
Chapter 8. Coding in Regex
The patterning syntax known as regular expressions or regex is as notorious for its alleged steep learning

curve as for its confirmed usefulness. Nobody seriously questions the efficacy of this set of scripting

rules, but the efficiency of writing regular expressions is sometimes unclear. Knowing when they’re

essential takes some familiarity, so we’ll consider a few use=case types.

Regular expressions can be used used not only to scan for predefined patterns in arbitrary text;

expressions can extract contextualized data from within those matched patterns, passing it to an

application for further manipulation and storage.

The concept of regular expressions is notoriously difficult to learn. I admit I didn’t appreciate their

potential for the first many years I begrudgingly used them to solve otherwise impossible data

conversion and other IT tasks. Appreciating regex can make a world of difference to learning regex.

If you have never or barely used regex, perhaps it is about to become your first coding language. If

you’ve used it before but never taken the time to learn its full potential, this chapter should be helpful as

well.

Seasoned regex coders can keep me honest. This book is open source; help me bring the power of this

intimidating but mercifully straightforward scripting syntax to struggling documentarians everywhere.



What-ex?

I pronounce the shortened term REJ-ex, though I believe I’ve heard more developers

use REGG-ex. Or maybe it just strikes me more starkly when I hear it pronounced

differently than I say it.

What is Regex?

A regular expression is a way of describing a pattern using common characters in order to search for the

described pattern in another body of characters. The target can be pretty much any form of text, such as

a conventional document or a flattened dataset. A regex parsing engine uses these expressions to

evaluate target texts for matches.

Put differently by the regex-focused site Rexegg, “A regex is a text string that describes a pattern that a

regex engine uses in order to find text (or positions) in a body of text, typically for the purposes of

validating, finding, replacing, or splitting.”

At its simplest application, think of regex as a much smarter version of the * or % wildcard symbols

you’ve probably used in other contexts. Where a conventional wildcard finds any and all text, regex can

find shockingly detailed patterns without false positives.

The string codewriting.org is matched by the following regex patterns:

73

• [a-zA-Z0-9][a-zA-Z0-9\-]{1,61}[a-zA-Z0-9]\.[a-zA-Z]{2,}

• .*@\.[a-z]+

• codewriting\.org

You’ll note that all of these are more complicated than the non-regex search term:

• codewriting.org

Probably in most cases of a find-and-replace task, I don’t get to use regex.

But what if we needed to find all instances of http:// protocol indicator for a codewriting.org URL in our

docs and replace http: with https:. We don’t want this for every instance of http: in the document, but

we also cannot count on the domain string to always appear intact, as http://codewriting.org, which we

could easily replace with https://codewriting.org. Making matters more complicated, numerous

instances of a codewriting.org URL appear with a hostname or “subdomain”, such as

docs.codewriting.org. To make sure we caught them all manually, we’d first have to create a list, and

then iterate through it one by one replacing the whole string.

Here’s the simple regex pattern that will save us all this trouble:

http\:\/\/([a-z]+\.)?codewriting\.org

This regex would efficiently match the following strings:

• http://codewriting.org

• http://git.codewriting.org

• http://staging.codewriting.org

The single set of parentheses in the regex will capture any “group” it matches and store it as a variable

we can later reference to reinsert the captured string. The $1 in the following replace string represents

the first (and only) such group captured in each of our examples.

https://$1codewriting.org

The $1 will insert whatever was captured for each instance: either an empty string, git., or staging..

Therefore, one find/replace procedure will handle the whole fix.

The above pattern assumes I know that all subdomains are lowercase letters ([a-z]+), or it would get

more complicated ([a-zA-Z0-9][a-zA-Z0-9\-]+). This pattern indicates a single alphanumeric character

followed by any combination of alphanumeric or the - symbol, the only allowable format for hostnames.

Let’s say for some reason we also have various top-level domains in addition to different subdomains.

Maybe we also bought codewriting.net and have different apps running on different hosts, and our docs

need to reflect the distinction.

74

We need to upgrade our pattern to catch these new variations.

http\:\/\/([a-zA-Z0-9][a-zA-Z0-9\-]+\.)?codewriting\.([a-zA-Z]{2,})

Now we can match several new patterns that we were unable to previously, along with a second group

for reflecting the top-level domain.

• http://codewriting.org

• http://git.codewriting.org

• http://staging.codewriting.org

• http://shop.codewriting.com

• http://members.codewriting.net

• http://dating.codewriting.net

• http://codewriting.ca

• http://1staging.codewriting.org

Our replace string is still pretty simple, with the second capture group token added in place of the

definite org:

https://$1codewriting.$2

Why (and When) to Use Regex

Make no mistake about it, regular expressions are a labor-saving tool. They are for automating routines.

You might think that means they either save you time or they’re not worth bothering with, but some

people might disagree.

When it comes to these everyday use cases, it’s not always clear up front that employing regex will

actually save you time. It will almost certainly be more fun to spend even an hour trying to write just the

perfect expression that catches everything you want and nothing more. Remember, the alternative is

performing a routine task with numerous slight variations, change after manual change, without

introducing any errors.



Of course errors can be introduced by improperly written regular expressions, but

these mistakes tend to be consistent: they can be tested for and fixed using — you

guessed it — regex. Errors introduced manually are more likely to vary. You may

someday discover having mistyped " as ', but elsewhere another typo: ''.

Still, that hour-long regex challenge will only save you time if manually finding and replacing every

instance would take more than an hour to accomplish, with the added fact that you might introduce

mistakes and not catch them. (You’d really want to use regular expressions to catch those mistakes,

which begs the question.)

75

What’s more, as with pretty much all open-ended task work, estimating the difficulty of writing a

regular expression to solve a one-off problem can be challenging. I readily admit I have on numerous

occasions spent more time struggling with a regular expression than I would have saved if I’d perfectly

coded the pattern on the first try.

Nevertheless, I think overall it has saved me hundreds of hours on day-to-day one-off tasks, including

dataset migrations and HTML refactoring. So it was always useful for big, onerous tasks, and an

occasional fun puzzle work would throw my way.

But when regex is used to automate a routine task you’d otherwise have to start and repeat on a regular

basis, the value can become immeasurably great. We’ll explore such a case in Part Four.

Suffice it to say, becoming wise about the up-front burdens imposed by regex is important, but any

serious documentarian is bound to encounter cases where the right regex will save critical hours, or at

least tedious hours. So let’s demystify this powerful tool before you’re expected to put it to use on a real-

world task.

Digging Into Regex

Detailed information about new features often comes in to me from engineers one of two ways. Either

they refer me to the source code and expect me to extract all necessary details for it, or they give me a

text document of some kind containing lots of loosely but consistently formatted clusters of data. My

job is to translate some portion of those documents into user-facing information. In both cases, I often

turn straight to regex.

"Volume": Modulates how loudly the music will play. Optional. Defaults to 5.

"Bass": Modulates the deeper frequencies of sound. Optional. Defaults to 7.

"Treble": Modulates the higher frequencies of sound. Optional. Defaults to 7.

"Booster": Hypes the whole system up. Required.

Let’s assume a we’re imagining the following modest target format.

76

Target output for regex transformation

Volume::
Modulates how loudly the music will play
+
[horizontal]
Default::: `5`
+
Required::: No

Bass::
Modulates the deeper frequencies of sound
+
[horizontal]
Default::: `7`
+
Required::: No

Treble::
Modulates the higher frequencies of sound
+
[horizontal]
Default::: `7`
+
Required::: No

Booster::
Hypes the whole system up
+
[horizontal]
Default:::
+
Required::: *Yes*

Just so you catch my aim, the unstyled Asciidoctor output of this AsciiDoc source is pretty basic, but good

enough for our example. We’ll loop results like the following.

Volume

Modulates how loudly the music will play

Default

5

Required

Optional.

Getting back to the task at hand, we’re essentially just trying to rearrange some things. But those basic

changes render standard find and replace nearly useless.

77

Quite usefully, a regex pattern can store portions of matches as variables for insertion during a

subsequent procedure. Wrapping pattern groups in parenthesis indicates that we want to store the

captured content as a variable. By default, these groups are tokenized numerically and can be expressed

later as $1, $2, and so forth.

Here is an appropriate regex pattern to flexibly match these entries, including discrete portions of the

content, which we want to carry over in a new arrangement.

Regex matching string with capture groups

^\"(.*)\"\:\s(.*)\.\s(Optional\.|Required\.)(?:\sDefaults to)?(.*)\.?$

This probably looks both sloppy and intimidating. I still find these big patterns a bit challenging to read,

let alone write, but regex isn’t that hard to get comfortable with. I can’t say I’m not enjoying the shock

value, though.

We are attempting to capture four groups wrapped in () marks. Meanwhile, we’re ignoring a fifth

group (the one with the Defaults to string in it), as we have no use for that text.

Once you’ve captured your groups, writing the parsing template is relatively straightforward. Simply use

the $n token, where n is the capture order slot for that variable. This way they can be reproduced out of

order.

Regex replace template for find/replace operation

$1::\n$2\n+\n[horizontal]\nDefault::: `$4`\n+\nRequired::: $3\n

The \n token denotes a newline marker, of course you see four numbered group tokens we discussed a

moment ago. The rest of the markup you’ll recognize from our AsciiDoc source example above. Let’s

look at what this find/replace operation produced — you’ll recommend most of the other replacement

template in here.

78

Regex find and replace result

Volume::
Modulates how loudly the music will play
+
[horizontal]
Default::: `5`
+
Required::: Optional.

Bass::
Modulates the deeper frequencies of sound
+
[horizontal]
Default::: `7`
+
Required::: Optional.

Treble::
Modulates the higher frequencies of sound
+
[horizontal]
Default::: `7`
+
Required::: Optional.

Booster::
Hypes the whole system up
+
[horizontal]
Default::: ``
+
Required::: Required.

This is not perfect. We’ll still need to do another round or two of changes against this result to get it how

we need it to look. But you’ll see now why I captured the . character in Optional. and Required.. Our

next move will be to run a simple (non-regex) find and replace procedure on the string Required., which

will miss the Required in Required:::. We want to replace Required. with Yes.

Finally, we can replace Optional. with No. Now our document matches our target format precisely.


Truthfully, this entire transformation could have been performed with one replace

statement using conditionals, but that is way beyond the scope of this primer.

What did we save ourselves? This obviously depends on how hard it was to create the patterns. As soon

as you get them right, you’re pretty much done. And we did not have to manually remove quotation

marks, insert carriage returns, numerous newlines, that repetitive + symbol, and all those infernal

colons. If this example were about three times the size, I would certainly have opted for regex to save

79

time.

As a bonus, we got to solve a cool little puzzle! Seriously what more could a technical documentarian ask

for?

Proficient use of regex does not require memorization of all regex patterns — they can always be looked

up. Besides, you’ll use the same handful of character combos most of the time, adapting common

patterns to your specific content or data scenario. Getting the concepts right early on is far more

important than memorizing symbols, so let’s start there.

Regex (as) Coding

So far we’ve been sticking patterns into Find fields and onto simple configuration files — not exactly

delving deep into agile programming. And truth be told, while regex patterns certainly qualify as

computer instructions, and thus are programs, you’re not quite writing software until you save your

patterns as a script that will be run and rerun.

Unlike true programming languages, you won’t be writing full applications in regex. But you may well

have opportunities to write an expression that will be stored and processed, maybe even countless times

a minute. We’ll see some powerful cases of this in Part 4, but for now let’s take on a simple one I think

many of my readers have encountered or are likely to.

I’m talking about the .htaccess file lots of us have used when we’ve needed to deal with website

managing URLs on Apache-based webservers. This file, stored in the site’s root directory, is checked

every time a request comes to the site. If aspects of the request matched patterns we designated in that

file, the server would be instructed to behave as we saw fit. A common use is to force all browsers to use

HTTPS protocol, or when URL paths change and we want to redirect browsers and search engines to the

new address.

Example — .htaccess rewrite

RewriteCond %{SERVER_PORT} 80
RewriteRule ^(.*)$ https://example.com/$1

The first line tests the server port. If the requested server port is 80, the connection is insecure.

The second line commands resetting the request URL by capturing everything in the URL path after the

home directory and then forcing that onto a new, secure URL. So if the request is for the URL

http://example.com/some-path/index.html, and the .htaccess file is in the domain root directory (/), the

above RewriteRule captures all text (.* matches any content) from the beginning of the string (^) to the

end of the string ($). The parentheses indicate content to capture and store in a variable — in this case,

everything.

In our sample URL, this will have matched some-path/index.html, which we now want the webserver to

append to anther call to our domain, this time using HTTPS protocol. The next string is our explicit root

80

domain followed by $1, the token that indicates we want to insert the our first captured string (in this

case, our only captured string) right in that spot. Our URL becomes https://example.com/some-path/

index.html.

Let’s try another common case.

Example — .htaccess rewrite

RewriteRule ^index\.php\?page\=(.*)$ $1.html [L,R=301]

Here we have upgraded our old PHP-based CMS to an awesome new static site. The pages have all been

replaced, but of course the URLs to our support docs are littering StackExchange and hundreds of hacker

blogs. We want all those links to find what was intended, and we want search engines to know the

change is permanent. All of which we can do in one line. This code captures the value of a query

parameter from our old site and makes it the base filename of the new static page we’ve replaced it with.

81

	Codewriting: Collaborative Documentation Ops for the Agile Age
	Table of Contents
	A Note to Readers & Contributors
	Collaborative Authoring
	Writing to Learn
	Engaged Learning
	Tech Writing Can Be Fun & Funny
	Creative Commons License

	Acknowledgements
	Contributors
	Reviewers

	Foreword
	Introduction to Codewriting
	Who is Codewriting For?
	Objectives of Codewriting
	Docs: Neglected and Maligned No More?
	Tech Workers of the World, Unite!
	The DocOps Approach
	Open Source Centricity
	Two Words: Distributed. Platforms.
	Lean Docs for Lean Projects
	Codewriting as Self-improvement

	Part One: Writing
	Chapter 1. Docs
	What Docs Are
	Docs Are Not for Reading
	Reading Docs
	Reading Bad Docs
	Talking Docs
	Docs are for Using, So Use Away
	Skim the Docs
	README, the Root Doc

	Chapter 2. Writing {preposition} Code
	What’s with that Chapter Title?
	Dynamic Writing
	Semantic Structure
	De-abstracting Content
	Docs in Flat Files

	Chapter 3. Writing Content
	The Craft
	Keeping Docs DRY
	Topic-based Authoring
	Overinstruction
	Breadcrumbs and Circles in Docs

	Chapter 4. Writing for Use(rs)
	Use the Product
	Docs == Knowledge
	Learn Users’ Motivations
	Use Competitors’ Products
	Lean Documentation
	Docs User Testing
	Add Value

	Part Two: Coding
	Chapter 5. Source Coding
	Code Abstraction
	Like a Bot, But Way Better (For Now)
	Docs as Abstraction
	Writers as Contributors
	Subject-Oriented Writing
	Yes, Text Can Be Harder Than Code

	Chapter 6. Coding Content
	Content Development
	Way Beyond Code
	Every Page a UI
	User Manual
	Lean Content

	Chapter 7. Docs-Code Integration
	Docs + Code, Sitting in a Tree
	DocOps
	The Specter of Internal Docs
	Docs Maturation Process
	What Developers Need
	Version Control & Deprecation in Internal Docs

	Chapter 8. Coding in Regex
	What is Regex?
	Why (and When) to Use Regex
	Digging Into Regex
	Regex (as) Coding

	Part Three: Delivering
	Chapter 9. Hacking
	Extensible Content Platforms
	Continuous Integration
	Roll Your Own Platform

	Chapter 10. Deployment
	Static Site Generators
	Cloud Solutions
	Build and Package

	Chapter 11. Delivering Quality
	Assuring Accuracy
	Testing Docs

	Part Four: Managing
	Chapter 12. Collaboration
	Working with Existing Development Processes
	Adapting Dev Workflows to Sync with Docs
	Tech Writers Are Not Stenographers
	Working with Engineers
	Collaborating with Users

	Chapter 13. Content Dissonance
	Version Entropy
	Localization

	Chapter 14. Managing Complex Content
	The Challenge
	Solution Approaches
	Introducing “LiquiDoc”

	Chapter 15. Managing (at) Scale

	Part Five: Evolving
	Chapter 16. Driving TechComm Forward
	Experiment with Me
	Foresee the Threat
	Add Value

	Chapter 17. Integrated Documentation Environment
	What We Lack
	Docs Generators
	Output to Product
	Platform Integration
	Admin Powers

	Chapter 18. Beyond Technical Communications
	Legal Docs
	Collaborative Journalism
	Protocol & Policy Codexes
	Cookbooks
	<Your Idea Here>

	Back Matter
	Appendix A: Codewriting Glossary
	Appendix B: Resources
	Source Control
	LML: Lightweight Markup Languages
	SSG: Static Site Generators
	Conversion and Migration Tools
	CCMS: Component Content Management Systems
	Hosted Documentation Platforms
	Blogs
	Git Tooling

	Appendix C: Bibliography
	Appendix D: Cookbook of DocOps Recipes
	The Glossary Snippets

	Appendix E: Collaborative Authorship & Lean Publishing
	From the README
	Plans for Codewriting
	Framework and Build
	Legal Stuff

	Appendix F: The Codewriting Style Guide
	Writing Format
	Style & Voice

	Appendix G: NOTICE of Packaged 3rd Party Software

