
C++11 in Qt 5:
Challenges & Solutions

Thiago Macieira, Qt Core Maintainer
Aspen, May 2013

2

© 2013 Intel, 2012 KDAB

Who am I?

• Open Source developer for 15 years

• C++ developer for 13 years

• Software Architect at Intel’s Open Source Technology
Center (OTC)

• Maintainer of two modules in the Qt Project
‒ QtCore and QtDBus

• MBA and double degree in Engineering

• Previously, led the “Qt Open Governance” project

3

© 2013 Intel, 2012 KDAB

Qt 5

First major version in 7 years

Goals:

• New graphics stack

• Declarative UI design with QML

• More modular for quicker releases

• New, modern features

• Mostly source-compatible w/ Qt 4

Release status:

• Qt 5.0.2 released in April

• Qt 5.1.0 beta 1 released
in May 14, 2013

4

© 2013 Intel, 2012 KDAB

The C++11 challenge

• We would have liked to switch

“C++98 costs more”

• But we need to maintain compatibility
‒ MSVC 2008
‒ GCC 4.2
‒ Commercial Unix compilers (AIX and Solaris)

5

© 2013 Intel, 2012 KDAB

A look at C++11 in Qt 5.1

• Added a lot of C++11 support to Qt 4.8, Qt 5.0 and Qt 5.1

• Lots of C++11 stuff left to do for 5.2:
‒ Move Semantics (containers and containees)
‒ add constexpr to more classes / functions
‒ 'explicit' missing on N-ary ctors, N ≥ 2

6

© 2013 Intel, 2012 KDAB

We want

C++98

Base features
Base performance

Base features
Better performance

C++11

More features
Base performance

More features
Better performance

App

C++98

C++11

Qt

7

© 2013 Intel, 2012 KDAB

Solution for Qt’s own code

• Enable C++11 automatically

• Must still build under C++98 mode

• Must provide the same library ABI in either mode

• Can use C++11 features with fallback

• Can offer new features in .h files (inlines) under #ifdef

8

© 2013 Intel, 2012 KDAB

Compiler support in Qt

GCC • Automatically enabled

• Automatically enabled if
using libc++
‒ Default as of Qt 5.1

Clang

ICC

Visual Studio

• Automatically enabled

• Cannot be disabled

4.4 (except on Mac)

Apple Clang: 4.0

Official: 3.0

12.0

2008

C++11 support Minimum version

9

© 2013 Intel, 2012 KDAB

It has not been without problems

• Compiler bugs

• Different implementations

• Implementations of earlier papers / draft standard

• Difficulty in making the changes

10

© 2013 Intel, 2012 KDAB

Some C++11 features can be used under #ifdef

• Macros for #ifdef: Q_COMPILER_xxx
Q_COMPILER_CONSTEXPR, Q_COMPILER_RVALUE_REFS,
Q_COMPILER_VARIADIC_TEMPLATES, etc.

• All “interesting” C++11 features listed and checked

#ifdef Q_COMPILER_RVALUE_REFS
 inline QList(QList<T> &&other) : d(other.d)
 { other.d = const_cast<QListData::Data *>(&QListData::shared_null); }
 inline QList &operator=(QList<T> &&other)
 { qSwap(d, other.d); return *this; }
#endif
#ifdef Q_COMPILER_INITIALIZER_LISTS
 inline QList(std::initializer_list<T> args)
 : d(const_cast<QListData::Data *>(&QListData::shared_null))
 { qCopy(args.begin(), args.end(), std::back_inserter(*this)); }
#endif

11

© 2013 Intel, 2012 KDAB

Some C++11 features don’t require #ifdef

• #ifdef is too ugly
‒ Q_DECL_EQ_DELETE
‒ Q_DECL_EQ_DEFAULT
‒ Q_DECL_CONSTEXPR
‒ Q_DECL_NOEXCEPT
‒ Q_DECL_NOEXCEPT_EXPR(x)
‒ Q_NULLPTR

Q_DECL_CONSTEXPR inline QFlags(Enum f) : i(f) {}
Q_DECL_CONSTEXPR inline QFlags(Zero = 0) : i(0) {}
Q_DECL_CONSTEXPR inline QFlags(QFlag f) : i(f) {}

No #ifdef

template<typename T> inline uint qHash(const T &t, uint seed)
 Q_DECL_NOEXCEPT_EXPR(noexcept(qHash(t)))
{ return (qHash(t) ^ seed); }

12

© 2013 Intel, 2012 KDAB

Some C++11 features are also enabled in C++98

• Macros for C++98 extensions by some compilers
‒ Q_ALIGNOF GCC’s __alignof__, MSVC’s __alignof
‒ Q_DECL_OVERRIDE MSVC’s override
‒ Q_DECL_FINAL MSVC’s sealed

• Or equivalent behaviour
‒ Q_DECL_NOTHROW MSVC’s nothrow(), not GCC’s
‒ Q_DISABLE_COPY declare copy constructor and assignment op
‒ Q_STATIC_ASSERT uses sizeof(QStaticAssertFailure<!!(Condition)>)

Q_CORE_EXPORT uint qHash(const QByteArray &key, uint seed = 0) Q_DECL_NOTHROW;
Q_CORE_EXPORT uint qHash(const QString &key, uint seed = 0) Q_DECL_NOTHROW;

13

© 2013 Intel, 2012 KDAB

Some features are almost never used

• Language syntax features that don’t add performance
‒ Adding #ifdef would reduce readability

• Examples:
‒ Angle bracket for templates without space (>> vs > >)
‒ Auto types
‒ Class enum
‒ Delegating constructors
‒ Initialisation of non-static members in the class body
‒ Lambdas*
‒ New function declaration syntax
‒ Range for
‒ Raw strings & Unicode strings*
‒ Thread-safe initialisation of function statics*

* not directly

14

© 2013 Intel, 2012 KDAB

Close to no use of Standard Library features

Standard Library features

• Features coming too slowly to
the Standard Library

• No reasonable way of
detecting them

• We end up duplicating, with Qt
API (e.g. QSharedPointer,
QEnableIf)

Core language features

• Features that cannot be
implemented without compiler
help:
‒ <initializer_list>
‒ <type_traits>

• Trouble for:
‒ Clang with GCC’s headers

(Mac OS X)
‒ GCC with Dinkumware headers

(QNX)

15

© 2013 Intel, 2012 KDAB

The past

16

© 2013 Intel, 2012 KDAB

Qt and C++98

• C++98 support took a long time

• MS Visual Studio 6 support dropped only with Qt 4.6 (Dec/2009)
‒ QT_NO_MEMBER_TEMPLATES
‒ QT_NO_PARTIAL_TEMPLATE_SPECIALIZATION
‒ QT_NO_TEMPLATE_TEMPLATE_PARAMETERS
‒ Q_TYPENAME (no typename support)

• Standard Library is a requirement only with Qt 5.0 (Dec/2012)

• Qt 5 now requires all C++98 features

17

© 2013 Intel, 2012 KDAB

All C++98 features? No, one remaining...

Q_NO_TEMPLATE_FRIENDS

#if defined(Q_NO_TEMPLATE_FRIENDS)
public:
#else
 template <class X> friend class QSharedPointer;
 template <class X> friend class QWeakPointer;

#endif
 inline void ref() const { d->weakref.ref(); d->strongref.ref(); }

18

© 2013 Intel, 2012 KDAB

The present

19

© 2013 Intel, 2012 KDAB

Data alignment
(Q_COMPILER_ALIGNOF, Q_COMPILER_ALIGNAS)

• Macro: Q_ALIGNOF
‒ Always present (no #ifdef)

• Most compilers support alignof
as an extension to C++98
‒ MSVC, GCC, Clang, ICC, IBM xlC,

Sun CC
‒ Don’t need to wait for C++11!

• Emulation for older / exotic
compilers

• Macro: Q_DECL_ALIGNED
‒ Not always present!

• Difficult to emulate
‒ Could be done with an unrestricted

union

• No good solution

20

© 2013 Intel, 2012 KDAB

Atomics (Q_COMPILER_ATOMICS)

• Qt has had an atomics API since 4.4 (2008)
‒ Has used them since 4.0 (2005)

• Most of it is written in assembly

• Only GCC 4.8 generates decent code for atomics
‒ less-than-full memory barriers, no unnecessary locks
‒ GCC 4.7 has support, but it’s reasonable only on x86 / x86-64

We need to keep our
assembly for the time

being

21

© 2013 Intel, 2012 KDAB

C++11 data races

• C++11 finally has a memory model supporting threads

• Compiler can be more aggressive when std::atomic is not in use

• volatile for threading was wrong!

• Qt atomic classes are abusing the compiler

We need to move to
std::atomic ASAP;

Latent bugs might show up

22

© 2013 Intel, 2012 KDAB

Example of data races

• Used to be volatile variables in the Qt event loop
@@ -266,8 +266,8 @@ void QEventLoop::exit(int returnCode)
 if (!d->threadData->eventDispatcher.load())
 return;

- d->returnCode = returnCode;
- d->exit = true;
+ d->returnCode.store(returnCode);
+ d->exit.storeRelease(true);
 d->threadData->eventDispatcher.load()->interrupt();
 }

@@ -281,7 +281,7 @@ void QEventLoop::exit(int returnCode)
 bool QEventLoop::isRunning() const
 {
 Q_D(const QEventLoop);
- return !d->exit;
+ return !d->exit.loadAcquire();
 }

23

© 2013 Intel, 2012 KDAB

Future of the Qt atomics

• Qt 5.0 saw an overhaul of the code, to simplify
‒ Uses CRTP to provide “virtual” methods without virtual tables

• Missing features:
‒ Compare-and-swap that returns the current value
testAndSet + fetchAndStore = fetchAndTestAndSet ?

‒ volatile members
‒ Maybe: implicit load, store and operator overloads, like std::atomic

T loadAcquire() const Q_DECL_NOTHROW { return Ops::loadAcquire(_q_value); }
void storeRelease(T newValue) Q_DECL_NOTHROW { Ops::storeRelease(_q_value, newValue); }
operator T() const Q_DECL_NOTHROW { return loadAcquire(); }
T operator=(T newValue) Q_DECL_NOTHROW { storeRelease(newValue); return newValue; }

24

© 2013 Intel, 2012 KDAB

constexpr support (Q_COMPILER_CONSTEXPR)

• We added Q_DECL_CONSTEXPR almost everywhere

• GCC and Clang did not implement full spec
‒ Code broke with stricter, newer Clang

• Found compiler bugs...

We needed to go back and
remove some constexpr

26

© 2013 Intel, 2012 KDAB

constexpr and static initialisation

• No load-time overhead
‒ Objects can be static-initialised if they have a constexpr constructor (3.6.2

[basic.start.init] p2)

• Only used for QBasicAtomicInt and QBasicAtomicPointer
‒ and QBasicMutex, but shhhh...

• For all other types, the recommendation is to avoid statics

28

© 2013 Intel, 2012 KDAB

Initialiser lists (Q_COMPILER_INITIALIZER_LISTS)

• Feature is provided in the Qt containers

• But never used by Qt itself...

• And it requires a header to be present

Feature is for the users,
not for the library itself...

29

© 2013 Intel, 2012 KDAB

Brace initialisation

• Language syntactic sugar in most cases...

• Except where it allows us to do something new
‒ Like a constexpr constructor for a class containing an array

#if defined(Q_COMPILER_INITIALIZER_LISTS) && !defined(Q_QDOC)
 Q_DECL_CONSTEXPR QUuid() : data1(0), data2(0), data3(0), data4{0,0,0,0,0,0,0,0} {}

 Q_DECL_CONSTEXPR QUuid(uint l, ushort w1, ushort w2, uchar b1, uchar b2, uchar b3,
 uchar b4, uchar b5, uchar b6, uchar b7, uchar b8)
 : data1(l), data2(w1), data3(w2), data4{b1, b2, b3, b4, b5, b6, b7, b8} {}
#else

30

© 2013 Intel, 2012 KDAB

Lambdas (Q_COMPILER_LAMBDA)

• Support for use of lambdas added to:
‒ QObject::connect
‒ QtConcurrent (requires decltype and the new function syntax)

• Need to add to other slot-type functions

• No lambda use in Qt itself...

Feature is for the users,
not for the library itself...

31

© 2013 Intel, 2012 KDAB

noexcept support (Q_COMPILER_NOEXCEPT)

• Improves code generation of callers!

• MSVC’s nothrow() has the semantic of noexcept
‒ But not GCC’s! It implements the C++98 standard

Added it where it made
sense, but wait...

32

© 2013 Intel, 2012 KDAB

Does C code throw?

• The C language has no support for exceptions...

• Unless you’re called Microsoft:
‒ Windows has exceptions in C mode
‒ In fact, crashes are thrown as exceptions!

• Unless you’re using Linux:
‒ POSIX asynchronous cancellations are implemented with exceptions
‒ Possible C++1y feature

33

© 2013 Intel, 2012 KDAB

noexcept macros

• Helper macros:
‒ Q_DECL_NOTHROW noexcept if supported,

nothrow() on MSVC,
empty otherwise

‒ Q_DECL_NOEXCEPT really noexcept if supported,
empty otherwise

‒ Q_DECL_NOEXCEPT_EXPR(x) for use in noexcept expressions

Q_CORE_EXPORT uint qHash(const QByteArray &key, uint seed = 0) Q_DECL_NOTHROW;
template<typename T> inline uint qHash(const T &t, uint seed)
 Q_DECL_NOEXCEPT_EXPR(noexcept(qHash(t)))
{ return (qHash(t) ^ seed); }

34

© 2013 Intel, 2012 KDAB

Move constructors (Q_COMPILER_RVALUE_REFS)

• Look deceptively easy

• Question: what state is a moved object left in?

• Can’t use them if using smart pointers and d-pointer / pimpl
‒ Constructor needs to implement destruction for exceptional case

We can’t provide move
constructors everywhere

35

© 2013 Intel, 2012 KDAB

Move constructor + smart d-pointer problem

qshareddata.h: In instantiation of
‘QSharedDataPointer<T>::~QSharedDataPointer() [with T = MyClassPrivate]’:
/tmp/test.cpp:6:52: required from here
qshareddata.h:87:36: error: invalid use of incomplete type ‘struct
MyClassPrivate’

36

© 2013 Intel, 2012 KDAB

Move constructor: state of moved-from object

• What can you do with v?

 MyClass v;

 other = std::move(v);
 // v?

• It must:
‒ Be destructible
‒ Be moved onto (swap implementation by triple-move)
‒ What else?

37

© 2013 Intel, 2012 KDAB

Move semantics

• Would like to add support everywhere

• Huge amount of work

• Need to be careful about behaviour compatibility

Work is progressing slowly

38

© 2013 Intel, 2012 KDAB

Ref qualifiers in member functions
(Q_COMPILER_REF_QUALIFIERS)

• Still investigating

‒ Can we avoid the temporaries?

• Problems:
‒ http://gcc.gnu.org/bugzilla/show_bug.cgi?id=57064 - FIXED in 4.8.2
‒ Maintaining binary compatibility

QString time(int hrs, int mins)
{
 return QString("%1:%2").arg(hrs).arg(mins, 2, 10, QChar('0'));
}

39

© 2013 Intel, 2012 KDAB

Static assertions (Q_COMPILER_STATIC_ASSERT)

• Really, really useful

• Qt provides a fallback for C++98:
‒ Check happens even in C++98
‒ But misses error message

Implemented fallback,
using everywhere

40

© 2013 Intel, 2012 KDAB

Thread-local storage
(Q_COMPILER_THREAD_LOCAL)

• Some compilers provide support in C++98 (and C):
‒ MSVC __declspec(thread)
‒ GCC, ICC, Clang __thread

• Qt provides a fallback (QThreadStorage)

Investigate adding an
unconditional macro

http://gcc.gnu.org/bugzilla/show_bug.cgi?id=57064

41

© 2013 Intel, 2012 KDAB

Thread-safe function statics (macro missing)

Q_GLOBAL_STATIC

• Two problems solved with one solution:
‒ Thread-safety of function (local-scope) statics
‒ Load-time overhead of global statics

• It uses a function (local-scope) static if it’s thread-safe
‒ All compilers adhering to the IA-64 C++ ABI

• Otherwise, it uses a mutex and a guard variable

42

© 2013 Intel, 2012 KDAB

Q_GLOBAL_STATIC features

Q_GLOBAL_STATIC_WITH_ARGS(MyClass, cachedData, (42))
int data()
{
 if (!cachedData.exists()) {
 // don't create the static if it doesn't exist yet
 return 42;
 }
 return cachedData->i;
}

// function possibly called during application shutdown
int dangerousData()
{
 MyClass *c = cachedData;
 return c ? c->i : -1; // c is null if it has been already destroyed
 // also:
 return cachedData.isDestroyed() ? -1 : cachedData->i;
}

43

© 2013 Intel, 2012 KDAB

Unicode strings
(Q_COMPILER_UNICODE_STRINGS)

String literals

• Very useful and welcome

• But never used directly...

QStringLiteral

• Always available:
‒ Better with lambdas and UTF-16

string literals
‒ Otherwise, falls back to

QString::fromUtf8

• Enforces that all source code
must be encoded in UTF-8

44

© 2013 Intel, 2012 KDAB

QStringLiteral goals

• Returns a QString

• No memory allocation → internal data stored in .rodata

auto s = []() -> QString {
 enum { Size = sizeof(u"" "Hello") / 2 - 1 };
 static const QStaticStringData<Size> literal = {
 Q_STRINGDATA_HEADER(Size),
 u"" "Hello"
 };
 return const_cast<QArrayData *>(&literal.header);
}

auto s = QStringLiteral("Hello");

expands to something like...

45

© 2013 Intel, 2012 KDAB

The standard committee stopped short...

• I wrote this on Linux:

• It printed:

• If I copy the file to Windows and compile with MSVC¹, what will
it print?

 u16string s = u"Résumé";
 cout << hex << s.at(1) << endl;

¹ once it supports Unicode strings

How do I print
the string?

46

© 2013 Intel, 2012 KDAB

Let’s try...

47

© 2013 Intel, 2012 KDAB

User-defined literals (Q_COMPILER_UDL)

• Neat, but we haven’t found use in Qt yet

• Will be better in C++1y (see N3599)

‒ “indeed [...] this form of literal operator has been requested more frequently
than any of the forms which C++11 permits” - N3599

template<char16_t... c> QString operator "" _q()
{
 static const QStaticStringData<sizeof...(c)> literal = {
 Q_STRINGDATA_HEADER(sizeof...(c)),
 { c... } // UTF-16 string
 }
 return &literal.header;
}

N3599: http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2013/n3599.html

48

© 2013 Intel, 2012 KDAB

Latent bugs

• Some code is almost never compiled in C++11 mode
‒ e.g., Windows code, due to MSVC and older GCC versions in MinGW

• Errors show up when the user upgrades (or downgrades!)

We need to keep an eye
for bug reports

49

© 2013 Intel, 2012 KDAB

The future

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2013/n3599.html

50

© 2013 Intel, 2012 KDAB

C++1y auto function with no return type
(Q_COMPILER_AUTO_RETURN_TYPE)

• Proposed by N3386

• Implemented in GCC 4.8 with -std=c++1y
‒ No way to detect that flag

• Will most likely not use in Qt for a long time

51

© 2013 Intel, 2012 KDAB

Future directions

Finish what we started

• Move semantics

• Template export control

• Standard Library feature detection

• “Play” with compiler features

52

© 2013 Intel, 2012 KDAB

What we’d like to see in the language

• Complaints from previous slides

• Very little in terms of language
‒ C++11 was very good
‒ Probably things we don’t know we need

• Concepts & more meta-programming

• Modules

• Reflection – get rid of moc

53

© 2013 Intel, 2012 KDAB

How about the Standard Library?

• We don’t use much of the library

• But we’ll keep an eye out and contribute experience
‒ e.g., std::networking::uri (N3420, N3484, N3507, N3625)
‒ Event loop

• Would like to see simplification of common use-cases
‒ Converting int to std::string / std::u16string
‒ Dealing with user’s locale codec

54

© 2013 Intel, 2012 KDAB

We really need more from compilers and OSes

• realloc_inplace (N3495)

• futex (Linux) or WaitOnAddress (Windows 8)

• Support for SIMD with intrinsics

• Support for targeting multiple processor architectures

• Tooling like valgrind, helgrind, perf

• Something between all-or-nothing debugging symbols

• Tighter control over binary compatibility

55

© 2013 Intel, 2012 KDAB

Conclusion

56

© 2013 Intel, 2012 KDAB

Conclusions (1/2)

What most developers want:

• Put old version into maintenance mode

• Require C++11 for newer versions

If you can't afford that:

• Target both C++98 and C++11 simultaneously

In any case:

• Familiarise yourself with the C++11 memory model

57

© 2013 Intel, 2012 KDAB

Conclusions (2/2)

When targeting C++11 & C++98:

• Determine which minimum compiler versions you require

• Focus on features that require no client code changes

• Hide differences in macros

• Try to resist NIH, re-use Qt or Boost config macros

• Try to keep BC between C++11 and C++98 builds

58

© 2013 Intel, 2012 KDAB

Questions?

Thiago Macieira
thiago.macieira@intel.com

Links:
Website: http://qt-project.org
Mailing lists: http://lists.qt-project.org
IRC: #qt and #qt-labs on Freenode

	This is an Example of a Presentation Title Flowing on to Three Lines
	Basic Text
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 26
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

