
YAPS
Yet Another Paradigm Shift

Concurrency and
Synchronization

C++ now 2013 ! ! stan.lippman@gmail.com "

Let Me Introduce Myself
!   1983 :: First introduction to C++ by Jerry Schwarz,

implementer of the iostream library, who was designing
and implementing NAIL under Steve Johnson in C++ and I
was the tester assigned.

!   1985 :: I was the tester assigned to the “brown bag” cfront
release 1.0 team.

!   1986 :: I joined the compiler language group under Steve
Johnson, and under persuasion from Barbara Moo (bem),
worked on creating release 1.1.

!   1986 – midway through release 2.0, I was the only
developer responsible for cfront while Bjarne Stroustrup
worked on MI.

Let Me Introduce Myself
!   I was responsible for the cfront release 3.0 implementation of

templates, beginning with a pre-ARM class implementation some
folks at an OO database company had developed. That was both
a blessing and a curse.!

!   After that, I left cfront to intern in Area 11, my Lothlorien, in
Bjarne’s Grail Project. I designed and implemented the Object
Model component. !

!   I was editor of the C++ Report, in the 1990-1996(?) timeframe. I
signed on Tom Cargill, Doug Schmidt, Don Box, Scott Meyer,
Josee Lajoie, John Vlissides among others to be columnists. !

!   2001-2005 :: Architect, Visual C++, but chose to work exclusively
on the C++/.NET interface, and worked on the initial redesign of
their Managed C++ release. I also wrote a freely available MC++
to C++/CLI translator I call mcfront.!

Let Me Introduce Myself
!   More importantly, however, when Bjarne’s Grail Project was

abruptly cancelled and I had three months to figure out where
to move my family, I worked in industry, and understood first
hand the consequences of the language design choices I had
been a part of.
!   Disney Feature Animation, DreamWorks Feature Animation,

Pixar Animation, PDI/DreamWorks Animation … [6 or 7 screen
credits and lots of t-shirts …

!   Distinquished Consultant at JPL on the use of C++ and OOD, in
particular with CLARAty, a freely available modular framework
for research.

!   Massive Multiplayer Online (MMO) game companies – Perpetual
Technology, which I had signed on to work on the server side of
Star Trek, and Emergent Technology, which had the smart idea
of writing a Server Framework and a set of high-level scripting
languages.

Let Me Introduce Myself
!   I have not coded in C++ in almost 5 years, although I have partially coded an

Objective-C compiler in Objective-C, and have coded with Objective-C for
Apple’s iOS – in particular, the iPad.

!   I have mostly studied molecular biology and neuroscience, particularly memory
and sleep, on my own during this time. I do not read books about coding. I do
not make a living by claiming any expertise that people should pay me for
revealing to them. That is not what this is.

!   I am trying to write an eNovel designing a Narrative Engine and Narrative
Science in which to create a Narrative Universe that anyone can add their
stories to, following a set of constraints, within a finite but boundless imaginary
world housed in the Northwest temperate rain forests of Northern Canada.

!   So, this talk for me is just a Sync point (SP) in what has now become now two
concurrent but now independent narrative threads: myself and C++ Now.

!   Hello 

An Intractable Bug ...

A Post-Classical View of
Programming Languages …
Or, Why yet another paradigm shift?!

Today’s Quiz
Or, Did You Really Think

I Was Going to do All the Work?

What language did the first computer use?!

1.  A binary machine code?
2.  A Hex/Octal machine code?
3.  An assembly language?
4.  C++ ()

You’re allowed to rudely shout out an answer …

None of the above!
!   Oddly enough, the idea of an independent program –

let alone the idea of a programming language – hadn’t
been part of the original invention of the modern
computer.

!   Rather, cables were plugged into one configuration for
that formulation or reconfigured for this formulation,
and so on.

This is perhaps where the term tight coupling originated
… 

Programs Dwell in a
Computational Environment

  The modern computing era began without the concept
of either a program or a programming language.

  Of course, a transcription of a mathematical formula
into a format within the computer was necessary, but

  it was not thought of as a symbolic program notation
  there was no concept of inventing a language …
  there was no such entity thought of as a computer

programmer …

  The immediately intractable problems were hardware.

Programs and Program Languages
A Dialectic with the Computational Environment

  The introduction of the program solved logistical
bottlenecks of the pre-existing computational
environment …

  Trade-off of decoupling the processing from the
program:

  Faster, `automatic’ loading of the program
  the need to invent and implement a software abstraction

layer … in this case, a loader …

This decoupling has been accelerating …

The Evolution of Complex Structure …
!   Software did not begin as software – it was a hard-wired

configuration – a dance without a separate dance notation.

!   This evolved into a reproducible program bit map that could be
loaded and flushed from memory. A purely numeric representation.

!   The assembler formed a nucleus of a symbolic representation of a
program but still at the level of individual instructions that could be
grouped by function. A mnemonic representation.

!   The invention of language to represent a program was both a
concession and boon to human nature – it solved another logistical
bottleneck.

 At each stage, more software complexity is introduced between the
program representation and the machine.

A Modern Theory of Programming Languages …

!   Programming languages are a response to a
particular computational environment:

!   facilitates expression within a current environment …
!   improves on one or a set of existing program

solutions …
!   provides a vocabulary and shared point of view …

All Languages Become Extinct …

!   As the computational environment changes, the more
specialized the language to the previous computational
environment, the less adaptive it proves in the new
environment …

!   But the historical accumulation of structure seems
to overwhelm these efforts.

!   The conditions that give rise to a language leads to
its eventual extinction …

There are many more extinct
than active programming languages

All Languages Compete for Scarce Resources …

!   Although a language is not an organism, there is a
continual struggle for survival among its population …

!   There is a competition for finite budgetary resources to
feed new projects and sustain existing one …

!   There is competition to reproduce in the minds of a new
generation of programmers.

Language wars are virtual bloody both in tooth and claw

All Languages Resist Extinction …

!   Typically, the language leaders at some point cease
resisting and attempt to readapt the language to the
changing environment …

!   this however may backfire emphasizing its current
maladaptation to the new environment …

!   The population of a language constricts when it fails to
reproduce in the minds of the new members of the
community

!   Dropping below a certain threshold, it no longer has the
critical mass to command finite budgetary resources.

Language as a Unit of Deployment
!   A language is often used as a vehicle for the

deployment of a new programming model – that is,
of a new paradigm.
!   It tends to demonstratively improve on existing

models that have run into some bottleneck of scale.
!   Or it supports a new model either of technology or

abstraction.
!   These languages tend to be pure – that is, to provide

support for its program model only.
!   This makes the language both simpler and more

elegant.
!   It requires a relinquishment of the past

In Like a Lion, Out Like a Lamb
!   When there is a reinvention of the dominant

program model, there is also a programming
language extinction.
!   The current generation of languages has no

vocabulary to directly express the new model.
!   Adding that vocabulary compromises the elegance of

the original purity of design.
!   A pure language moves from a youthful development

community to a acknowledged design influence.
!   This passionate sweeping in and hangdog slinking

out of programming languages has taken its toll
socially on the professional programmer class.

!   This is not really working, imo. What kind of solutions
suggests themselves?

Where Can We Go From Here?

!   However, there is a possible language model we
can glean from C++.
!   What has been surprisingly successful for C++ has

been its ability to support multiple program models.
!   What has been surprisingly unsuccessful is the

absence of a unifying architecture and crafted
boundaries.

!   Well, perhaps what we need is a conscious design –
one that provides quantifiable models of complex
systems that can be conserved over time …

!   Perhaps what we need is an end to the notion of
Great Men.

Isomorphic Design Analytics

Getting our heads out of the Clouds that comes of dwelling in
a cave ...!

The Rational is Imaginary
!   Atoms : 1 2 3 4 … infinity (ha!)

!   In theory, you just begin with a Positive charge
plus a Negative charge, and you get Hydrogen.

!   In theory, you just keep adding Positive charge,
and the Negative charge will be there.

!   None of that is anywhere near the truth. The
universe is not Platonic. You cannot reason
about it.

 Top-down reasoning fails before the material world !

Zeno’s Paradox
!   I am sitting across the room from a door. Rather than

get up and walk to it, I think it through first.

!   Zeno’s Paradox: infinite regress. Result: I don’t even
try to get up. It is impossible.

!   Modern mathematicians prove Zeno’s Paradox to be
incorrect by exploiting the concept of infinite series.

!   None of that is true. It’s all in our head. To get to the
door, you just have to do it. Thinking fails us because
it is not anchored in the material world.

 This example is trivial, like our Weather app. But in the
everyday world, we fall into this all the time. !

Isomorphic Analytics
!   How can we think about complexity without falling into Zeno’s

Paradox? And the antagonisms it engenders?

!   Think of temperature before Kelvin. F or C? Both are
imaginary. They mean nothing except by convention. Kelvin
anchored temperature to the physical world.

!   Isomorphic reasoning is an attempt at anchoring design to a
quantitative physical model found in nature:
!   The value of the isomorph is quantifiable – we can order

isomorphic thinking about a problem without resorting to
Authority

!   The isomorph is both invariant across space but mutable over
time.

 As a first approximation, let’s think about Concurrency and
Synchronization using the isomorph of iEukaryote fertilization. !

Isomorphic Analytics ???
!   Natural design is complex, and surprising, but also

surprisingly regular, if you enjoy design and implementation
issue.

!   It exists at four independent but tightly coupled levels that
are complex in themselves and yet also built upon what is
“below” it.

!   It spans the micro scale to the macro scale with all the
latency of mechanical constraints and information
processing windows in which the information remains
relevant.

!   That is, there are all sorts of isomorphs just waiting to be
applied.

!   It is simply a way of rigorously thinking about complex
systems that are both concurrent and synchronizing. But
I’m not going to argue the point.

Fertilization !!!!
!   The egg’s cell cycle must be suspended, and be able

to recognize and restart by a specific event that can
occur only during a small window of time that will
happen if at all at an indeterminant future time.

!   There needs to be a cell mechanism within the egg to
bring the second set of chromosomes to a
1-1mapping

!   There needs to be an algorithm for recombination to
be implemented somehow

!   The patterns in this implementation: gradient,
receptor, regulatory proteins, a chemical state
machine.

Fertilization !!!!
!   Note that the implementation is typeless – that is, the mechanism to

stop and start the cell cycle is more or less invariant, with the code
dependent aspects encapsulated in the genome to be developed.

!   The mechanism itself is a kind of lisp engine parameterized by the
particulate genome or family of genome.

!   It is a complete and independent system – the actual delivery system
providing the second set of chromosomes – is an implementation
detail.

!   It has its own physics, time scale, and constraints. It’s own vocabulary
and domain space. And yet it imposes constraints on everything
above it.

!   That is, there is not an unconstrained solution space for the delivery
system. This is what makes natural design … well, what it is. There is
nothing centrally human about it because it is bottom-up and
conservative.

!   In this sense does the mouse, mushroom, and milkweed become
one.

Fertilization !!!!
!   In order to carry out fertilization between animals,

bodies emerged – all the existing body plans are said
to have emerged during the Cambrian Explosion.

!   In any case, bodies developed within a species such
that one body form receives the set of chromosomes
– let’s call it the host.

!   And the other body form generates the chromosome
set to be delivered – let’s call it the packet.

!   There is a huge amount of concurrency and
syncronization, and even more invention, that needs
to be accomplished here!!! Just think about how you
would solve all this.

Fertilization !!!!
!   Need invent a mechanism for projecting cells out of the

one body form and being received within the other.

!   While this makes the host a reasonably easy delivery
target, it is constrained to occur within a window of time in
which the two bodies are syncronized.

!   Need invent a cell that can be motile, carry its chromosome
set, and be equipped with the protein munition necessary
to penetrate the egg’s membrane.

!   Need invent a mechanism to identify an incoming packet
as being the right sort of packet. So, better not generate
duplicate identities unless you’re sure the results won’t be
catastrophic, even though we’re talking millions of years
down the line.

Fertilization !!!!
!   It has to invent an entirely new cell cycle: meiosis …

!   For the first time in the history of life, a genome will contain a
superset of the genes actually needed within a cell – so a
mechanism to manage that has to be worked out.

!   For the first time in the history of life, cells will become
specialized and form tissue and organ and have a life cycle
that extends beyond any one cell. All that has to be worked
out.

!   This again is an independent level – in this case, all this has to
be represented at the level of the genome.

!   The genome suddenly must both develop the form and control
the function. The earlier regulatory and signaling mechanisms
won’t scale. An entirely new gen of the genome is required.

So, where are we?
We have looked at two independent levels operating at the microscale, the cellular and the
chemical.

Each, while self-contained are tightly coupled. Each operates in a different framework with
its own physics and scale of time.

Fertilization !!!!
!   Now we have crossed over into the macroscale. We have to support

the behavior necessary for the species to carry out the host-packet
delivery system.

!   This is at the level of the nervous system, the run-time OS of the
genome, if you will indulge me.

!   More seriously, a specie’s nervous system is encoded within each
individual instantiation of the restarted cell cycle: that is, the union of
the set of chromosomes.

!   And within that nervous system controlling that form of animal, all the
necessary behaviors to carry out the host-packet delivery are over
time optimally programmed.

!   It is the genome’s running program, and within each cell other than
the blood cells, a subset of the genome carries out its role in the
design and is sensitive to a fixed set of signaling proteins intrinsic to
the genome.

Fertilization !!!!
!   It must develop the motor programs – so the neuron-muscle

reflex, rhythmic, and voluntary movements are potentially
supported by coming online at different times due to the
nature of the nervous system.

!   It must develop a syncronization system between the two
body forms that triggers the necessary motor programs
implementing the host-packet hand-off.

!   This requires the invention of modal pathways to receive
signals between the two body forms – in mice this is olfactory.

!   This requires sensory pathways for analysis (algorithms) and
motor response – that is, some sort of representation and
look-up mechanism.

Fertilization !!!!
!   This is where we lose touch with real-time: the pathways are

constrained both by the physical transduction, internal
representation, and the subsequent processing of that
representation.

!   This level is where optimization of the form is natural selection
at its Darwinian purest: competition among conspecifics within
a local neighborhood.

!   Literally, this is brain without mind: insects, particularly ants,
bees and other eusocial species are the apex.

!   Mice have two olfactory systems: a brain-driven appetital and
aggressive system between conspecifics, and a more
mammalian neural system that allows for environmental
smells to enter into the mouse’s second nature.

Fertilization !!!!
!   Finally, in terms of syncronization and concurrency, we have

learning and memory, allowing for the emergence of a unifying
sentience of varying awareness of self beyond the instance of
its embodiment as maintained by its nervous system.

!   This is the furthest from real-time, and is both individual to the
instantiation and largely private, except as interpreted by its
conspecifics.

!   So, these two levels are macroscale, and are constrained by
the microscale underpinnings. They cannot be directly
syncronized because of the boundary nature of Scale.

!   But they can be mapped, or a correspondence can be
formalized, and can be an object of competition and intelligent
design.

So, where are we now?
We have looked at two independent levels operating at the macroscale, the mechanical
and the sentient.

Each, while self-contained are tightly coupled. Each operates in a different framework with
its own physics and scale of time.

A meta4tier Schematic

cognitive

emo-behavioral

phenotype

genotype

A meta4tier Program Schema

dynamic runtime

static compile-time

machine state

machine code

Here is the Idea, Idealized …

•  The Schema is Invariant and Fully Specified for the
Isomorphic domain.

•  It is modular to a specified extent, allowing for
swapping out components within the constrains of the
overall Schema.

•  It is surrounded by software layers that allow
development either vertically or horizontally.

•  Each layer has its own domain language and domain
abstractions, which can be overwritten in the software
layers.

•  Thus, within the constraints of the schema, the
software layers provide multi-tiered abstraction
functionality.

Here is the Idea, imaged …

A Challenge to the Reader

!   I’m sure there are a hundred thousand objections
to this. Here is my challenge to those objections:

!   Design a behaviorial state machine for a mouse-
like animal such that
1.  it is responsive both to its environment and

conspecifics in a species specific way; but
2.  allowing for learning from experience to

individuate behavior.

!   This is a complex system. What will be the likely
result of this competition, if you will?

A Plethora of Individualized Designs

!   I don’t doubt every one of you can come up with
a smart design and working implementation
given the resources and time.

!   But I also don’t doubt that every one of you will
come up with a unique design and
implementation.

!   Were your professional career trajectory
dependent on it you would fight for it tooth and
nail.

!   It is not possible to achieve a coherent design
across the computational space-time.

The Paradigm Shift is an Isomorphism

!   All software is obsoleted within a generation, at best. At least
everything we’ve managed to implement so far.

!   Let’s get off that Merry-Go-Round.

!   I understand my meta4tier falls short. It’s the best I could come up
with.

!   So, do something better, then. But not just for yourself, but for a
community of minds, if you will. We have a responsibility, as corny as
that sounds.

!   Let’s all work concurrently, and syncronize, and then maybe we can
build something that is both complex and coherent across locale and
still allow for inventiveness and competition.

!   Anyway, this is pretty much what I have to say. If you have any
questions, I’ll try to answer them. I can’t promise that I can. Thank
you for listening.

YAPS
Yet Another Paradigm Shift

Concurrency and
Synchronization

C++ now 2013 ! ! stan.lippman@gmail.com "

