Lightweight “Lineage”
with Hamilton

N
Stefan Krawczyk @ - D a t a

CEO DAGWorks Inc.

» DAGWORKS

Context: Here's a common pipeline/ETL/“data flow”

Sources Features Model

In reality it's more like

Sources Features Model

Problem: Ever had these issues?

Sources Features Model

Problem: Ever had these issues?

> *

-?‘?‘

§°0°0
? @

Sources Features Model

o““e®

What is Hamilton?

micro-framework for defining dataflows

SWE best practices: [%g testing [%d documentation [%d modularity/reuse
pip install sf-hamilton [came from Stitch Fix]

www.tryhamilton.dev ¢ uses pyodide!

http://www.tryhamilton.dev

Hamilton: “a ha” moment

Table:

2023-01-01
2023-01-02
2023-01-03
2023-01-04
2023-01-05

spend

10
10
20
40
40

spend_zero_mean

spend_zero_mean_unit_variance
-1.173035
-1.173035
-0.918028
-0.408012
-0.408012

def spend zero mean unit variance (
spend zero mean: pd.Series, spend std dev: float

) ->

pd.Series:

Idea: What if every output (column)
corresponded to exactly one python fn?

Addendum: What if you could
determine the dependencies from the
way that function was written?

return spend zero mean / spend std dev

Full Hello Worlid

_ # feature logic.py
Functions def c(a: pd.Series, b: pd.Series) -> pd.Series:

return a + b

def d(c: pd.Series) -> pd.Series:

new_column = transform logic(c)
return new_column

Driver says what/when to execute

run.py
from hamilton import driver

import feature logic

dr = driver.Driver ({ ... : ...}, feature logic)
df result = dr.execute ([
print (df_result)

UD: index_col

titanic_data

“Lineage via code”

UD: target_col

embarked

sex encoder

cabin_category

sex category

UD: random_state

trammg set_ vl

UD: validation_size_fraction

fit_random_forest

Can annotate code: v indexcol

@tag(="prod.kaggle",
="uri://some/uri",
="data-engineering",
="production")
def titanic data(lndex col: str, location: str) -> pd.DataFrame:

UD: validation size fraction

@tag (="data-science", ="production")
def fit random forest (

prefit random forest: base.ClassifierMixin,

X train: pd.DataFrame,

y train: pd.Series,
) —-> base.ClassifierMixin:

Ask questions: @ (0D inden ol
COYCIRCD

£ =T

drlver Driver (config, data loading, features, sets, model pipeline)
nodes = dr.what is upstream of ("fit random forest")
teams = {node.tags.get("owner'") for node in nodes}

print (teams) D

4
s —— S

Recipe for a lightweight “lineage” store:

Lightweight lineage store just requires: Can now answer questions:

1. Define data flow in code. Using e.g. with git sha can:

2. Add metadata to code.

3. Commit to version control system. 1. Diff code to understand differences (obviously)

2. Go back in time to recreate the world.

When you execute to create an artifact: .
Using the DAG:

1. Store commit hash.

2. And what you requested to be run. If I change this “function” who/what will | impact®

What are my “production” features?
Where is birth date used?
etc.

Sanl OO S

“Lineage via code”

titanic_data

UD: target col
@ embarked

sex encoder

sex calegory

trammg set_ vl

‘= collaboration
= debugging
= compliance

fit_random_forest

Hamilton: Lightweight “Lineage”

TL:DR:

1. Write functions - get lineage as code.

2. Add annotations - build something you can query!

Star Hamilton - v¢ https://qithub.com/dagworks-inc/hamilton <&

(this example will be written up this soon)

https://github.com/dagworks-inc/hamilton

Thanks! Q&A

Hamilton: Me: stefan@dagworks.io
www.trvhamilton.dev https://twitter.com/stefkrawczyk
Hamilton (@hamilton_os) / Twitter https://www.linkedin.com/in/skrawczyk/

W https://qithub.com/dagworks-inc/hamilton -

B https://hamilton.readthedocs.org

https://www.tryhamilton.dev
https://twitter.com/hamilton_os
https://github.com/dagworks-inc/hamilton
https://hamilton.readthedocs.org
https://twitter.com/stefkrawczyk
https://www.linkedin.com/in/skrawczyk/

Hamilton: why is it called Hamilton?

Naming things is hard...
1. Associations with “FED”:
a. Alexander Hamilton is the father of the Fed.

_hz az

b. FED @ SF models business mechanics. Hww = 5,52 + V@

Operator associated Potential
with kinetic energy energy

2. We'’re doing some basic graph theory.

apropos Hamilton @

