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Who am I?

• Open Source developer for 15 years

• C++ developer for 13 years

• Software Architect at Intel’s Open Source Technology 
Center (OTC)

• Maintainer of two modules in the Qt Project
‒ QtCore and QtDBus

• MBA and double degree in Engineering

• Previously, led the “Qt Open Governance” project
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Qt 5

First major version in 7 years

Goals:

• New graphics stack

• Declarative UI design with QML

• More modular for quicker releases

• New, modern features

• Mostly source-compatible w/ Qt 4

Release status:

• Qt 5.0.2 released in April

• Qt 5.1.0 beta 1 released 
in May 14, 2013
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The C++11 challenge

• We would have liked to switch

“C++98 costs more”

• But we need to maintain compatibility
‒ MSVC 2008
‒ GCC 4.2
‒ Commercial Unix compilers (AIX and Solaris)
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A look at C++11 in Qt 5.1

• Added a lot of C++11 support to Qt 4.8, Qt 5.0 and Qt 5.1 

• Lots of C++11 stuff left to do for 5.2:
‒ Move Semantics (containers and containees)
‒ add constexpr to more classes / functions
‒ 'explicit' missing on N-ary ctors, N ≥ 2
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We want

C++98

Base features
Base performance

Base features
Better performance

C++11

More features
Base performance

More features
Better performance

App

C++98

C++11

Qt
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Solution for Qt’s own code

• Enable C++11 automatically

• Must still build under C++98 mode

• Must provide the same library ABI in either mode

• Can use C++11 features with fallback

• Can offer new features in .h files (inlines) under #ifdef
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Compiler support in Qt

GCC • Automatically enabled

• Automatically enabled if 
using libc++
‒ Default as of Qt 5.1

Clang

ICC

Visual Studio

• Automatically enabled

• Cannot be disabled

4.4 (except on Mac)

Apple Clang: 4.0

Official: 3.0

12.0

2008

C++11 support Minimum version
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It has not been without problems

• Compiler bugs

• Different implementations

• Implementations of earlier papers / draft standard

• Difficulty in making the changes
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Some C++11 features can be used under #ifdef

• Macros for #ifdef: Q_COMPILER_xxx
Q_COMPILER_CONSTEXPR, Q_COMPILER_RVALUE_REFS, 
Q_COMPILER_VARIADIC_TEMPLATES, etc.

• All “interesting” C++11 features listed and checked

#ifdef Q_COMPILER_RVALUE_REFS
    inline QList(QList<T> &&other) : d(other.d)
    { other.d = const_cast<QListData::Data *>(&QListData::shared_null); }
    inline QList &operator=(QList<T> &&other)
    { qSwap(d, other.d); return *this; }
#endif
#ifdef Q_COMPILER_INITIALIZER_LISTS
    inline QList(std::initializer_list<T> args)
        : d(const_cast<QListData::Data *>(&QListData::shared_null))
    { qCopy(args.begin(), args.end(), std::back_inserter(*this)); }
#endif
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Some C++11 features don’t require #ifdef

• #ifdef is too ugly
‒ Q_DECL_EQ_DELETE
‒ Q_DECL_EQ_DEFAULT
‒ Q_DECL_CONSTEXPR
‒ Q_DECL_NOEXCEPT
‒ Q_DECL_NOEXCEPT_EXPR(x)
‒ Q_NULLPTR

Q_DECL_CONSTEXPR inline QFlags(Enum f) : i(f) {}
Q_DECL_CONSTEXPR inline QFlags(Zero = 0) : i(0) {}
Q_DECL_CONSTEXPR inline QFlags(QFlag f) : i(f) {}

No #ifdef

template<typename T> inline uint qHash(const T &t, uint seed)
    Q_DECL_NOEXCEPT_EXPR(noexcept(qHash(t)))
{ return (qHash(t) ^ seed); }
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Some C++11 features are also enabled in C++98

• Macros for C++98 extensions by some compilers
‒ Q_ALIGNOF GCC’s __alignof__, MSVC’s __alignof
‒ Q_DECL_OVERRIDE MSVC’s override
‒ Q_DECL_FINAL MSVC’s sealed

• Or equivalent behaviour
‒ Q_DECL_NOTHROW MSVC’s nothrow(), not GCC’s
‒ Q_DISABLE_COPY declare copy constructor and assignment op
‒ Q_STATIC_ASSERT uses sizeof(QStaticAssertFailure<!!(Condition)>)

Q_CORE_EXPORT uint qHash(const QByteArray &key, uint seed = 0) Q_DECL_NOTHROW;
Q_CORE_EXPORT uint qHash(const QString &key, uint seed = 0) Q_DECL_NOTHROW;
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Some features are almost never used

• Language syntax features that don’t add performance
‒ Adding #ifdef would reduce readability

• Examples:
‒ Angle bracket for templates without space (>> vs > >)
‒ Auto types
‒ Class enum
‒ Delegating constructors
‒ Initialisation of non-static members in the class body
‒ Lambdas*
‒ New function declaration syntax
‒ Range for
‒ Raw strings & Unicode strings*
‒ Thread-safe initialisation of function statics*

* not directly
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Close to no use of Standard Library features

Standard Library features

• Features coming too slowly to 
the Standard Library

• No reasonable way of 
detecting them

• We end up duplicating, with Qt 
API (e.g. QSharedPointer, 
QEnableIf)

Core language features

• Features that cannot be 
implemented without compiler 
help:
‒ <initializer_list>
‒ <type_traits>

• Trouble for:
‒ Clang with GCC’s headers 

(Mac OS X)
‒ GCC with Dinkumware headers 

(QNX)
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The past
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Qt and C++98

• C++98 support took a long time

• MS Visual Studio 6 support dropped only with Qt 4.6 (Dec/2009)
‒ QT_NO_MEMBER_TEMPLATES
‒ QT_NO_PARTIAL_TEMPLATE_SPECIALIZATION
‒ QT_NO_TEMPLATE_TEMPLATE_PARAMETERS
‒ Q_TYPENAME (no typename support)

• Standard Library is a requirement only with Qt 5.0 (Dec/2012)

• Qt 5 now requires all C++98 features
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All C++98 features? No, one remaining...

Q_NO_TEMPLATE_FRIENDS

#if defined(Q_NO_TEMPLATE_FRIENDS)
public:
#else
    template <class X> friend class QSharedPointer;
    template <class X> friend class QWeakPointer;

#endif
    inline void ref() const { d->weakref.ref(); d->strongref.ref(); }
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The present
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Data alignment 
(Q_COMPILER_ALIGNOF, Q_COMPILER_ALIGNAS)

• Macro: Q_ALIGNOF 
‒ Always present (no #ifdef)

• Most compilers support alignof 
as an extension to C++98
‒ MSVC, GCC, Clang, ICC, IBM xlC, 

Sun CC
‒ Don’t need to wait for C++11!

• Emulation for older / exotic 
compilers

• Macro: Q_DECL_ALIGNED
‒ Not always present!

• Difficult to emulate
‒ Could be done with an unrestricted 

union

• No good solution
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Atomics (Q_COMPILER_ATOMICS)

• Qt has had an atomics API since 4.4 (2008)
‒ Has used them since 4.0 (2005)

• Most of it is written in assembly

• Only GCC 4.8 generates decent code for atomics
‒ less-than-full memory barriers, no unnecessary locks
‒ GCC 4.7 has support, but it’s reasonable only on x86 / x86-64

We need to keep our 
assembly for the time 

being
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C++11 data races

• C++11 finally has a memory model supporting threads

• Compiler can be more aggressive when std::atomic is not in use

• volatile for threading was wrong!

• Qt atomic classes are abusing the compiler

We need to move to 
std::atomic ASAP;

Latent bugs might show up
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Example of data races

• Used to be volatile variables in the Qt event loop
@@ -266,8 +266,8 @@ void QEventLoop::exit(int returnCode)
     if (!d->threadData->eventDispatcher.load())
         return;
 
-    d->returnCode = returnCode;
-    d->exit = true;
+    d->returnCode.store(returnCode);
+    d->exit.storeRelease(true);
     d->threadData->eventDispatcher.load()->interrupt();
 }
 
@@ -281,7 +281,7 @@ void QEventLoop::exit(int returnCode)
 bool QEventLoop::isRunning() const
 {
     Q_D(const QEventLoop);
-    return !d->exit;
+    return !d->exit.loadAcquire();
 }
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Future of the Qt atomics

• Qt 5.0 saw an overhaul of the code, to simplify
‒ Uses CRTP to provide “virtual” methods without virtual tables

• Missing features:
‒ Compare-and-swap that returns the current value
testAndSet + fetchAndStore = fetchAndTestAndSet ?

‒ volatile members
‒ Maybe: implicit load, store and operator overloads, like std::atomic

T loadAcquire() const Q_DECL_NOTHROW { return Ops::loadAcquire(_q_value); }
void storeRelease(T newValue) Q_DECL_NOTHROW { Ops::storeRelease(_q_value, newValue); }
operator T() const Q_DECL_NOTHROW { return loadAcquire(); }
T operator=(T newValue) Q_DECL_NOTHROW { storeRelease(newValue); return newValue; }
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constexpr  support (Q_COMPILER_CONSTEXPR)

• We added Q_DECL_CONSTEXPR almost everywhere

• GCC and Clang did not implement full spec
‒ Code broke with stricter, newer Clang

• Found compiler bugs...

We needed to go back and 
remove some constexpr
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constexpr  and static initialisation

• No load-time overhead
‒ Objects can be static-initialised if they have a constexpr constructor (3.6.2 

[basic.start.init] p2)

• Only used for QBasicAtomicInt and QBasicAtomicPointer 
‒ and QBasicMutex, but shhhh...

• For all other types, the recommendation is to avoid statics
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Initialiser lists (Q_COMPILER_INITIALIZER_LISTS)

• Feature is provided in the Qt containers

• But never used by Qt itself...

• And it requires a header to be present

Feature is for the users,
not for the library itself...



29

© 2013 Intel, 2012 KDAB

Brace initialisation

• Language syntactic sugar in most cases...

• Except where it allows us to do something new
‒ Like a constexpr constructor for a class containing an array

#if defined(Q_COMPILER_INITIALIZER_LISTS) && !defined(Q_QDOC)
    Q_DECL_CONSTEXPR QUuid() : data1(0), data2(0), data3(0), data4{0,0,0,0,0,0,0,0} {}

    Q_DECL_CONSTEXPR QUuid(uint l, ushort w1, ushort w2, uchar b1, uchar b2, uchar b3,
                           uchar b4, uchar b5, uchar b6, uchar b7, uchar b8)
        : data1(l), data2(w1), data3(w2), data4{b1, b2, b3, b4, b5, b6, b7, b8} {}
#else
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Lambdas (Q_COMPILER_LAMBDA)

• Support for use of lambdas added to:
‒ QObject::connect
‒ QtConcurrent (requires decltype and the new function syntax)

• Need to add to other slot-type functions

• No lambda use in Qt itself...

Feature is for the users,
not for the library itself...
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noexcept  support (Q_COMPILER_NOEXCEPT)

• Improves code generation of callers!

• MSVC’s nothrow() has the semantic of noexcept
‒ But not GCC’s! It implements the C++98 standard

Added it where it made 
sense, but wait...
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Does C code throw?

• The C language has no support for exceptions...

• Unless you’re called Microsoft:
‒ Windows has exceptions in C mode
‒ In fact, crashes are thrown as exceptions!

• Unless you’re using Linux:
‒ POSIX asynchronous cancellations are implemented with exceptions
‒ Possible C++1y feature
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noexcept  macros

• Helper macros:
‒ Q_DECL_NOTHROW noexcept if supported,

nothrow() on MSVC, 
empty otherwise

‒ Q_DECL_NOEXCEPT really noexcept if supported,
empty otherwise

‒ Q_DECL_NOEXCEPT_EXPR(x) for use in noexcept expressions

Q_CORE_EXPORT uint qHash(const QByteArray &key, uint seed = 0) Q_DECL_NOTHROW;
template<typename T> inline uint qHash(const T &t, uint seed)
    Q_DECL_NOEXCEPT_EXPR(noexcept(qHash(t)))
{ return (qHash(t) ^ seed); }
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Move constructors (Q_COMPILER_RVALUE_REFS)

• Look deceptively easy

• Question: what state is a moved object left in?

• Can’t use them if using smart pointers and d-pointer / pimpl
‒ Constructor needs to implement destruction for exceptional case

We can’t provide move 
constructors everywhere
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Move constructor + smart d-pointer problem

qshareddata.h: In instantiation of 
‘QSharedDataPointer<T>::~QSharedDataPointer() [with T = MyClassPrivate]’:
/tmp/test.cpp:6:52:   required from here
qshareddata.h:87:36: error: invalid use of incomplete type ‘struct 
MyClassPrivate’
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Move constructor: state of moved-from object

• What can you do with v?

             MyClass v;

            

            other = std::move(v);
            // v?

• It must:
‒ Be destructible
‒ Be moved onto (swap implementation by triple-move)
‒ What else?
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Move semantics

• Would like to add support everywhere

• Huge amount of work

• Need to be careful about behaviour compatibility

Work is progressing slowly
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Ref qualifiers in member functions 
(Q_COMPILER_REF_QUALIFIERS)

• Still investigating

‒ Can we avoid the temporaries?

• Problems:
‒ http://gcc.gnu.org/bugzilla/show_bug.cgi?id=57064 - FIXED in 4.8.2
‒ Maintaining binary compatibility

QString time(int hrs, int mins)
{
    return QString("%1:%2").arg(hrs).arg(mins, 2, 10, QChar('0'));
}
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Static assertions (Q_COMPILER_STATIC_ASSERT)

• Really, really useful

• Qt provides a fallback for C++98:
‒ Check happens even in C++98
‒ But misses error message

Implemented fallback, 
using everywhere
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Thread-local storage 
(Q_COMPILER_THREAD_LOCAL)

• Some compilers provide support in C++98 (and C):
‒ MSVC __declspec(thread)
‒ GCC, ICC, Clang __thread

• Qt provides a fallback (QThreadStorage) 

Investigate adding an 
unconditional macro

http://gcc.gnu.org/bugzilla/show_bug.cgi?id=57064
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Thread-safe function statics (macro missing)

Q_GLOBAL_STATIC

• Two problems solved with one solution:
‒ Thread-safety of function (local-scope) statics
‒ Load-time overhead of global statics

• It uses a function (local-scope) static if it’s thread-safe
‒ All compilers adhering to the IA-64 C++ ABI

• Otherwise, it uses a mutex and a guard variable
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Q_GLOBAL_STATIC features

Q_GLOBAL_STATIC_WITH_ARGS(MyClass, cachedData, (42))
int data()
{
    if (!cachedData.exists()) {
        // don't create the static if it doesn't exist yet
        return 42;
    }
    return cachedData->i;
}

// function possibly called during application shutdown
int dangerousData()
{
    MyClass *c = cachedData;
    return c ? c->i : -1;   // c is null if it has been already destroyed
    // also:
    return cachedData.isDestroyed() ? -1 : cachedData->i;
}
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Unicode strings 
(Q_COMPILER_UNICODE_STRINGS)

String literals

• Very useful and welcome

• But never used directly...

QStringLiteral

• Always available:
‒ Better with lambdas and UTF-16 

string literals
‒ Otherwise, falls back to 

QString::fromUtf8

• Enforces that all source code 
must be encoded in UTF-8
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QStringLiteral goals

• Returns a QString 

• No memory allocation → internal data stored in .rodata

auto s = []() -> QString {
    enum { Size = sizeof(u"" "Hello") / 2 - 1 };
    static const QStaticStringData<Size> literal = {
        Q_STRINGDATA_HEADER(Size),
        u"" "Hello"
    };
    return const_cast<QArrayData *>(&literal.header);
}

auto s = QStringLiteral("Hello");

expands to something like...
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The standard committee stopped short...

• I wrote this on Linux:

• It printed:

• If I copy the file to Windows and compile with MSVC¹, what will 
it print?

    u16string s = u"Résumé";
    cout << hex << s.at(1) << endl;

¹ once it supports Unicode strings

How do I print 
the string?
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Let’s try...
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User-defined literals (Q_COMPILER_UDL)

• Neat, but we haven’t found use in Qt yet

• Will be better in C++1y (see N3599)

‒ “indeed [...] this form of literal operator has been requested more frequently 
than any of the forms which C++11 permits” - N3599

template<char16_t... c> QString operator "" _q() 
{
    static const QStaticStringData<sizeof...(c)> literal = {
        Q_STRINGDATA_HEADER(sizeof...(c)),
        { c... } // UTF-16 string
    }
    return &literal.header;
}

N3599: http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2013/n3599.html
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Latent bugs

• Some code is almost never compiled in C++11 mode
‒ e.g., Windows code, due to MSVC and older GCC versions in MinGW

• Errors show up when the user upgrades (or downgrades!)

We need to keep an eye 
for bug reports
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The future

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2013/n3599.html


50

© 2013 Intel, 2012 KDAB

C++1y auto function with no return type 
(Q_COMPILER_AUTO_RETURN_TYPE)

• Proposed by N3386

• Implemented in GCC 4.8 with -std=c++1y
‒ No way to detect that flag

• Will most likely not use in Qt for a long time
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Future directions

Finish what we started

• Move semantics

• Template export control

• Standard Library feature detection

• “Play” with compiler features
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What we’d like to see in the language

• Complaints from previous slides

• Very little in terms of language
‒ C++11 was very good
‒ Probably things we don’t know we need

• Concepts & more meta-programming

• Modules

• Reflection – get rid of moc
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How about the Standard Library?

• We don’t use much of the library

• But we’ll keep an eye out and contribute experience
‒ e.g., std::networking::uri (N3420, N3484, N3507, N3625)
‒ Event loop

• Would like to see simplification of common use-cases
‒ Converting int to std::string / std::u16string
‒ Dealing with user’s locale codec
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We really need more from compilers and OSes

• realloc_inplace (N3495)

• futex (Linux) or WaitOnAddress (Windows 8)

• Support for SIMD with intrinsics

• Support for targeting multiple processor architectures

• Tooling like valgrind, helgrind, perf

• Something between all-or-nothing debugging symbols

• Tighter control over binary compatibility
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Conclusion
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Conclusions (1/2)

What most developers want:

• Put old version into maintenance mode

• Require C++11 for newer versions

If you can't afford that:

• Target both C++98 and C++11 simultaneously

In any case:

• Familiarise yourself with the C++11 memory model
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Conclusions (2/2)

When targeting C++11 & C++98:

• Determine which minimum compiler versions you require

• Focus on features that require no client code changes

• Hide differences in macros

• Try to resist NIH, re-use Qt or Boost config macros

• Try to keep BC between C++11 and C++98 builds
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Questions?

Thiago Macieira
thiago.macieira@intel.com

Links:
Website: http://qt-project.org
Mailing lists: http://lists.qt-project.org
IRC: #qt and #qt-labs on Freenode
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