diff --git a/README.md b/README.md index 3756a52..26c09d8 100644 --- a/README.md +++ b/README.md @@ -3777,12 +3777,17 @@ To distinguish them from Gaussian integers with b ≠ 0 we call such integers "rational integers." A Gaussian integer is called a divisor of a rational integer n if the result is also a Gaussian integer. -If for example we divide 5 by 1+2i we can simplify ![](files/p_153_formule1.gif) in the following -manner: + +If for example we divide 5 by $1+2i$ we can simplify $\dfrac{5}{1+2i}$ in the following manner: + Multiply numerator and denominator by the complex conjugate of 1+2i: 1−2i. -The result is ![](files/p_153_formule2.gif). + +The result is $\dfrac{5}{1+2i} = \dfrac{5}{1+2i} \dfrac{1-2i}{1-2i} = \dfrac{5(1-2i) }{1-(2i)^2} = \dfrac{5(1-2i) }{1-(-4)} = \dfrac{5(1-2i) }{5} = 1-2i$. + So 1+2i is a divisor of 5. -Note that 1+i is not a divisor of 5 because ![](files/p_153_formule5.gif). + +Note that $1+i$ is not a divisor of 5 because $\dfrac{5}{1+i} = \dfrac{5}{2} - \dfrac{5}{2} i$. + Note also that if the Gaussian Integer (a+bi) is a divisor of a rational integer n, then its complex conjugate (a−bi) is also a divisor of n. @@ -3800,11 +3805,11 @@ positive rational integers: | 5 | 1, 1+2i, 1-2i, 2+i, 2-i, 5 | 12 | -For divisors with positive real parts, then, we have: ![](files/p_153_formule6.gif). +For divisors with positive real parts, then, we have: $\sum_{n=1}^{5} s(n) = 35$. -For 1 ≤ n ≤ 10^5, ∑ s(n)=17924657155. +For $1 ≤ n ≤ 10^5$, $∑ s(n)=17924657155$. -What is ∑ s(n) for 1 ≤ n ≤ 10^8? +What is $∑ s(n)$ for $1 ≤ n ≤ 10^8$? Answer: 08ec9d6e6c2275d37e7a227fb2d1f06f @@ -3861,8 +3866,9 @@ Find D(18). Reminder : When connecting capacitors C[1], C[2] etc in parallel, the total capacitance is C[T] = C[1] + C[2] +..., + whereas when connecting them in series, the overall capacitance is given -by: ![](files/p_155_capsform.gif) +by: $\dfrac{1}{ \text{C}_\text{T} } = \dfrac{1}{ \text{C}_1 } + \dfrac{1}{ \text{C}_2 } + ...$ Answer: da0a3fc900cc8ae42d514e280524ee39 @@ -5518,7 +5524,8 @@ Problem 225 Problem 226 =========== -The blancmange curve is the set of points (x,y) such that 0 ≤ x ≤ 1 and ![](files/p_226_formula.gif), +The blancmange curve is the set of points $(x,y)$ such that $0 ≤ x ≤ 1$ and $y = \sum_{n=0}^{\infty} \dfrac{s(2^n x) }{2^n}$, + where s(x) = the distance from x to the nearest integer. The area under the blancmange curve is equal to ½, shown in pink in the @@ -6124,7 +6131,7 @@ Problem 251 A triplet of positive integers (a,b,c) is called a Cardano Triplet if it satisfies the condition: -![](files/p_251_cardano.gif) +$\sqrt[3]{a + b\sqrt{c} } + \sqrt[3]{a - b\sqrt{c} } = 1$ For example, (2,1,5) is a Cardano Triplet. @@ -6259,14 +6266,16 @@ If d is odd, set x[0] = 2×10^(d-1)⁄2. If d is even, set x[0] = 7×10^(d-2)⁄2. Repeat: -![](files/p_255_Heron.gif) +$x_{k+1} = \biggr\lfloor \dfrac{x_k + \lceil n / x_k \rceil }{2} \biggr\rfloor$ until x[k+1] = x[k]. As an example, let us find the rounded-square-root of n = 4321. n has 4 digits, so x[0] = 7×10^(4-2)⁄2 = 70. -![](files/p_255_Example.gif) +$x_1 = \biggr\lfloor \dfrac{70 + \lceil 4321 / 70 \rceil }{2} \biggr\rfloor = 66$. + +$x_2 = \biggr\lfloor \dfrac{66 + \lceil 4321 / 66 \rceil }{2} \biggr\rfloor = 66$. Since x[2] = x[1], we stop here. So, after just two iterations, we have found that the rounded-square-root @@ -6283,8 +6292,7 @@ iterations required to find the rounded-square-root of a 14-digit number (10^13 ≤ n < 10^14)? Give your answer rounded to 10 decimal places. -Note: The symbols ⌊x⌋ and ⌈x⌉ represent the floor function and ceiling -function respectively. +Note: The symbols $\lfloor x \rfloor$ and $\lceil x \rceil$ represent the floor function and ceiling function respectively. Answer: 12be028b156b49faa1137febda940ab5 @@ -6462,7 +6470,7 @@ Problem 262 The following equation represents the continuous topography of a mountainous region, giving the elevation h at any point (x,y): -![](files/p_262_formula1.gif) +$h = \biggr( 5000 - \dfrac{x^2 + y^2 + xy }{200} + \dfrac{25(x + y) }{2} \biggr) ⋅ e^{- \biggr\rvert \dfrac{x^2 + y^2 }{1000000} - \dfrac{3(x + y) }{2000} + \dfrac{7}{10} \biggr\rvert }$ A mosquito intends to fly from A(200,200) to B(1400,1400), without leaving the area given by 0 ≤ x, y ≤ 1600. @@ -6941,7 +6949,7 @@ Problem 282 For non-negative integers m, n, the Ackermann function A(m, n) is defined as follows: -![](files/p_282_formula.gif) +$A(m,n) = \begin{cases} n + 1 & \text{if } m = 0\\ A(m-1, 1) & \text{if } m > 0 \text{ and } n = 0\\ A(m-1, A(m, n-1)) & \text{if } m > 0 \text{ and } n > 0\\ \end{cases}$ For example A(1, 0) = 2, A(2, 2) = 7 and A(3, 4) = 125. @@ -7149,8 +7157,7 @@ Problem 290 Problem 291 =========== -A prime number p is called a Panaitopol prime if ![](files/p_291_formula.gif) for some positive -integers x and y. +A prime number $p$ is called a Panaitopol prime if $p = \dfrac{x^4 - y^4 }{x^3 + y^3}$ for some positive integers $x$ and $y$. Find how many Panaitopol primes are less than 5×10^15. @@ -7492,9 +7499,9 @@ that, written in base 10, uses only digits ≤ 2. Thus f(2)=2, f(3)=12, f(7)=21, f(42)=210, f(89)=1121222. -Also, ![](files/p303_formula100.gif). +Also, $\sum_{n=1}^{100} \dfrac{f(n) }{n} = 11363107$. -Find ![](files/p303_formula10000.gif). +Find $\sum_{n=1}^{1000} \dfrac{f(n) }{n}$. Answer: b904a0b3d922e628a828e744ee7d3a60 @@ -7874,9 +7881,9 @@ For example, if n = 535, then for p = 355287143650049560000490848764084685354..., we get k = 36 etc and we find that g(535) = 1008. -Given that ![](files/p_316_decexp1.gif), find ![](files/p_316_decexp2.gif) +Given that $y = \sum_{n=2}^{999} g \biggr( \biggr\lfloor \dfrac{10^6 }{n} \biggr\rfloor \biggr) = 27280188$, find $\sum_{n=2}^{999999} g \biggr( \biggr\lfloor \dfrac{10^{16} }{n} \biggr\rfloor \biggr)$ -Note: ![](files/p_316_decexp3.gif) represents the floor function. +Note: $\lfloor x \rfloor$ represents the floor function. Answer: 2495e8f6e9d4cdadbf0411144e7180b9 @@ -8100,13 +8107,13 @@ Problem 326 Let a[n] be a sequence recursively defined by: -![](files/p_326_formula1.gif) +$a = 1, a_n = ( \sum_{k=1}^{n-1} k⋅a_k ) \bmod n$ So the first 10 elements of a[n] are: 1,1,0,3,0,3,5,4,1,9. Let f(N,M) represent the number of pairs (p,q) such that: -![](files/p_326_formula2.gif) +$1 ≤ p ≤ q ≤ \text{N}$ and $( \sum_{i=p}^q a_i ) \bmod M = 0$ It can be seen that f(10,10)=4 with the pairs (3,3), (5,5), (7,9) and (9,10). @@ -8208,12 +8215,13 @@ than what we achieved previously with the "binary search" strategy; it is also better than or equal to any other strategy. So, in fact, we have just described an optimal strategy for n=8. -Let C(n) be the worst-case cost achieved by an optimal strategy for n, as -described above. -Thus C(1) = 0, C(2) = 1, C(3) = 2 and C(8) = 12. -Similarly, C(100) = 400 and ![](files/p_328_sum1.gif)C(n) = 17575. +Let $\text{C}(n)$ be the worst-case cost achieved by an optimal strategy for $n$, as described above. + +Thus $\text{C}(1) = 0, \text{C}(2) = 1, \text{C}(3) = 2 \text{ and } \text{C}(8) = 12$. -Find ![](files/p_328_sum2.gif)C(n). +Similarly, $\text{C}(100) = 400$ and $\sum_{n=1}^{100} \text{C}(n) = 17575$. + +Find $\sum_{n=1}^{200000} \text{C}(n)$. Answer: 92a3220ad5b17a562c039e6e93d6df90 @@ -8252,7 +8260,7 @@ Problem 330 An infinite sequence of real numbers a(n) is defined for all integers n as follows: -![](files/p_330_formula.gif) +$a(n) = \begin{cases} 1 & n < 0 \\ \sum_{i=0}^{\infty} \dfrac{a(n-i) }{i!} & n ≥ 0 \end{cases}$ For example, @@ -8301,15 +8309,15 @@ the bottom right disk has coordinates (N-1,0) and the top left disk has coordinates (0,N-1). Let C[N] be the following configuration of a board with N×N disks: -A disk at (x,y) satisfying ![](files/p_331_crossflips1.gif), shows its black side; otherwise, it shows its -white side. C[5] is shown above. + +A disk at (x,y) satisfying $N - 1 ≤ \sqrt{x^2 + y^2} < N$, shows its black side; otherwise, it shows its white side. $C_5$ is shown above. Let T(N) be the minimal number of turns to finish a game starting from configuration C[N] or 0 if configuration C[N] is unsolvable. We have shown that T(5)=3. You are also given that T(10)=29 and T(1 000)=395253. -Find ![](files/p_331_crossflips2.gif). +Find $\sum_{i=3}^{31} T(2^i - i)$. Answer: b609ccc578e71db9de0524fff94e1b70 @@ -8332,7 +8340,8 @@ Let A(r) be the area of the smallest spherical triangle in T(r). For example A(14) is 3.294040 rounded to six decimal places. -Find ![](files/p_332_sum.gif)A(r). Give your answer rounded to six decimal places. +Find $\sum_{r=1}^{50} \text{A}(r)$. +Give your answer rounded to six decimal places. Answer: c2ae53ebfb15db373cfe5d71078ea1ca @@ -8389,7 +8398,13 @@ finish the game: You are given the following sequences: -![](files/p_334.png) +$t_0 = 123456$. + +$t_i = \begin{cases} \dfrac{t_i-1 }{2} , & \text{if } t_i-1 \text{ is even} \\ \lfloor \dfrac{t_i-1 }{2} \rfloor \oplus 926252, & \text{if } t_i-1 \text{ is odd} \end{cases}$. + +where $\lfloor x \rfloor$ is the floor function and $\oplus$ is the bitwise XOR operator. + +$b_i = ( t_i \bmod 2^{11} ) + 1$. The first two terms of the last sequence are b[1] = 289 and b[2] = 145. If we start with b[1] and b[2] beans in two adjacent bowls, 3419100 moves @@ -8422,7 +8437,8 @@ Let M(x) represent the number of moves required to return to the initial situation, starting with x bowls. Thus, M(5) = 15. It can also be verified that M(100) = 10920. -Find ![](files/p_335_sum.gif)M(2^k+1). Give your answer modulo 7^9. +Find $\sum_{k=0}^{10^{18} } M(2^k + 1)$. +Give your answer modulo $7^9$. Answer: 9a519cfa0ebdd4d1dd318f14b5799eea @@ -8472,7 +8488,7 @@ Problem 337 Let {a[1], a[2],..., a[n]} be an integer sequence of length n such that: * $a_1 = 6$ -* for all $1 ≤ i < n$ : $φ(a_i) < φ(a_{i+1}) < a_i < {a_{i+1}}^1$ +* for all $1 ≤ i < n$ : $φ(a_i) < φ( a_{i+1} ) < a_i < {a_{i+1} }^1$ Let S(N) be the number of such sequences with a[n] ≤ N. For example, S(10) = 4: {6}, {6, 8}, {6, 8, 9} and {6, 10}. @@ -8554,7 +8570,7 @@ For fixed integers a, b, c, define the crazy function F(n) as follows: F(n) = n - c for all n > b F(n) = F(a + F(a + F(a + F(a + n)))) for all n ≤ b. -Also, define S(a, b, c) = ![](files/p_340_formula.gif). +Also, define S(a, b, c) = $\sum_{n=0}^{b} \text{F}(n)$. For example, if a = 50, b = 2000 and c = 40, then F(0) = 3240 and F(2000) = 2040. @@ -8985,15 +9001,15 @@ Problem 356 =========== - Let a[n] be the largest real root of a polynomial g(x) = x^3 - 2^n·x^2 + - n. - For example, a[2] = 3.86619826... +Let $a_n$ be the largest real root of a polynomial $g(x) = x^3 - 2^n·x^2 + n$. - Find the last eight digits of ![](files/p_356_cubicpoly1.gif). +For example, $a_2 = 3.86619826...$ - Note: ![](files/p_356_cubicpoly2.gif) represents the floor function. +Find the last eight digits of $\sum_{i=1}^{30} \lfloor {a_i}^{987654321} \rfloor$. - Answer: ab2104e80fa7da630ce7fd835d8006ee +Note: $\lfloor a \rfloor$ represents the floor function. + +Answer: ab2104e80fa7da630ce7fd835d8006ee Problem 357 @@ -9133,7 +9149,7 @@ The first several terms of A[n] are given as follows: We can also verify that A[100] = 3251 and A[1000] = 80852364498. -Find the last 9 digits of ![](files/p_361_Thue-Morse1.gif). +Find the last 9 digits of $\sum_{k=1}^{10} \text{A}_{{10}^k}$. Answer: 6540278145900f1fa45b95cc2f9599f1 @@ -9396,13 +9412,13 @@ Problem 371 Problem 372 =========== -Let R(M, N) be the number of lattice points (x, y) which satisfy M