
Lightweight “Lineage”
with Hamilton

 @Stefan Krawczyk
CEO DAGWorks Inc.

Features

Context: Here’s a common pipeline/ETL/“data flow”

Sources Model

Features

In reality it’s more like

Sources Model

Features

Problem: Ever had these issues?

Sources Model

Features

Problem: Ever had these issues?

Sources Model

❔

❔
❔
❔

❔

❔

micro-framework for defining dataflows
SWE best practices: ☑ testing ☑ documentation ☑ modularity/reuse

 pip install sf-hamilton [came from Stitch Fix]

www.tryhamilton.dev ← uses pyodide!

What is Hamilton?

http://www.tryhamilton.dev

Hamilton: “a ha” moment

Table:
spend spend_zero_mean spend_zero_mean_unit_variance

2023-01-01 10 -46 -1.173035
2023-01-02 10 -46 -1.173035
2023-01-03 20 -36 -0.918028
2023-01-04 40 -16 -0.408012
2023-01-05 40 -16 -0.408012

Idea: What if every output (column)
corresponded to exactly one python fn?

Addendum: What if you could
determine the dependencies from the
way that function was written?

def spend_zero_mean_unit_variance(
 spend_zero_mean: pd.Series, spend_std_dev: float
) -> pd.Series:
 """More docs would go here…"""
 return spend_zero_mean / spend_std_dev

Full Hello World

9

feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

run.py
from hamilton import driver
import feature_logic
dr = driver.Driver({'a': ..., 'b': ...}, feature_logic)
df_result = dr.execute(['c', 'd'])
print(df_result)

Functions

Driver says what/when to execute

“Lineage via code”

Can annotate code:

@tag(source="prod.kaggle",
 info="uri://some/uri",
 owner="data-engineering",
 importance="production")
def titanic_data(index_col: str, location: str) -> pd.DataFrame:

@tag(owner="data-science", importance="production")
def fit_random_forest(
 prefit_random_forest: base.ClassifierMixin,
 X_train: pd.DataFrame,
 y_train: pd.Series,
) -> base.ClassifierMixin:

Ask questions:

dr = driver.Driver(config, data_loading, features, sets, model_pipeline)
nodes = dr.what_is_upstream_of("fit_random_forest")
teams = {node.tags.get("owner") for node in nodes}
print(teams)
> {None, 'data-science', 'data-engineering'}

Recipe for a lightweight “lineage” store:

Lightweight lineage store just requires:

1. Define data flow in code.
2. Add metadata to code.
3. Commit to version control system.

When you execute to create an artifact:

1. Store commit hash.
2. And what you requested to be run.

Can now answer questions:

Using e.g. with git sha can:

1. Diff code to understand differences (obviously)
2. Go back in time to recreate the world.

Using the DAG:

1. If I change this “function” who/what will I impact?
2. What are my “production” features?
3. Where is birth date used?
4. etc.

“Lineage via code”

👍 collaboration
👍 debugging
👍 compliance

Hamilton: Lightweight “Lineage”

TL;DR:

1. Write functions - get lineage as code.

2. Add annotations - build something you can query!

Star Hamilton - ⭐ https://github.com/dagworks-inc/hamilton 👈
(this example will be written up this soon)

https://github.com/dagworks-inc/hamilton

Thanks! Q&A
Hamilton:

www.tryhamilton.dev

Hamilton (@hamilton_os) / Twitter

⭐ https://github.com/dagworks-inc/hamilton 👈

📚 https://hamilton.readthedocs.org

Me: stefan@dagworks.io

https://twitter.com/stefkrawczyk

https://www.linkedin.com/in/skrawczyk/

https://www.tryhamilton.dev
https://twitter.com/hamilton_os
https://github.com/dagworks-inc/hamilton
https://hamilton.readthedocs.org
https://twitter.com/stefkrawczyk
https://www.linkedin.com/in/skrawczyk/

Hamilton: why is it called Hamilton?

Naming things is hard...
1. Associations with “FED”:

a. Alexander Hamilton is the father of the Fed.
b. FED @ SF models business mechanics.

2. We’re doing some basic graph theory.
apropos Hamilton

