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Abstract— Although Point Clouds Registration is a very well
studied problem, with many different solutions, most of the
approaches in the literature aims at aligning two dense point
clouds. Instead, we tackle the problem of aligning a dense point
cloud with a sparse one: a problem that has to be solved, for
example, to merge maps produced by different sensors, such
as a vision-based sensor and laser scanner or two different
laser-based sensors. The most used approach to point clouds
registration, Iterative Closest Point (ICP), is also applicable to
this sub-problem. We propose an improvement over the stan-
dard ICP data association policy and we called it Probabilistic
Data Association. It was derived applying statistical inference
techniques on a fully probabilistic model. In our proposal, each
point in the source point cloud is associated with a set of points
in the target point cloud; each association is then weighted so
that the weights form a probability distribution. The result
is an algorithm similar to ICP but more robust w.r.t. noise
and outliers. While we designed our approach to deal with
the problem of dense-sparse registration, it can be successfully
applied also to standard point clouds registration.

I. INTRODUCTION

A. Related work

The problem of aligning a sparse point cloud with a
dense one is, to our knowledge, little explored. Most of the
works, indeed, tackle the problem of aligning two generic
point clouds, without any reference to their density or
to the density difference between the two. Most of these
techniques, however, may be used to solve our problem too.
One large category of point clouds registration techniques are
those exploiting some kind of geometric features, which are,
basically, a representation of the underlining surface. Thus
they usually require, in order to compute the descriptors,
the surface normals. Examples of this kind of features are
PFH [1] and their faster variant FPFH [2], or angular-
invariant features, [3]. Unfortunately, geometric features
cannot be used to solve the proposed problem because a
sparse cloud may not have enough information to produce
meaningful features; i.e., it could be locally too sparse to
represent the surface in an informative way. This is the case,
for example, of sparse keypoints maps produced by vision-
based systems. On the other hand, while a keypoint map
usually has some kind of visual features associated with the
keypoints, this is not necessary true for a dense point cloud,
that may include only a set of 3D points.

Sehgal et al. developed an approach for point clouds
registration that uses SIFT features extracted from a bi-
dimensional image generated from the point cloud [4]. In
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a similar way also NARF features extracted from a range
image [5] can be used for point clouds registration. Also
these techniques are not suitable to our case, because a range
image, like those considered in such contributions, cannot be
generated starting from a very sparse map.

Our goal was to design a general technique that could
work using only two sets of points, even when features are
not available. For the same reason we do not make any
reference to RGB-D based registration techniques: while this
kind of sensors is nowadays common, LiDARs that do not
provide also a RGB image are still widespread and still have
advantages over most RGB-D sensors, regarding precision,
accuracy, range and field of view.

Another large category of point clouds registration algo-
rithms are those related, in some way, to the Iterative Closest
Point algorithm (ICP). ICP was developed independently by
Besl and McKay [6], Chen and Medioni [7], and Zhang [8].
Although its first introduction was in 1991, it is still the de
facto standard for point clouds registration. ICP assumes that
the two point clouds are already roughly aligned and aims
at finding the rigid transformation, i.e., a rototranslation, that
best refines the alignment. One point cloud is usually called
the source cloud, while the other is the target cloud. The aim
of ICP is to align the source cloud with the target cloud and,
to do so, it repeats the following steps until convergence:

1) For each point xj in the source cloud find the closest
point yk in the target cloud

2) Find the best values for R and T (rotation and trans-
lation) that minimize∑

j

‖Rxj + T − yk‖2 (1)

3) Transform the source cloud using R and T
The algorithm may end, for example, after a predefined
number of iterations, when the sum of the residuals defined
by Equation 1 becomes smaller than a certain threshold
or when the difference of the rototranslations between two
consecutive steps becomes smaller than a threshold.

Many different variants of ICP have been proposed; usu-
ally they aim at speeding up the algorithm or at improving the
quality of the result. For an extensive review and comparison
of ICP variants, see [9]. In this paper we will refer to
the basic ICP algorithm (also called Point-to-Point ICP) as
implemented in the pcl library [10], because it is still the
most used version and it is easily available for comparisons.

Although ICP was not specifically designed to deal with
sparse point clouds, it is still suitable for solving the problem.
However, in such conditions, it has some disadvantages. Two
point clouds will never align perfectly and a point in a point
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cloud will never exactly correspond to another point in the
other; this is particularly true in our case, both because dense
and sparse point clouds are often produced with different
kind of sensors (thus, with different resolutions and scanning
patterns) and also because usually a large amount of noise
is present. The problem becomes even harder when a big
amount of distortion is present. Generalized ICP [11], a
version of ICP using Point-to-Plane associations, is aimed at
facing these problems. However, as we will show with our
experiments, our approach slightly outperforms it. Moreover,
as shown in [9], Generalized ICP does not perform better
than standard ICP in outdoor, unstructured environments.

Another important technique used for point clouds regis-
tration is called Normal Distribution Transform (NDT), [12].
This technique was originally developed to register 2D laser
scans, but has been successfully applied also to 3D point
clouds, [13]. Unlike ICP, it does not establish any explicit
correspondence between points. Instead, the source point
cloud or laser scan is subdivided into cells and a normal
distribution is assigned to each cell, so that the points
are represented by a probability distribution. The matching
problem is then solved as a maximization problem, using
Newton’s algorithm.

The problem of aligning two point clouds with different
densities is very relevant to the robotics community. For ex-
ample it has to be solved when aligning two maps produced
by different robots with different sensors, such as a Kinect
and a LiDAR. The former, indeed, produces much denser
point clouds than the latter. Another scenario that can be
described as a problem of dense-sparse registration is when
a robot needs to localize in a map produced with a different
sensor (thus, maybe, with a different density). Eventually
also the problem of calibrating two different sensors on the
same robot can be reconducted to a dense-sparse registration
problem.

B. Our contribution

In this paper we present a novel approach for introducing
robustness in a point clouds registration algorithm. Although
our approach is motivated by the problem of aligning a
dense point cloud with a sparse one, it can also be used
as a substitute of ICP for generic point clouds registration.
For this reason, in the following sections, we won’t make
any reference to sparse and dense clouds, but we will use
the usual ICP notation (target and source point clouds). Our
main contribution is a new data association policy, which
we called Probabilistic Data Association, because it was
derived by applying statistical inference techniques on a fully
probabilistic model. The final result is an algorithm similar
to ICP, but more robust w.r.t. noise and outliers.

C. Outline

In Section II we introduce the probabilistic model from
which we derived our algorithm. In Section III we explain
how we reformulate the point clouds registration problem
as an Expectation Maximization problem. In Section IV we
give a detailed description of our new data association policy

and of the resulting optimization problem, while in Section V
we compare our approach with other point clouds registration
techniques and give quantitative results on datasets.

II. MODEL DEFINITION
A. Problem statement

Suppose that we have two point clouds representing the
same scene, X and Y , and with their points x1, ..., xn and
y1, ..., ym. These may have been acquired with different
sensors (e.g., a camera and a laser scanner) or with the
same sensor at different times; they may also have very
different densities, such as a dense, laser scanner-produced,
point cloud and a sparse keypoints map. Our approach is
completely agnostic w.r.t. these characteristics. We want
to recover the rigid transformation between the two point
clouds, i.e., the roto-translation that best aligns X with Y .
The limitation to only rigid transformations has, of course,
some effects on the quality of the result; indeed it is a
simplification often used in the literature and usually, as long
as the two point clouds are not heavily distorted, leads to
good results.

For each point yk in Y , we may define

yk = Rxj + T (2)

where xj is the point in the point cloud X corresponding
to point yk in the point cloud Y and R and T are, respec-
tively, the rotation and translation that align X with Y . In
practice, the true point associations are unknown and Equa-
tion 2 is never exactly holding, because of noise. Uncertainty
due to sensor noise is often treated as a random variable,
e.g., an additive white Gaussian noise combined with a
deterministic value. We argue that association ambiguity is
also a source of uncertainty and therefore it should also be
treated as a random variable.

B. Probabilistic model

In order to reason about sensor noise and data association
uncertainty simultaneously, we define a probabilistic model.
Probabilistic models are attractive because:

1) they are interpretable and extensible;
2) they allow well-behaving optimization criteria, i.e. the

negative log-likelihood;
A probabilistic model is defined by a series of statements
about the distribution of the variables involved in the model.
For example, we define:

p(yk|xj , ajk = 1) ∼ N (Rxj + T,Σ) (3)

where ajk = 1 if point xj corresponds to point yk. This
means that, if we were certain that point xj in X corresponds
to point yk in Y , then yk would follow a multi-variate
normal distribution with mean Rxj+T and covariance Σ. To
complete the model we must place a prior distribution over
ajk. Suppose we have a set Ck of candidate points from X
corresponding to yk. Then, we may define

P (ajk) =

{
|Ck|−1 j ∈ Ck

0 j /∈ Ck

}
(4)
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This means that, a priori, all the points in Ck are equally
likely to be associated to yk.

In practice we prefer a slightly more sophisticated model
that should account for outliers produced by sensor noise.
For this reason, instead of a Gaussian, a t-distribution is more
appropriate. We redefine the model as follows

p(yk|xj , ajk = 1) ∼ T (Rxj + T,Σ, ν) (5)

where T denotes the family of multi-variate t-distributions
and ν represents its degree of freedoms. Equation 5 states
that yk conditioned to being the correspondent of xj is
t-distributed. A t-distribution is a heavy-tailed distribution
and ν controls the weight of the tails. For ν → ∞ the t-
distribution reduces to a Gaussian. For finite ν it assigns a
non-negligible probability to the tails, thus implicitly taking
into account for outliers, without the need to pre-filter them
or to treat them as a special case.

It is convenient to re-parametrize the model. Namely, the
t-distribution in Equation 5 is equivalent to

p(yk|xj , ajk = 1, wk) ∼ N (Rx+ T,
Σ

wk
) (6a)

wk ∼ G(
ν

2
,
ν

2
) (6b)

where G(a, b) denotes a Gamma distribution with shape a
and rate b [14]. The convolution of 6a and 6b produces
Equation 5. The weight wk is an auxiliary variable that arises
from the parametrization. This particular parametrization is
convenient because, if we knew ajk and wk, then the negative
log-likelihood would be a quadratic function of xj and we
could run a non-linear least-squares solver.

III. POINT CLOUD REGISTRATION AS AN EM
PROBLEM

The model defined in Section II-B can be used to recover
the rigid transformation between the two point clouds using
an optimization algorithm. It needs a rough initial guess
and it iteratively improves it, simultaneously estimating the
transformation and the point associations.

Expectation-maximization (EM), [15], is a procedure that
can be used to iteratively estimate the marginal log-likelihood
of the data, given a set of parameters. Each EM iteration
consists of two steps: the E-step and the M-step. The E-
step effectively estimates the values of the hidden variables
by evaluating expectations, while the M-step updates the
parameters in order to decrease the expected negative log-
likelihood. EM is well-suited for models containing latent
variables, such as ours. In our case the latent variable is the
auxiliary weight wk. The negative log-likelihood we want to
minimize with EM is given by

l(x) = − ln

m∑
k=1

n∑
j=1

∫
wk

p(yk|xCk , ajk, wk)p(ajk)p(wk)dwk

(7)
where xCk is the set of all the points xj such that j ∈ Ck (see
Section II-B) and p denotes the probability density function
implied by 6a and 6b. Minimizing the negative log-likelihood

directly is difficult due to non-convexity. It is much easier to
minimize a convex upper bound on Equation 7. Let qk be an
arbitrary probability density function of ajk and wk. Then,
applying Jensen’s inequality leads to

l(x) ≤
m∑

k=1

bk(xCk , qk) (8)

where

bk(xCk , qk) =

−
n∑

j=1

∫
wk

qk(ajk, wk)ln(p(yk|xCk , ajk, wk))dwk+

n∑
j=1

∫
wk

qk(ajk, wk)ln(
qk(ajk, wk)

p(ajk)p(wk)
)dwk (9)

The inequality in 8 defines an upper bound on l(x). If
qk(ajk, wk) = p(ajk, wk|xCk , yk), then the bound becomes
tight and the inequality becomes an equality. If we evaluate
the expectations in Equation 9 and retain only the terms
involving the points we obtain

bk(xCk , qk) =
1

2

∑
j∈Ck

ρjkr
2
k(xj) (10)

where
r2
k(xj) = ‖yk − (Rxj + T )‖2 (11)

is the squared Euclidean norm of the residual, and

ρjk =
∑
j

∫
wk

δ(ajk, j)wkq(ajk, wk)dwk (12)

is the residual weight. Hence for a fixed qk, bk is a quadratic-
composite function of the points positions in the source
cloud. It is also a local function, depending only on the
candidate corresponding points for the kth point in the target
cloud.

EM minimizes the upper bound coordinate-wise. The E-
step minimizes the bound with respect to q and computes the
residual weights, hence it is equivalent to the re-weighting
step. The M-step updates the objective function along a
descent direction. Therefore, applying EM is equivalent to
solving an iteratively re-weighted, non-linear least-squares
problem.

1) The E-step: For fixed xj , the minimum of bk occurs
when

qk(ak, wk) = p(ajk, wk|xCk , yk) (13)

In other words, minimizing the upper bound with
respect to qk is the same as computing the joint
posterior distribution over all the ajk and wk , given
xj . Due to conjugacy, the posterior has the same math-
ematical form as the prior, i.e. multinomial Gamma.
Specifically,

P (ajk|xCk , yk) ∝ t(yk, Rxj + T,Σ, ν) (14a)

wk|ajk, xCk , yk ∼ G
(
ν + d

2
,
ν + r2

k(xj)

2

)
(14b)
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where t is the density function of the multi-
variate t-distribution, and the proportionality
sign implies a normalization constant such that∑

j∈Ck P (ajk|xCk , yk) = 1. Evaluating the
expectation in Equation 12 yields

ρjk = P (ajk|XCk , yk)E[wk|xCk , yk, ajk] (15)

where

E[wk|xCk , yk, ajk] =
ν + d

ν + r2
k(xj)

(16)

follows from the properties of the Gamma distribution.
2) The M-step: There are several different ways of up-

dating the rotation and translation in our model. A
trust-region method such as Levenberg-Marquardt [16]
solves a sequence of quadratic sub-problems of the
form

min
∆xj

∑
k,j∈Ck

ρjk ||yk − (Rxj + T )||2 (17)

The solution to a sub-problem is an update step which
is applied to the current estimate of the rotation and
translation between the clouds.

IV. IMPLEMENTATION

As can be seen from Section III, our approach differs
from ICP in the data association. In ICP each point in the
source point cloud is associated only with a point in the
target point cloud, while the proposed algorithm associates
a point in the source point cloud with a set of points in
the target cloud. Moreover, the candidate associations are
not changed at every iteration, but remain the same for the
whole duration of the algorithm. What is changed, instead,
are the weights of the associations, that are updated during
the expectation phase of the EM algorithm. The two different
data association methods are depicted in figure 1.

The candidate points to be associated may be found in dif-
ferent ways, for example nearest neighbours search, feature
matching, etc... We found that, for the problem of sparse-
dense registration and given a reasonable initial hypothesis
on the transformation, the nearest neighbours search proved
to be good enough, while remaining very fast to compute, in
contrast with feature extraction and matching, which is usu-
ally a slow process. Feature-based data association is not an
option for our application, since sparse point clouds usually
do not contain enough information to extract discriminative
geometric features. However, our approach can potentially
accommodate feature matching as prior information. For
instance, in equation 4, the prior association probabilities
can be scaled according to a non-negative feature similarity
metric.

For each point xj in the source point cloud, we look for
the n nearest points, y0, ..., yn, in the target. For each of
these points yk, with 0 ≤ k ≤ n, we define an error term
given by

‖yk − (Rxj + T )‖2 (18)

Equation 18 represents the squared error between the point
yk in the target point cloud and the associated point xj
from the source point cloud, transformed using the current
estimate of the rototranslation.

Our point cloud registration algorithm is formed by an
optimization problem, whose error terms are calculated ac-
cording to Equation 18 and that is then solved using a suit-
able method (such as Levenberg-Marquardt). However, given
a set of points associated to xj , not all the corresponding
error terms should have the same weight. Intuitively we
want to give more importance to the associations that are in
accordance with the current estimate of the transformation
and lower importance to the others. Thus, using the model
described in section III, the weight of the error term ‖yk −
(Rxj + T )‖2 is given by

wkj ∝ e−
‖yk−(Rxj+T )‖2

2 (19)

where the proportionality implies a normalization among
all the error terms associated with xj so that their weights
represents a probability distribution. Equation 19 is derived
from the EM algorithm, with an additive Gaussian noise
model.

The Gaussian in Equation 19 works well, provided there
are no outliers and all points in the source point cloud have
a corresponding point in the target point cloud. However,
as already described in section II-B, a t-distribution is a
better choice in presence of outliers, especially when there
is lot of distortion in one of the maps that, thus, cannot be
aligned perfectly. Consequently, a more robust equation for
the weights, basing on the t-distribution, is given by

pkj ∝
(

1 +
‖yk − (Rxj + T )‖2

ν

)− ν+d2

(20)

wkj = pkj
ν + d

ν + ‖yk − (Rxj + T )‖2
(21)

where ν is the degree of freedom of the t-distribution and d
the dimension of the error terms (in our case 3, since we are
operating with points in the 3D space).

However, in order to calculate the weights, we need
an estimate of the rotation and translation, but these are
estimated by solving the optimization problem whose error
terms are weighted with the weights we want to calculate.
Hence our problem cannot be formulated as a simple least-
square error problem, but it has to be reformulated as an
Expectation Maximization problem. During the Expectation
phase the latent variables, in our case the weights, are
estimated using the previous iteration estimate of the target
variables (the rotation and translation), while during the Max-
imization phase, the problem becomes a least-square error
optimization problem, with the latent variables assuming the
values estimated during the Expectation phase.

V. EXPERIMENTAL RESULTS
A. Experimental Setup

We tested the proposed approach and compared it against
other techniques. Here we will show results on three pairs
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(a) ICP Data Association (b) Probabilistic Data Association

Fig. 1. The two different data association policies

of point clouds, acquired with different kind of sensors. The
first two datasets, called “office” and “corridor”, represent a
typical office environment, with walls, desks, chairs and, in a
case, a robot (Figures 2a and 2b ). Each dataset is composed
of two point clouds, one acquired with a Kinect 2, the
other one with a Velodyne VLP-16. The Kinect 2 produces
very dense, although noisy, point clouds and has a relatively
narrow field of view (43◦ vertically and 57◦ horizontally).
The Velodyne VLP-16 is a laser scanner that has sixteen
scanning planes and an horizontal field of view of 360◦.
The produced point clouds are definitely less dense than
those produced with a Kinect 2, but are also less affected
by noise. Thus, the point clouds produced with the VLP-16
are the sparse point clouds and represent a wider view of
the environment, while those produced by the Kinect 2 are
the dense point clouds and represent a more detailed and
narrower view.

The third dataset contains data provided to us by the
UASTech Laboratory of the Linköping University, in the con-
text of the SHERPA European project (http://www.sherpa-
project.eu). The dataset has been acquired with an aerial
robot and represents a big rural area, with trees and some
buildings, (Figure 3). It is composed of two point clouds: the
first one is relatively sparse and has been produced with a
LiDAR, while the second one is much denser and has been
produced using photogrammetry with images from a camera.
The second point cloud is very noisy and is heavily distorted
at the edges. Both sensors were mounted on the same robot,
however, due to noise and distortion in the second cloud,
the two point clouds cannot be aligned perfectly applying a
rigid transformation. Therefore, this third dataset represents
a very challenging test bench.

For all the datasets, we precisely aligned the two point
clouds, in order to have a ground truth to use to quantitatively
compare the various techniques.

Since our approach, like the other we compare to, can be
used only for fine-registration (that is, it needs a rough initial
guess), the transformation between the two point clouds in
the same dataset is relatively small (Figure 4). Although, the

datasets are very challenging because the two point clouds
present very different scanning patterns, different densities
and, in some cases, have a large amount of noise and
distortion.

B. Results

Since our objective was to compare our probabilistic
approach to other point clouds registration techniques, we
used various algorithms on the same data and compared the
results. The techniques we compared are:
• Iterative Closest Point (ICP)
• Generalized Iterative Closest Point (G-ICP)
• Normal Distribution Trasform (NDT)
• The proposed “probabilistic” approach

For each of these algorithms we used the implementation
available in the PCL Library, [10]. The metric used to
compare the results is the mean distance between the points
in the source point clouds, as aligned by an algorithm, and
the ground truth. That is:∑N

i=0 ||xi − gi||
N

(22)

Where xi is a point in the registered source point cloud,
gi is the corresponding point in the ground truth and N is
the cardinality of the point clouds. The smaller the value of
Equation 22 the better the result.

The results of our experiments are shown in Tables I
to III. One problem with our proposal is that, since the
point associations do not change at every iteration, it is
very sensible to the initial data association. To choose the
points in the target cloud to be associated to a particular
point in the source cloud, we simply look at those within
a certain distance (the radius parameter of the algorithm)
or, in a way similar to ICP, to the k-nearest neighbours.
If among all the points in the target cloud associated to a
particular point in the source cloud the right data association
is not present, whenever this happens for a large number of
points, the algorithm will not converge to the right solution.
One way to avoid this problem consists in applying our
probabilistic algorithm several times each time using as input
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(a) Office (b) Corridor

Fig. 2. The point clouds from the “office” and “corridor” datasets. The RGB-D point cloud has been produced with a Kinect 2, the other one with a
Velodyne VLP-16.

Fig. 3. The point clouds from the “Linköping” dataset. The blue point cloud has been acquired with a LiDAR, the other with a camera using a
photogrammetry technique.

(a) (b)

Fig. 4. Two different views of the misalignment between the two point clouds in the “office” dataset. Flat colours have been used for clarity.
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TABLE I
TESTS WITH THE OFFICE DATASET

Algorithm Residual Mean Distance
Probabilistic 0.386401
Prob. (multiple runs) 0.040809
ICP 0.553467
G-ICP 0.074794
NDT 0.783207

TABLE II
TESTS WITH THE CORRIDOR DATASET

Algorithm Residual Mean Distance
Probabilistic 0.315502
Prob. (multiple runs) 0.073592
ICP 0.286967
G-ICP 0.100754
NDT 0.129964

TABLE III
TESTS WITH THE LINKÖPING DATASET

Algorithm Residual Mean Distance
Probabilistic 1.842854
Prob. (multiple runs) 0.43761
ICP 1.680124
G-ICP 0.6527864
NDT 3.564592

the solution of the previous run and thus re-estimating the
correspondences. In this way we use a technique very similar
to ICP, where each iteration is a run of our algorithm.
In this case, the difference w.r.t. ICP is that, instead of
using a single nearest neighbour, we use a set of points,
and each association is weighted as described. In the tables
this technique is described with the phrase ”Multiple Runs”.
When used in this way, the execution time of the algorithm
increases greatly. As an example, for the corridor dataset, on
a machine with an Intel i5-760 processor and 8 GB of RAM,
the execution times are:
• 7741ms for the “Multiple Runs” mode
• 252ms in single run mode
• 70ms for ICP
• 2140ms for G-ICP
• 1902ms for NDT

These times are purely indicative, since they depends
strongly from the problem that has to be solved.

The experiments show that the proposed probabilistic
approach is not necessary better than the other point clouds
registration techniques when used with a single iteration.
However it provides much better results than all the other
techniques when used in the “Multiple Runs” mode.

VI. CONCLUSIONS

We developed a novel algorithm aimed at solving point
clouds registration problems, with particular attention to
dense-sparse registration. Our solution differs from ICP
basically in the data association: each point in the source
point cloud is associated with a set of points in the target
cloud. The association with each point is then weighted

so that the weights in a given data association set form a
probability distribution.

With the associations and the relative weights we build
and solve an optimization problem.

The experiments show that the best way to use our
approach is running it several times, updating the data asso-
ciation, thus using it as an iteration of an ICP-like technique.
When used in this way our approach outperformed all the
other point clouds registration techniques we compared.
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