
IMAGE PROCESSING
ASSIGNMENTS - RESTRICTED

BOLTZMANN MACHINE
IOMMI ANDREA 578212 - M.SC. IN ARTIFICIAL INTELLIGENCE

RESTRICTED BOLTZMANN MACHINE

• The Restricted Boltzmann Machine (RBM) is a generative stochastic neural network that can learn a
probability distribution over its set of inputs.

• A RBM is a particular version of general Boltzmann machines, with the particularity that their neurons must
form a bipartite graph.

• There are two groups of units (referred to as the "visible" and "hidden" units respectively), It’s important that
there are not connections between nodes within a group.

Figure taken from:
https://www.researchgate.net/figure/An-example-restricted-Boltzmann-machine-RBM-consisting-of-
two-layers-one-hidden-H_fig1_311430406

• We can see the “Visible units” as the input and
the “hidden units” a probabilistic state.

MNIST - HANDWRITTEN DIGITS

• The first phase that I executed is the preprocessing of dataset.

• I transformed the original input composed of an array (28x28 pixel) with value between 0 and 255 into a
boolean matrix with only 0 and 1 values applying a threshold function.

• Thus the RBM receives to input vectors of 768 binary values (a flat version of threshold images).

PARAMETERS & TECHNIQUES

• Number of epoch : 50

• Number of examples : 60 000

• Visible node : 784

• Hidden node : 81

• Learning rate : 80%

• Batch size: 32

• Activation function : Sigmoid

• Training set(example) : 48 000

• Test set(example) : 12 000

Training and Test set refer to number of examples used in
the Logistic Regression (final phase of the assignment).

ParametersTechniques

References
[0] https://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
[1] https://medium.com/machine-learning-researcher/boltzmann-machine-c2ce76d94da5

• It was adopted a mini batch approach to update the weights
and biases.

• Fixed learning rate.

• I used all (unlabeled) examples to train the RBM but in the
Logistic regression, the “Reconstructed dataset” it was split
in train and test set.

• “Reconstructed dataset” refers to a dataset with the same
number of examples, but less feature (only 81) instead of the
original dataset (784).

RESTRICTED BOLTZMANN MACHINE FILTERS

• It was used 81 hidden nodes (displayed in 9 x 9 grid).

• A square represents the weights learnt by CD0 for
one hidden node.

• The filters are rescaled but the “darkness” of pixel
identifies the intensity (relevance).

CONTRASTIVE DIVERGENCE ALGORITHM

• Gibbs-sampling is an approximate method, it used
when the sampling is difficult.

• The gradient descent procedure exploits Gibbs-
sampling approach to compute the weights
update.

• In our case I used a CD-0, so just one iteration of
Gibbs method, it’s enough to approximate well.

• Oss. “Normalizing” means applying a threshold
function.

h0_smpl refer to a sampled hidden probability vector

INFERENCE

• The inference method gets “visible” nodes (input
data) and return the "hidden“ state sampled
(binary vector).

• The core of RBM is the ability to apply the
representation of learning, indeed it has learnt by
unlabelled examples how to transform the huge
visible state in a smaller representation. (Feature
reduction).

LOGISTIC REGRESSION

• After train, I used the RBM to build the
“Reconstructed dataset”

• I used this new dataset in another
(supervisionated) task.

• I chose a Logistic Regression from scikit, it takes:
“hidden node” features as input and the
corresponding label of handwritten digit as
output.

• It was archived a 92,35% of accuracy

PYTHON AND C ++

• The final training and reconstructing phases were not done in python, but
in C++, I have written a (fast) version of the RBM implementation (even
from scratch) to speed up the learning phase. Anyway, I’ll attach all the
materials to the presentation folder.

• I used C++ implementation to learn the weights and build the reconstructed
dataset, then the program exports all data into C.S.V files witch are opened
by python in order to plotting filter or execute the Logistic regression.

• I also deploy a python RBM implementation (previous snippet) much slower
than C++ (obliviously ;))

https://github.com/jacons/R.-Boltzmann-machine-Py-Cpp

ENHANCE THE ANALYSIS & FUN THINGS
• There are several things we should do, maybe could be useful to

improve the accuracy adding additional layer to RBM, or play
with more complex technique such as learning rate decay or
model selection and model assessment to pick the best RBM
model.

• We could take into account to use another Machine learning
model to solve the assignment, i.e. Auto-encoders.

Contrastive divergence in C++

Phase Python C++

Loading dataset 1868 ms 2242 ms

Learning ≈ 3h 707 s

Reconstructing 27 s 2918 ms

Logistic Regression (784 nodes) Logistic Regression (81 nodes)

31 s 15 s
Both are made in python

