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Abstract— In this paper, we propose a matching network
for gradually estimating the geometric transformation param-
eters between two aerial images taken in the same area but
in different environments. To precisely matching two aerial
images, there are important factors to consider such as dif-
ferent time, a variation of viewpoint, size, and rotation. The
conventional methods for matching aerial image pairs with
the large variations are extremely time-consuming process and
have the limitations finding correct correspondences, because
the image gradient and grayscale intensity for generating
the feature descriptors are not robust to the variations. We
design the network architecture as an end-to-end trainable
deep neural network to reflect the characteristics of aerial
images. The hierarchical structures that orderly estimate the
rotation and the affine transformations make it possible to
reduce the range of predictions and minimize errors caused by
misalignment, resulting in more precise matching performance.
Furthermore, we apply transfer learning to make the feature
extraction networks more robust and suitable for the aerial
image domain with the large variations. For the experiment, we
apply the remote sensing image datasets from Google Earth and
International Society for Photogrammetry and Remote Sensing
(ISPRS). To evaluate our method quantitatively, we measure the
probability of correct keypoints (PCK) metrics for objectively
comparing the degree of matching. In terms of qualitative and
quantitative assessment, our method demonstrates the state-of-
the-art performances compared to the existing methods.

I. INTRODUCTION

Image matching is the process to geometrically estimate
the visual correspondences between two images taken in
same scene but in the conditions of different sensor, view-
point, time and weather variations. As traditional computer
vision approaches, hand-crafted algorithm (such as SIFT [29,
22], SURF [20], HOG [30] and ASIFT [25]) are widely used
to solve the matching tasks by computing the correspon-
dences between two images and estimating the geometric
transformation parameters. However, these methods are not
robust to variation of the environment (such as time, large
transformation and weather) and require lots of computa-
tional costs in high-resolution images.

As a deep neural network (DNN) has shown impressive
performance in many computer vision tasks such as classi-
fication [16, 26], object detection [11], segmentation [12],
group activity recognition [34], human activity prediction
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Fig. 1: An entire process for aerial image matching. Through our
networks, the source image Isrc is aligned to target image Itgt.

[31], line segment detection [35] and image generation [13],
there are many attempts to overcome these limitations with
DNN models [4, 7, 9, 15, 17] in an ordinary image domain.
However, there are still few researches to solve the aerial
image registration due to the lack of data, high-resolution,
large transformation and temporal variation. Aerial images
have various different characteristics, such as occlusion
caused by weather, repeated patterns of the buildings, various
brightness depending on time (day/night), and tilt according
to taken angle. In this work, we propose a robust matching
network for gradually estimating geometric transformation
on the aerial image. To reflect the characteristics of aerial
images, we exclude the irrelevant regions and gradually
apply the transformation to focus on the adjacent regions.
Furthermore, the proposed network is end-to-end trainable
for learning the repetitive patterns and the environmental
variations. Fig. 1 illustrates the gradual matching process of
our method. Our contributions are three-fold as follows:
• We propose a matching network which gradually esti-

mates rotation and affine transformations between two
aerial images. To reflect the characteristics of aerial
images, we designed the end-to-end trainable network,
resulting in more robustness to the variation of taken
environments.

• We introduce a gradual masking method for focusing on
the adjacent region during step-wise estimating process.
This method makes it possible to estimate the geometric
transformation parameters more precisely by reducing
the regardless feature points.

• We demonstrate that the real-world matching in the
aerial image domain is possible on the network trained
from the synthetic generation procedure which makes
a set of image pairs by applying a random affine
transformation.

II. RELATED WORKS

The conventional computer vision methods for finding
correspondences consist of two steps, 1) detecting feature
points and 2) calculating the similarity of local descriptors



Fig. 2: Overview of the proposed method that estimates the visual correspondences between two aerial images. After passing the rotation
parameter estimator, the output transformation is applied to source image, which is the input for the second estimator. Final transformation
parameters are computed by composing the rotation and the residual affine transformations.

centered on these points, such as SIFT, SURF and HOG.
To complement the problems of SIFT, tons of extensions
have been developed [3, 19, 23, 25]. ASIFT and T. Koch et
al. [3] use a sampling the all possible angles that transform
image to find the correspondences. W. Song et al. [19]
introduce a geometric constraints for aerial image matching.
Although this approach is effective for geometrically shallow
variations, it still lacks the invariance of non-linear and non-
rigid deformations, resulting in limited performance.

In recent years, convolutional neural networks (CNNs)
have been used to learn discriminative feature detectors and
descriptors which are more invariant to appearance variations
than the conventional descriptors [1, 2, 5, 6, 7, 8, 9, 10,
14, 15]. S. Kim et al. [1] present a descriptor, called fully
convolutional self-similarity (FCSS) that is robust to an intra-
class appearance variation. S. Wang et al. [2] introduce the
network that optimally combines multi-scale feature maps. E.
Simo-Serra et al. [6] propose a deep network using image-
patch pairs. Through a comparison of various models, X.
Zhang et al. [7] show that certain trainable models are
suitable for matching. H. Altwaijry et al. [10] develop a
binary classifier to distinguish whether the aerial image pair
is matched. X. Han et al. [15] suggest to train a network
with a positive and negative pairs at the same time. Al-
though the aforementioned related works lead to meaningful
results, they still find correspondences by extracting feature
descriptor from the local patches and comparing them using
an appropriate similarity metric.

Several works [4, 17, 18, 33] estimate optical flow and
semantic alignment. I. Rocco et al. [4] propose a CNNs
architecture which estimates the geometric transformation
parameters. PH. Seo et al. [17] present an attention mech-
anism with offset-aware correlation (OAC) kernel. S. Jeon
et al. [18] apply pyramid model for finding dense semantic
correspondence. I. Rocco et al. [33] propose soft-inlier count
method to eliminate outliers. Although the local constraint
methods are effective only for some changes, these can not be
expected to achieve accurate matching results in the aerial
image field, which should be considered for the complex
changes. Also, estimating the correspondence through geo-
metric model does not guarantee a stable and accurate result.

III. PROPOSED METHODS

In this section, we describe a novel matching network
architecture for gradually estimating rotation and affine

transformations between two aerial images. Fig. 2 illustrates
the overview of our proposed method. The first estimator
regresses the rotation parameters between the source and
target aerial images. Then, the image rotated by estimated
parameters is utilized as an input of second estimator. The
second estimator precisely infers the affine transformation
parameters between two images. Each estimator consists of
four steps as illustrated in Fig. 3. We address the detailed
descriptions of these steps in each section.

A. Feature Extraction

The first step for image matching is to extract features
from the input images. We apply the VGG-16 [16] and
the ResNet-101 [26] as a descriptor to extract robust and
distinctive features. We utilize the generated feature map
f ∈ Rd×h×w before passing the fully connected layer. Since
the source and target images have to pass the same feature
extraction process, this step has the same architecture of the
siamese network [32] to share the network parameters.

B. Feature Matching

In second step, we compute the correlation map which
denotes the similarity between two generated feature maps.
I. Rocco et al. [4] first proposed this correlation map to com-
pute the semantic similarities between two ordinary images
and showed successful results in semantic alignment domain.
Our step is similar to the original one, but has a difference
that utilizing a pearson correlation method to correctly cope
with nonlinear changes due to weather and temporal factors
of the aerial images. Furthermore, ReLu function is applied
in the following process to exclude elements that are not
correlated with each other. The pearson correlation between
two dense feature maps is obtained as follows:

cAB(k, i, j) =
(fB(i, j)− µB)T (fA(ik, jk)− µA)
‖fB(i, j)− µB‖‖fA(ik, jk)− µA‖

(1)

where cAB(k, i, j) is the individual feature position in the
d × h × w dense feature map. k = h(jk − 1) + ik is an
assistant index for (ik, jk). fA(ik, jk) and fB(i, j) denote
individual feature descriptor of fA and fB at the positions
(ik, jk) and (i, j), respectively. µA and µB are the mean
values of each dense feature map, fA and fB .

The correlation map cAB has the positive and negative
values that mean the relation between two features. Since
there are lots of objects and repetitive patterns in aerial



Fig. 3: The detailed structure of each parameter estimator. Each step for estimating transformation is as follow: feature extraction, feature
matching, gradual masking and transformation estimation.

images, it is necessary to select the specific points instead
of considering all features. Therefore, we apply the max
function to the correlation map.

m = max(0, cAB) (2)

In previous works [4, 17], applying ReLu function in the
correlation map shows important role to stable the training
and improve the performance. This step is also necessary in
aerial image matching domain to prevent the overfitting and
make the network more stable.

C. Gradual Masking

Inspired by the conventional methods [22, 28], we apply
an adjacent region masking to enable more precise matching
by focusing on the regions within the range. This masking
separates the region to be considered in the correlation map.
In the rotation estimator step, the entire region is consid-
ered because there is no information about the degree of
difference between the two images. However, in the second
estimator, since the source image is somewhat aligned by the
estimated rotation parameters, it is possible to concentrate
on the adjacent areas and make more precise estimating.
Masking the adjacent region is obtained as follows:

r(k, i, j) =

{
m(k, i, j) if k ∈ S

0 otherwise.
(3)

where r(k, i, j) and m(k, i, j) are the individual feature
positions in the d × h × w region and correlation maps.
S ∈ {s : s = h(js − 1) + is, 1≤s≤225} is a set of an
assistant index for masking position (is, js) which is adjacent
to (i, j). We define the masking position as is ∈ {x : x =
i + n, n ∈ {−tp,−tp + 1, ..., tp}} and js ∈ {y : y =
j + n, n ∈ {−tp,−tp + 1, ..., tp}}. tp is the threshold in
pth network, e.g. 1st and 2nd networks are the rotation and
affine estimator, respectively.

D. Transformation Estimation

At the end of the stage in each estimator, the geometric
transformation parameters are regressed by the transforma-
tion parameter estimator. In the rotation parameter estimator
step, we apply discrete transformation instead of continuous
transformation to minimize false distortion. The ranges of 1
degree to 360 degrees are divided into 8 parts by 45-degree
intervals and denoted as classes. The network is trained

to classify the nearest class to the actual rotation angle.
Approximately estimated angle is applied to the source image
and utilized as an input of the second estimator. In the affine
parameter estimator step, we estimate the precise transfor-
mation with the continuous affine transformation parameters
to increase the freedom of geometric transformation. The
final geometric transformation parameters Tfin between the
source and target images are computed by multiplying the
rotation parameters T1 and the affine parameters T2.

E. Supervised Training

To train the proposed networks, we apply the cross-entropy
loss and the grid distance loss in each estimator, respectively.
Eq. (4) presents the cross-entropy loss function applied in
first estimator.

Langle(T
GT
1 , T1) = −

N∑
i=1

TGT1i log(T1i) (4)

where TGT1 is the ground-truth which has 8 classes for
discrete rotation angle and T1i is the output class from
the first network. For the second estimator, the average
grid distance loss [4] computes the distance between the
transformed grids and the ground-truth.

Lgrid(T
GT
2 , T2) =

1

|G|
∑
g∈G

d(TGT2 (g), T2(g))
2 (5)

where TGT2 is the ground-truth which denotes the geometric
transformation parameters between source and target images.
To compute the loss between the ground truth and output
parameters, both are applied to a set of points in a uniform
grid G. Then, it is possible to compute the distance d(·)
between the transformed grid TGT2 and T2. The second
network is trained to reduce this distance Lgrid(TGT2 , T2),
resulting in reducing the difference between the the ground
truth and output parameters.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we describe implementation details and
datasets for evaluating our proposed method. To assess our
method, we compare the quantitative and qualitative re-
sults with the conventional methods: ObliqueMatching [19],
ASIFT [25], WeakAlign [33], CNNGeo [4] and A2Net [17].
The final output of WeakAlign [33], CNNGeo [4] and A2Net
[17] is the affine transformation parameters.



Fig. 4: The comparison of the results from our method and the conventional methods in Google Earth dataset. Each row shows a pair
of images from the Google Earth dataset, other alignments and ours. Our method aligns source image to target image successfully than
other methods despite of the complex variations

A. Implementation Details

Network architecture. For implementing our network, we
use the pre-trained model for the feature extraction network
learned with ImageNet [27] and fine-tune the model to
extract the features suitable for the aerial image. In the
experiment, we utilize the two pre-trained models: VGG-16
[16] and ResNet-101 [26].

Training details. Image pairs for training and validation
are obtained from the Google-Earth. This dataset contains
10k image pairs, each of them is the same place but taken
at different time. We divide them into 9k, 0.5k, and 0.5k
image pairs for training, validation and test, respectively. In
the case of training, 36k data are created through the data
augmentation. Most of the images are taken with the Landsat
7 and 8 satellites. Since there is no aerial image dataset
which provides the image pairs and geometric parameters
for image registration, we generate training image pairs

by transforming the target image with randomly geometric
transformation parameters and utilize these parameters as
the ground truth. This method makes it possible to generate
training image pairs which include same area with different
viewpoint. For the qualitative evaluation, we additionally
utilize the real-world dataset provided by ISPRS [24]. The
input images are resized to 240×240, and the threshold
values tp = 15, 11 are used for the gradual masking in
the rotation and affine estimators, respectively. We train the
network for 100 epochs each with a batch size of 16, taking
about two days with a 1080ti GPU.

B. Quantitative Evaluation

For quantitatively assessing our model, we perform the
evaluation 500 image pairs of Google Earth dataset. We
follow the average probability of correct keypoints (PCK)
[21]. This metric computes ratio of correctly matched points
between the source and target keypoints within the threshold,



Fig. 5: The comparison of the results from our method and the conventional methods in ISPRS dataset. Each row shows a pair of images
from the ISPRS dataset, other alignments and ours. When aligning the source image with different carinal directions to the target image,
which is an orthoimage, our method is more stable and accurate than other methods.

TABLE I: The result of PCK evaluation metric in Google Earth
dataset.

Method
PCK (%)

α = 0.05 α = 0.03 α = 0.01

ObliqueMatching [19] 0.3 - -

ASIFT [25] 0.5 - -

A2Net (VGG16) [17] 60.6 36.0 5.8

CNNGeo (VGG16) [4] 64.5 37.2 7.1

WeakAlign (VGG16) [33] 64.4 37.3 7.1

A2Net (ResNet101) [17] 83.0 61.0 13.6

CNNGeo (ResNet101) [4] 83.1 65.9 16.2

WeakAlign (ResNet101) [33] 85.3 65.9 16.4

Ours (VGG16) 86.6 73.5 26.1

Ours (ResNet101) 92.2 83.8 36.2

α · max(h,w), where h and w are height and width of the
input image when the transformation is applied. The PCK
metric is as followed.

PCK =
1

N

N∑
i=1

1[d(Tfini
(psi), pti) < α ·max(h,w)] (6)

where N is the total number of the test image pairs, Tfin is
the final transformation parameters from our model, (psi , pti)
is the source and target keypoints in ith image pair and 1[·] is
the indicator function which have the value 1 if the formula
inside square brackets is satisfied and 0 otherwise.

Table I reports the matching accuracy for various aerial
matching methods at the three thresholds: α = 0.05, 0.03
and 0.01. WeakAlign [33], CNNGeo [4] and A2Net [17]
are the state-of-the-art methods in semantic alignment in the

ordinary image domain. Although the domain is different,
they show good performance in the aerial image domain.
Compared with these methods, it is clear that our method
shows the state-of-the-art performance, achieving 92.2, 83.8
and 36.2 at each threshold. Furthermore, the result shows
that feature extraction stage plays an important role for the
aerial image registration. Similar to our intuition, ResNet-101
model with better image classification performance shows
higher performance than using VGG-16 model.

C. Qualitative Results

For the qualitative evaluation, we compare the Google
Earth and ISPRS datasets. ResNet-101 is used as feature
extraction in both evaluations. Fig. 4 illustrates the compari-
son between the methods in Google Earth dataset. A2net and
CNNGeo show the plausible matching results in many cases,
but there is a lack of precise matching. Our method shows
more precise and correct results. Fig. 5 shows qualitative
results on ISPRS dataset. This dataset contains 1260 images
(252 images for each direction). The direction consists of
4 cardinal and nadir directions. The dense urban areas are
captured with buildings and historical facades in Dortmund,
Germany. We analyze only the qualitative evaluation, be-
cause there is no geometric parameters between the source
and target images in this dataset. Also, as shown in Fig.
5, the proposed method shows more accurate matching
results than the conventional methods in the experiment of
aligning images with various viewpoint changes based on the
orthophotos. We also test the method proposed in [19] and
[25], but they does not successfully match in most cases.



V. CONCLUSIONS

We proposed a novel matching network with a CNN
architecture, which gradually estimates the rotation and affine
transformations between aerial images. To learn the charac-
teristics of aerial image domain, we designed the end-to-end
trainable network architecture, resulting in the robust feature
descriptor against the environmental variations. Furthermore,
we applied the gradual masking method to focus on the
adjacent region within the range in each estimator. As a re-
sult, our method shows the improved results compared to the
conventional methods on Google Earth and ISPRS datasets.
In the future, we will study for utilizing an unmatched-pair
in the training session and focus on developing the network
for precise correspondence.
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