions to load data
 - a. normalize/create common index to join on
- 2. Feature functions
 - a. Unit test these easily!
 - b. Optional: model functions.
- 3. Drivers materialize data
 - a. DAG is walked for only what's needed.
 - b. E.g. place this code in wherever you run your python.

Agenda

- 1. Motivating pain
- 2. Hamilton
- 3. Ceneral Usage
- 4. Native SWE
- 5. Summary

Hamilton: Native SWE

Native SWE

5 Common Ideals

- General: Testing & Docs.
- KISS
- YAGNI
- DRY
- SOLID

Testing: easier to unit & integration test.

```
# test_client_features.py

def test_height_zero_mean_unit_variance():
    actual = height_zero_mean_unit_variance(pd.Series([1,2,3]), 2.0)
    expected = pd.Series([0.5,1.0, 1.5])
    assert actual == expected
```


Testing: easier to unit & integration test.

Data Quality Tests: runtime checks via annotation*.

Testing: easier to unit & integration test.

Data Quality Tests: runtime checks via annotation*.

Self-documenting: naming, doc strings, annotations, & visualization

Testing: easier to unit & integration test.

Data Quality Tests: runtime checks via annotation*.

Self-documenting: naming, doc strings, annotations, & visualization

Scale: all these enable you to scale the team & code.

Visualization is first class

Native SWE

5 Common Ideals

- Ceneral: Testing & Docs.
- KISS
- YAGNI
- DRY
- SOLID

KISS (keep it simple, stupid)

KISS (keep it simple, stupid)

```
data['hzmuv'] = data['height_zero_mean'] / height_std_dev
```

VS

No object-oriented code: don't need to learn much to write a function.

Testing story: can change with confidence.

Complexity is contained: function, including naming, defines the boundaries

YAGNI (You Aren't Gonna Need It)

"Premature optimization is the root of all evil" - Donald Knuth

YAGNI (You Aren't Gonna Need It)

Hard to over engineer: functions force simplicity.

Declarative structure: easy to modify when needed.

YAGNI (You Aren't Gonna Need It)

E.g. easy to refactor when needed:

def embedding(query: str) -> List[float]:

```
response = openai.Embedding.create(input=query, model="HARDCODED")
  return response["data"][0]["embedding"]
def embedding(query: str, embedding client: object) -> List[float]:
  return embedding client.get embedding(query)
                                                                                  Input: embedding clier
                                                                   Input: query
                                Input: quer
 Input: vdb client
                   Input: top k
                                embedding
                                                          Input: vdb_client
                                                                             embedding
                                                                                           Input: top
                    nn ids
                                                                              nn ids
```

Native SWE

5 Common Ideals

- Ceneral: Testing & Docs.
- KISS
- YACNI
- DRY
- SOLID

DRY (don't repeat yourself)

DRY (don't repeat yourself)

return spend zero mean / spend std dev

-> pd.Series:

```
spend mean = data['spend'].mean()
            data['spend zero mean'] = data['spend'] - spend mean
            spend std dev = data['spend'].std()
            data['szmuv'] = data['spend zero mean']/spend std dev
                                      VS
def spend zero mean(spend: pd.Series, spend mean: float) -> pd.Series:
  """Shows function that takes a scalar. In this case to zero mean spend."""
 return spend - spend mean
def spend std dev(spend: pd.Series) -> float:
  """Function that computes the standard deviation of the spend column."""
 return spend.std()
def spend zero mean unit variance(spend zero mean: pd.Series, spend std dev: float)
```

data['avg_3wk_spend'] = data['spend'].rolling(3).mean()
data['spend per signup'] = data['spend']/data['signups']

"""Function showing one way to make spend have zero mean and unit variance."""

SOLID Principles: Single Responsibility Principle

Single Responsibility Principle

Functions: single task; "named piece of business logic"

```
def embedding(query: str) -> List[float]:
   response = openai.Embedding.create(input=query, model="HARDCODED")
   return response["data"][0]["embedding"]
```

Driver: no logic; just handling context of what & where

```
dr = driver.Driver(config, module1, module2)
outputs = ["spend", "signups", ...]
result = dr.execute(outputs, inputs = input_data)
```


SOLID Principles: Open Closed Principle

Open for Extension

Can use @config to modify; adding new functions is straightforward.

```
def embedding(query: str) -> List[float]:
  response = openai.Embedding.create(input=query, model="HARDCODED")
  return response["data"][0]["embedding"]
@config.when(provider="anthropic")
def embedding anthropic(query: str) -> List[float]:
  response = antropic api.get embedding(input=query)
 return response["data"]["embedding"]
def nn ids(
embedding: List[float], vectordb client: Client, top k: int) -> List[int]:
  results = vectordb client.search(embedding=embedding, top k=top k)
  return results
```


Open for Extension

Can easily integration test a distinct path

result = dr.execute(

Closed for Modification

Hard to break existing logic; or if you do, it's clear why.

Things Hamilton checks:

- Type annotations match
- You have the right inputs for the outputs you want
- Can add runtime data quality checks via @check_output
 - e.g. with Pandera

SOLID Principles: Liskov Substitution Principle

Liskov Substitution Principle

Options to swap:

- @config.when
- module swap
- swap where this code runs

SOLID Principles: Interface Segregation Principle

"clients can choose to depend only on the functionalities they need."

Interface Segregation Principle

```
import data loader, feature transforms, model pipeline
# DAG for training/inferring on titanic data
titanic dag = driver.Driver(config,
  data loader, feature transforms, model pipeline,
  adapter=base.DefaultAdapter(),
 execute & get output full pipeline
result = titanic dag.execute(["model predict"],
      inputs={"raw passengers df": raw passengers df}
# execute & get output just data set
result = titanic dag.execute(["data set"],
      inputs={"raw passengers df": raw passengers df}
```

- 1. Functions only depend on what they need.
- Don't need it? Don't run it.

SOLI<u>D</u> Principles: Dependency Inversion Principle

"use interfaces instead of concrete implementations wherever possible" "avoid tight coupling between software modules"

Dependency Inversion Principle

Hamilton does this by definition.

Functions & parameters have type annotations.

The driver requests what should be computed & delegates to underlying functions.

Input: raw_passengers_df

fit model

model predict

Agenda

- 1. Motivating pain
- 2. Hamilton
- 3. Ceneral Usage
- 4. Native SWE
- 5. Summary

Summary

TL;DR: Summary

- Hamilton is a micro-orchestration framework for dataflows in Python.
- Good SWE practices improve the value of your (human) work and Hamilton promotes them by design:
 - ✓ General: Testing & Docs.
 - ✓ KISS

V DRY

YAGNI

- ✓ SOLID
- 3. You'll get more value with Hamilton because:
 - It's straightforward to test & document.
 - It's hard to do bad things when adding/removing/adjusting dataflows.
 - It fosters reuse so you can move faster.
 - Standardizes the way to iterate and add to the code base.

TL;DR: Summary

Good SWE practices improve the value of human work hours, and Hamilton promotes them by design.

Hamilton is a micro-orchestration framework for dataflows in Python.

- It was created to tame a code base (& therefore process).
- It's opinionated (e.g. dbt for Python).
 - Use it for data processing, ML, to LLM workflows.
- SWE best practices come natively, without really thinking about it.

Sneak peek sharing dataflows:

hub.dagworks.io

To get started:

Dynamically pull and run

summarized text

```
from hamilton import dataflow, driver
# downloads into ~/.hamilton/dataflows and loads the module -- WARN.
text_summarization = dataflow.import_module("text_summarization", "
dr = (
          driver.Builder()
          .with_config({}) # replace with configuration as appropriate
          .with_modules(text_summarization)
          .build()
)
# execute the dataflow, specifying what you want back. Will return result = dr.execute(
        [text_summarization.CHANGE_ME, ...], # this specifies what you inputs={...} # pass in inputs as appropriate
)
```


Fin. Thanks for listening!

> pip install sf-hamilton or em on tryhamilon.dev

Questions?

pioin us on on Slack or subscribe to blog.dagworks.io!

documentation: hamilton.dagworks.io

Follow us: https://twitter.com/hamilton_os

Star : https://github.com/dagworks-inc/hamilton

https://www.dagworks.io (sign up! We're building on top of Hamilton!)

https://twitter.com/stefkrawczyk https://www.linkedin.com/in/skrawczyk/