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Component: Not Just a .h /.cpp  Pair 

1.          The .cpp file includes its .h file as the first                   
substantive line of code. 

2.          All logical constructs (effectively) having external 
physical linkage defined in a .cpp file are declared in 
the corresponding .h file. 

3.          All constructs having external physical linkage 
declared in a .h file (if defined at all) are defined 
within the component. 

4.          A component’s functionality is accessed via a 
#include of its header, and never via a forward 
(extern) declaration. 
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Polygon 

Point 

164 



1. Process & Architecture  

Logical Relationships 

Shape 

PointList 

PointList_Link 

Is-A Uses-in-the-Implementation 

Uses-in-the-Interface Uses in name only 

Polygon 

Point 

165 



1. Process & Architecture  

Implied Dependency 

Shape 

PointList 

PointList_Link 

Is-A Uses-in-the-Implementation 

Uses-in-the-Interface Uses in name only 

Depends-On 

Polygon 

Point 

166 



1. Process & Architecture  

Implied Dependency 

Shape 

PointList 

PointList_Link 

Is-A Uses-in-the-Implementation 

Uses-in-the-Interface Uses in name only 

Depends-On 

Polygon 

Point 

167 



1. Process & Architecture  

Level Numbers 

Shape 

PointList 

PointList_Link 

Is-A Uses-in-the-Implementation 

Uses-in-the-Interface Uses in name only 

Depends-On 

Polygon 

Point 

168 



1. Process & Architecture  

Level Numbers 

Shape 

PointList 

PointList_Link 

Is-A Uses-in-the-Implementation 

Uses-in-the-Interface 

1 1 

2 

Uses in name only 

Depends-On 

Polygon 

Point 

3 

169 



1. Process & Architecture  

Levelization 

Levelize (v.);  Levelizable (a.);  Levelization (n.) 
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Levelize (v.);  Levelizable (a.);  Levelization (n.) 
Usage: 
 

• We need to levelize that design – i.e., we need to make 
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Note that Lakos’96 described 9 different ways to untangle 
cyclic physical dependencies: Escalation, Demotion, 

Opaque Pointers, Dumb Data, Redundancy, Callbacks, 
Manager Class, Factoring, and Escalating Encapsulation. 178 
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Levelization Techniques (Summary) 

 
    Escalation – Moving mutually dependent functionality higher in the physical hierarchy. 
 
    Demotion – Moving common functionality lower in the physical hierarchy. 
 
    Opaque Pointers – Having an object use another in name only. 
 
    Dumb Data – Using Data that indicates a dependency on a peer object, but only in the context of a 

separate, higher-level object. 
 
    Redundancy – Deliberately avoiding reuse by repeating a small amount of code or data to avoid 

coupling. 
 
    Callbacks –  Client-supplied functions that enable lower-level subsystems to perform specific tasks 

in a more global context. 
 
    Manager Class – Establishing a class that owns and coordinates lower-level objects. 
 
    Factoring – Moving independently testable sub-behavior out of the implementation of complex 

component involved in excessive physical coupling. 
 
    Escalating Encapsulation – Moving the point at which implementation details are  hidden from 

clients to a higher level in the physical hierarchy.  
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Essential Physical Design Rules 

There are two: 

1.No Cyclic Physical 
Dependencies! 

2.No Long-Distance 
Friendships! 
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Single Solution Hierarchy of Solutions 

Not reusable 

independently.   

Single Solution 

Independently  

reusable.   
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There are four: 

1. Friendship. 
2. Cyclic Dependency. 
3. Single Solution. 
4. “Flea on an Elephant.” 
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Components  

Five levels of physical dependency: 

Level 5: 

Level 4: 

Level 3: 

Level 2: 

Level 1: 
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Components  

Only one level of physical aggregation: 

Level 5: 

Level 4: 

Level 3: 

Level 2: 

Level 1: 
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Packages  

Two levels of physical aggregation: 

“Dependency by 

Decree” 

(Metadata) 

“A Hierarchy of Component Hierarchies” 

205 



1. Process & Architecture  

Packages  

Two levels of physical aggregation: 

“Dependency by 

Decree” 
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Metadata governs, even absent of any components! 
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Packages  

Two levels of physical aggregation: 

Allowed  

Dependencies 

Metadata governs allowed dependencies. 
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Properties of an aggregate: 
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Packages  

Properties of an aggregate: 

Allowed Dependencies 

(Metadata) 

210 



1. Process & Architecture  

Packages  

Aggregate dependencies: 

Aggregate Level 3: 

Internally, 

dependencies 

among components 

are inferred. 

Allowed direct 

external  

dependencies 

are stated 

explicitly 

(with simple 

metadata). 

Aggregate Level 2: 

Aggregate Level 1: 
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Package Groups  

Package Groups 

Components 

Packages 

Important 
“Dependency by 

Decree” 
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What About a Fourth-Level Aggregate?  
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Logical/Physical Synergy 

There are two distinct aspects:   
1. Logical/Physical Coherence 

 Each logical subsystem is tightly encapsulated by 
a corresponding physical aggregate. 

2. Logical/Physical Name Cohesion 

 The precise physical location of the definition of 
a logical construct can be determined directly 
from its point of use (i.e., its qualified name).  
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1. Process & Architecture  

Logical/Physical Synergy 

There are two distinct aspects:   
1. Logical/Physical Coherence 

 Each logical subsystem is tightly encapsulated by 
a corresponding physical aggregate. 

2. Logical/Physical Name Cohesion 

 The precise physical location of the definition of 
a logical construct can be determined directly 
from its point of use (i.e., its qualified name).  
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1. Process & Architecture  

Logical/Physical Name Cohesion 

   Key Concept  

! 

!:: 

! 
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1. Process & Architecture  

Packages 

  Classical Definition 
• A package is an acyclic collection of components organized 

as a logically and physically cohesive unit. 
 

$ 

$ 

$ 
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High-Level Interpreter Architecture 

1. Process & Architecture  

Packages 

  

formatter 

interpreter 

evaluator parser 

runtime database 
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1. Process & Architecture  

Architecturally Significant Names 

  

bts 

BondPrice 

 cost.h cost.cpp 

#include <cost.h> 

BAD IDEA! 

Package Name: bts 

Component Name: cost 

Class Name: BondPrice 

Non-Cohesive Logical 

and Physical Names 
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1. Process & Architecture  

Architecturally Significant Names 

  Definition 
An entity is Architecturally Significant if its name (or 
symbol) is intentionally visible outside the UOR that 
defines it. 
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1. Process & Architecture  

Architecturally Significant Names 

  Definition 
An entity is Architecturally Significant if its name (or 
symbol) is intentionally visible outside the UOR that 
defines it. 
 

Design Rule 
The name of each 

– Unit Of Release (UOR) 
– (library) component 

must be unique throughout the enterprise. 

261 



1. Process & Architecture  

Physical Package Prefixes 

  Component Name Not Matching Package Name: 

cost 

bts 

BondPrice 

 cost.h cost.cpp 

#include <cost.h> 
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  Component Name Not Matching Package Name: 

cost 

bts 

BondPrice 

 cost.h cost.cpp 

#include <cost.h> 
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1. Process & Architecture  

Physical Package Prefixes 

  Design Rule 
Each component name begins with the name of the 
package in which it resides, followed by an underscore 
('_'). 
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Physical Package Prefixes 

  Component Prefix Doesn’t Match Package Name: 

abc_cost 

bts 

BondPrice 

 abc_cost.h abc_cost.cpp 

#include <abc_cost.h> 

265 



1. Process & Architecture  

Physical Package Prefixes 

  Component Prefix Doesn’t Match Package Name: 

abc_cost 

bts 

BondPrice 

 abc_cost.h abc_cost.cpp 

#include <abc_cost.h> 
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Physical Package Prefixes 

  Component Prefix Matches Package Name: 

bts_cost 

bts 

BondPrice 

 bts_cost.h bts_cost.cpp 

#include <bts_cost.h> 
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Physical Package Prefixes 

  Component Prefix Matches Package Name: 

bts_cost 

bts 

BondPrice 

 bts_cost.h bts_cost.cpp 

#include <bts_cost.h> 
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1. Process & Architecture  

Logical Package Namespaces 

  Package Namespace Should Match Package Name 

bts 

bts 

BondPrice 

 bts_cost.h bts_cost.cpp 

#include <bts_cost.h> 
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Logical Package Namespaces 

  Package Namespace Matches Package Name 

bts 

bts 

BondPrice 

 bts_cost.h bts_cost.cpp 

#include <bts_cost.h> 

bts:: 
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Logical Package Namespaces 

  Package Namespace Matches Package Name 

bts 

bts 

BondPrice 

 bts_cost.h bts_cost.cpp 

#include <bts_cost.h> 

bts:: 
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1. Process & Architecture  

(Logical) Enterprise-Wide Namespace 

  Package Namespace Matches Package Name 

 

bts 

BondPrice 

 bts_cost.h bts_cost.cpp 

#include <bts_cost.h> 

bts:: 

MyLongCompanyName:: 
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Logical Package Namespaces 

  Package Namespace Matches Package Name 

bts 

bts 

BondPrice 

 bts_cost.h bts_cost.cpp 

#include <bts_cost.h> 

bts:: 
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1. Process & Architecture  

Logical/Physical Name Cohesion 

  Design Goal 
The use of each logical entity should alone be sufficient 
to know the component in which it is defined. 
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1. Process & Architecture  

Logical/Physical Name Cohesion 

  Design Goal 
The use of each logical entity should alone be sufficient 
to know the component in which it is defined. 

 
Design Rule 
The (lowercased) name of every logical construct (other 
than free operators) declared at package-namespace 
scope must have, as a prefix, the name of the component 
that implements it. 
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1. Process & Architecture  

Logical/Physical Name Cohesion 

  Class name should match  Component name 

BondPrice  cost 

bts 

BondPrice 

 bts_cost.h bts_cost.cpp 

#include <bts_cost.h> 

bts:: 
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Logical/Physical Name Cohesion 

  Class name should match  Component name 

BondPrice  cost 

bts 

BondPrice 

 bts_cost.h bts_cost.cpp 

#include <bts_cost.h> 

bts:: 
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1. Process & Architecture  

Logical/Physical Name Cohesion 

  Class name does match  Component name 

BondPrice  bondprice 

bts 

BondPrice 

 bts_bondprice.h bts_bondprice.cpp 

#include <bts_bondprice.h> 

bts:: 
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Logical/Physical Name Cohesion 

  Class name does match  Component name 

BondPrice  bondprice 

bts 

BondPrice 

 bts_bondprice.h bts_bondprice.cpp 

#include <bts_bondprice.h> 

bts:: 
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1. Process & Architecture  

Logical/Physical Name Cohesion 

Some more details: 

Namespaces used for enterprise and package. 

Only classes* at package namespace scope. 

No free functions: C-style functions are 
implemented as static members of a struct. 

Operators are defined only in components that 
also define at least one of their parameter types. 

Ultra short package names mean: No using! 

*Also structs, class templates, operators, and certain aspect functions (e.g., swap). 
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Only classes* at package namespace scope. 

No free functions: C-style functions are 
implemented as static members of a struct. 

Operators are defined only in components that 
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1. Process & Architecture  

Logical/Physical Name Cohesion 

Package naming is more than just a convention: 

subc_comp4 

subim_comp1 

subc_comp2 

subim_comp2 

subc_comp1 subc_comp3 
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Package naming is more than just a convention: 

1. Process & Architecture  

Logical/Physical Name Cohesion 

subc_comp4 

subim_comp1 

subc_comp2 

subim_comp2 

subc_comp1 subc_comp3 

subc 

subim 
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1. Process & Architecture  

Logical/Physical Name Cohesion 

Package naming is more than just a convention: 

subw_comp1 

subim_comp1 

subt_comp2 

subim_comp2 

subt_comp1 subt_comp3 

subw 

subim 

subt 
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1. Process & Architecture  

Logical/Physical Name Cohesion 

subw_comp1 

subim_comp1 

subt_comp1 

subim_comp2 

subp_comp1 subt_comp2 

subw 

subim 

subp subt 

  

Package Group 
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Logical/Physical Name Cohesion 

subw_comp1 

subim_comp1 

subt_comp1 

subim_comp2 

subp_comp1 subt_comp2 

subw 

subim 

subp subt 

Package Group 
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Logical/Physical Name Cohesion 

subw_comp1 

subim_comp1 

subt_comp1 

subim_comp2 

subp_comp1 subt_comp2 

subw 

subim 

subp subt 

sub 

Package Group 
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Logical/Physical Name Cohesion 

subw_comp1 

subim_comp1 

subt_comp1 

subim_comp2 

subp_comp1 subt_comp2 

subw 

subim 

subp subt 

sub 

Package Group 

Exactly Three Characters 
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    … 
    bool flag = bdlt::Date::isValidYMD(1959, 3, 8); 
    …    
 
  

1. Process & Architecture  

Logical/Physical Name Cohesion 
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    … 
    bool flag = bdlt::Date::isValidYMD(1959, 3, 8); 
    …    
 
  

1. Process & Architecture  

Logical/Physical Name Cohesion 

Package Group:  bdl 

Package:              bdlt 

Component:       bdlt_date 
Class:                   bdlt::Date 
Function:             bdlt::Date::isValidYMD 
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Logical/Physical Name Cohesion 

    … 
    bool flag = bdlt::Date::isValidYMD(1959, 3, 8); 
    …                              
                                  libraries 
                                   /   |   \   
                                      bdl              Package Groups 
                                   /   |    \   
                            ____bdlt____     Packages 
                            … 
            bdlt_date.h  Components 
            bdlt_date.cpp 

            bdlt_date.t.cpp 
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1. Process & Architecture  

Unit Of Release 

  

root 

libraries applications 

m_app1 ... m_app3 m_app2 lib1 ... lib3 lib2 

UOR 
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1. Process & Architecture  

Development vs. Deployment 

abc 

libraries 

include 

hp sun ... abc ibm 

libabc.a 

libabc.so 

libabc_dbg.a 

libabc_dbg.so 

*.h 
lib 

(Really: unix-SunOS-sparc-5.10-cc-5.11) 

One-to-Many 

root 

Source Code Deployment 
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Development vs. Deployment 

abc 

libraries 

hp sun ... abc ibm 

libabc.a 

libabc.so 

libabc_dbg.a 

libabc_dbg.so 

lib 

One-to-Many 

root 

Source Code Deployment 

include 

*.h 

(Really: unix-SunOS-sparc-5.10-cc-5.11) 
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1. Process & Architecture  

Development vs. Deployment 

abc 

libraries 

include 

hp sun ... abc 

Source Code 

ibm 

libabc.a 

libabc.so 

libabc_dbg.a 

libabc_dbg.so 

*.h 

lib 

One-to-Many 

Deployment 

root 

(Really: unix-SunOS-sparc-5.10-cc-5.11) 
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1. Process & Architecture  

Designing with Dependency in Mind 

Good Physical Design…   
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1. Process & Architecture  

Designing with Dependency in Mind 

Good Physical Design…   

Is not an afterthought. 

Is an integral part of logical design. 

Is something we first consider long 
before we start to write code. 
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1. Process & Architecture  

Designing with Dependency in Mind 

Good Physical Design…   

Is not an afterthought. 

Is an integral part of logical design. 

Is something we first consider long 
before we start to write code. 

Is something we must consider when 
decomposing the problem itself! 
 313 



Outline 

0.   Goals 
                What we are trying to do, for whom, and how. 

1. Process & Architecture 
Organizing Software as Components, Packages, & Package Groups.  

2. Design & Implementation 
Using Class Categories, Value Semantics, & Vocabulary Types. 

3. Verification & Testing 
Component-Level  Test Drivers, Peer Review, & Defensive Checks. 

4. Bloomberg Development Environment 
Rendered as Fine-Grained Hierarchically Reusable Components. 
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2. Design & Implementation 

Essential Strategies and Techniques 

Integral to our design process are: 

a) Common Class Categories 

b) Unique Vocabulary Types 

c) Design By Contract 

d) Appropriately Narrow Contracts 

e) An Overriding Customer Focus 
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2. Design & Implementation 

The Value of a “Value” 

Getting Started: 

• Not all useful C++ classes are value types. 

 

 

318 



2. Design & Implementation 

The Value of a “Value” 

Getting Started: 

• Not all useful C++ classes are value types. 

• Still, value types form an important category. 

 

 

319 
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Getting Started: 

• Not all useful C++ classes are value types. 

• Still, value types form an important category. 

• Let’s begin with understanding properties of 
value types. 
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2. Design & Implementation 

The Value of a “Value” 

Getting Started: 

• Not all useful C++ classes are value types. 

• Still, value types form an important category. 

• Let’s begin with understanding properties of 
value types. 

• Then generalize to build a small type-category 
hierarchy. 

 

321 



2. Design & Implementation 

So, what do we mean by “value”? 

class Date { 

     short d_year; 

     char  d_month; 

     char  d_day; 

  public: 
         // … 

    int year(); 

    int month(); 

    int day(); 

}; 
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2. Design & Implementation 

So, what do we mean by “value”? 

class Date { 

     short d_year; 

     char  d_month; 

     char  d_day; 

  public: 
         // … 

    int year() 

    int month() 

    int day() 

}; 

 

  

int day() const; 

int month() const; 

int year() const; 
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2. Design & Implementation 

So, what do we mean by “value”? 

class Date { 

     short d_year; 

     char  d_month; 

     char  d_day; 

  public: 
         // … 

    int year(); 

    int month(); 

    int day(); 

}; 

 

class Date { 

      

     int d_serial; 

     

  public:  
          // … 

    int year(); 

    int month(); 

    int day(); 

}; 
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2. Design & Implementation 

So, what do we mean by “value”? 

class Date { 

     short d_year; 

     char  d_month; 
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class Date { 

      

     int d_serial; 

     

  public:  
          // … 

    int year(); 

    int month(); 

    int day(); 

}; 
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2. Design & Implementation 

So, what do we mean by “value”? 

         Salient Attributes 
  

            

           int year(); 

           int month(); 

           int day();  
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2. Design & Implementation 

So, what do we mean by “value”? 

         Salient Attributes 
The documented set of (observable) 
named attributes of a type T that 
must respectively “have” (refer to) 
the same value in order for two 
instances of T to “have” (refer to) the 
same value. 
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2. Design & Implementation 

So, what do we mean by “value”? 

class Time { 

     char  d_hour; 

     char  d_minute; 

     char  d_second; 

     short d_millisec; 

  public: 

    // … 

    int hour(); 

    int minute(); 

    int second(); 

    int millisecond(); 

}; 

 

class Time { 

    int d_mSeconds; 

 

 

 

  public: 

    // … 

    int hour(); 

    int minute(); 

    int second(); 

    int millisecond(); 

}; 
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class Time { 

   Internal Representation 

     

  

 

  public: 

    // … 

    int hour(); 

    int minute(); 

    int second(); 

    int millisecond(); 

}; 

 

2. Design & Implementation 

So, what do we mean by “value”? 

class Time { 

   Internal Representation 

      

     

      

  public: 

    // … 

    int hour(); 

    int minute(); 

    int second(); 

    int millisecond(); 

}; 

 

VALUE 
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2. Design & Implementation 

So, what do we mean by “value”? 

Value: 
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So, what do we mean by “value”? 

Value: 
• An “interpretation” of object state –  

i.e., Salient Attributes, not the object 
state itself. 
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2. Design & Implementation 

So, what do we mean by “value”? 

Value: 
• An “interpretation” of object state –  

i.e., Salient Attributes, not the object 
state itself. 

• No non-object state is relevant. 
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2. Design & Implementation 

What are “Salient Attributes”? 
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2. Design & Implementation 

What are “Salient Attributes”? 

class vector { 

   T         *d_array_p; 

    size_type  d_capacity; 

    size_type  d_size; 
          // ... 

  public: 

    vector(); 

    vector(const vector<T>& orig); 
 

    // ... 

}; 
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2. Design & Implementation 

What are “Salient Attributes”? 

class vector { 

   T         *d_array_p; 

    size_type  d_capacity; 

    size_type  d_size; 
          // ... 

  public: 

    vector(); 

    vector(const vector<T>& orig); 
 

    // ... 

}; 
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2. Design & Implementation 

What are “Salient Attributes”? 

Consider std::vector<int>:   

            What are its salient attributes? 
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2. Design & Implementation 

What are “Salient Attributes”? 

Consider std::vector<int>:   

            What are its salient attributes? 
 

1. The number of elements: size(). 
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2. Design & Implementation 

What are “Salient Attributes”? 

Consider std::vector<int>:   

            What are its salient attributes? 
 

1. The number of elements: size(). 

2. The values of the respective elements. 

3. What about capacity()? 

   How is the client supposed to know for sure? 
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2. Design & Implementation 

What are “Salient Attributes”? 

Consider std::vector<int>:   

            What are its salient attributes? 
 

1. The number of elements: size(). 

2. The values of the respective elements. 

3. What about capacity()? 

   How is the client supposed to know for sure? 

They must be documented (somewhere). 
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Note that two distinct objects a and b of 
type T that have the same value might not 
exhibit “the same” observable behavior. 

                      However  
1. If a and b initially have the same value, and 

2. (absent any exceptions or undefined behavior) 
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Note that two distinct objects a and b of 
type T that have the same value might not 
exhibit “the same” observable behavior. 

                      However  
1. If a and b initially have the same value, and 

2. the same operation is applied to each object, then 

3. (absent any exceptions or undefined behavior) 
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Value-Semantic Properties 

std::vector<int> a; 

 

a.reserve(65536);      

std::vector<int> b(a);// is capacity copied?  

assert(a == b) 

a.resize(65536);      // no reallocation! 

b.resize(65536);      // memory allocation? 
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Note that two distinct objects a and b of 
type T that have the same value might not 
exhibit “the same” observable behavior. 

                      However  
1. If a and b initially have the same value, and 

2. the same operation is applied to each object, then 

3. (absent any exceptions or undefined behavior) 
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std::vector<int> a; 

 

a.reserve(65536);      

std::vector<int> b(a);// is capacity copied?  

assert(a == b) 

a.resize(65536);      // no reallocation! 

b.resize(65536);      // memory allocation? 
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Note that two distinct objects a and b of 
type T that have the same value might not 
exhibit “the same” observable behavior. 

                      However  
1. If a and b initially have the same value, and 

2. the same operation is applied to each object, then 

3. (absent any exceptions or undefined behavior) 
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std::vector<int> a; 

 

a.reserve(65536);      

std::vector<int> b(a);// is capacity copied?  

assert(a == b) 

a.resize(65536);      // no reallocation! 

b.resize(65536);      // memory allocation? 
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Note that two distinct objects a and b of 
type T that have the same value might not 
exhibit “the same” observable behavior. 

                      However  
1. If a and b initially have the same value, and 

2. the same operation is applied to each object, then 

3. (absent any exceptions or undefined behavior) 

 

2. Design & Implementation 

Value-Semantic Properties 

349 



Note that two distinct objects a and b of 
type T that have the same value might not 
exhibit “the same” observable behavior. 

                      However  
1. If a and b initially have the same value, and 

2. the same operation is applied to each object, then 

3. (absent any exceptions or undefined behavior) 
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Note that two distinct objects a and b of 
type T that have the same value might not 
exhibit “the same” observable behavior. 

                      However  
1. If a and b initially have the same value, and 

2. the same operation is applied to each object, then 
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Note that two distinct objects a and b of 
type T that have the same value might not 
exhibit “the same” observable behavior. 

                      However  
1. If a and b initially have the same value, and 

2. the same operation is applied to each object, then 

3. (absent any exceptions or undefined behavior) 
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Note that two distinct objects a and b of 
type T that have the same value might not 
exhibit “the same” observable behavior. 

                      However  
1. If a and b initially have the same value, and 

2. the same operation is applied to each object, then 

3. (absent any exceptions or undefined behavior) 

4. both objects will again have the same value! 
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Note that two distinct objects a and b of 
type T that have the same value might not 
exhibit “the same” observable behavior. 

                      However  
1. If a and b initially have the same value, and 

2. the same operation is applied to each object, then 

3. (absent any exceptions or undefined behavior) 

4. both objects will again have the same value! 
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Note that two distinct objects a and b of 
type T that have the same value might not 
exhibit “the same” observable behavior. 

                      However  
1. If a and b initially have the same value, and 

2. the same operation is applied to each object, then 

3. (absent any exceptions or undefined behavior) 

4. both objects will again have the same value! 
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Note that two distinct objects a and b of 
type T that have the same value might not 
exhibit “the same” observable behavior. 

                      However  
1. If a and b initially have the same value, and 

2. the same operation is applied to each object, then 

3. (absent any exceptions or undefined behavior) 

4. both objects will again have the same value! 
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Note that two distinct objects a and b of 
type T that have the same value might not 
exhibit “the same” observable behavior. 

                      However  
1. If a and b initially have the same value, and 

2. the same operation is applied to each object, then 

3. (absent any exceptions or undefined behavior) 

4. both objects will again have the same value! 
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Value-Semantic Properties 
There is a lot more to this story! 
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What is its state?    
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What is its state?  OFF    
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What is its state?    
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What is its state?   ON    
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What is its state?   ON 

What is its value?   $5.00 
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What is its state?   ON 

What is its value?   ? 
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What is its state?   ON 

What is its value?   £5.00 ? 
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What is its state?   ON 

What is its value?   $5.00 ? 

Cheap at half  
the price! 

2. Design & Implementation 

Does state always imply a “value”? 

368 



What is its state?   ON 

What is its value?   ? 

Any notion of “value” 

here would be artificial! 
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Does state always imply a “value”? 
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Not every stateful object   has an obvious value. 
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Does state always imply a “value”? 
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Not every stateful object 

• TCP/IP Socket 

• Thread Pool 

• Condition Variable 

• Mutex Lock 

• Reader/Writer Lock 

• Scoped Guard 

 

 

has an obvious value. 
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Not every stateful object 

• TCP/IP Socket 

• Thread Pool 

• Condition Variable 

• Mutex Lock 

• Reader/Writer Lock 

• Scoped Guard 

 

 

has an obvious value. 

• Base64 En(De)coder 

• Expression Evaluator 

• Language Parser 

• Event Logger 

• Object Persistor 

• Widget Factory 
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Not every stateful object 

• TCP/IP Socket 

• Thread Pool 

• Condition Variable 
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2. Design & Implementation 

Categorizing Object Types 

MyObjectType 
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The first question: “Does it have state?” 

Object 
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The first question: “Does it have state?” 

Object 

Stateful Object Stateless Object 
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The first question: “Does it have state?” 

Object 

Stateful Object Stateless Object 

DateUtil IsConvertible<U,V> std::less<T> 
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The first question: “Does it have state?” 

Object 

Stateless Object 

DateUtil 

struct DateUtil { 

    // This struct provides a namespace  

    // for a suite of non-primitive functions 

    // operating on Date objects. 

 

    static Date lastDateInMonth(const Date& value); 

        // Return the last date in the same month 

        // as the specified date 'value'.  Note  

        // that the particular day of the month  

        // of 'value' is ignored. 

 

    // … 

 

} 
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The first question: “Does it have state?” 

Object 

Stateless Object 

DateUtil 

struct DateUtil { 

    // This struct provides a namespace  

    // for a suite of non-primitive functions 

    // operating on Date objects. 

 

    static Date lastDateInMonth(const Date& value); 

        // Return the last date in the same month 

        // as the specified date 'value'.  Note  

        // that the particular day of the month  

        // of 'value' is ignored. 

 

    // … 

 

} 
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The second question: “Does it have value?” 

Object 

Stateful Object Stateless Object 
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The second question: “Does it have value?” 

Object 

Stateful Object Stateless Object 
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Categorizing Object Types 

Mechanism Value Type 
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2

2

2

2

no yes

yesno
Takes allocator?

Has “value”?

Value-

Semantic Type

Is object-

instantiable?

Type only

2

Mechanism

2. Design & Implementation 

Top-Level Categorizations 

 
 
 
 
 
 
 

start here 
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2. Design & Implementation 

The Big Picture  
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2. Design & Implementation 

Essential Strategies and Techniques 

Integral to our design process are: 

a) Common Class Categories 

b) Unique Vocabulary Types 

c) Design By Contract 

d) Appropriately Narrow Contracts 

e) An Overriding Customer Focus 
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Essential Strategies and Techniques 

Integral to our design process are: 

a) Common Class Categories 

b) Unique Vocabulary Types 

c) Design By Contract 

d) Appropriately Narrow Contracts 

e) An Overriding Customer Focus 
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A key feature of reuse is interoperability. 
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A key feature of reuse is interoperability. 

• We achieve interoperability by the 
ubiquitous use of: 

Vocabulary Types 
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my::Date 

(An Example) 

2. Design & Implementation 

Vocabulary Types 

390 



  

f(my::Date) 

my::DateUtil 

(An Example) 
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my::Date 



  

f(my::Date) 

my::DateUtil 

your::Date 

(An Example) 

2. Design & Implementation 

Vocabulary Types 

392 

my::Date 



  

f(my::Date) g(your::Date) 

your::DateUtil my::DateUtil 

(An Example) 
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their::DateUtil 

f(my::Date) g(your::Date) 

my::DateUtil 

my::Date 

(An Example) 
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your::DateUtil 



  

their::DateUtil 

f(my::Date) g(your::Date) 

h(???) 

my::DateUtil 

(An Example) 
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their::DateUtil 

Interoperability Problem! 

f(my::Date) g(your::Date) 

h(???) 

my::DateUtil 

(An Example) 
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their::DateUtil 

f(my::Date) g(your::Date) 

h(???) 

my::DateUtil 

(An Example) 
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What should we do? 

my::Date your::Date 

your::DateUtil 



  

their::DateUtil 

What should we do? 

f(my::Date) g(your::Date) 

h(???) 

my::DateUtil 

(An Example) 
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the::Date 

your::DateUtil 



What should we do? 

  

their::DateUtil 

f(the::Date) g(the::Date) 

h(the::Date) 

my::DateUtil 

the::Date 

(An Example) 
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your::DateUtil 



No Interoperability Problem! 

  

their::DateUtil 

f(the::Date) g(the::Date) 

h(the::Date) 

my::DateUtil 

the::Date 

(An Example) 
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On the other hand… 

 

Distinct algebraic structures  

deserve distinct C++ types. 
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Consider operator++ on an int versus a Date: 
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Consider operator++ on an int versus a Date: 
 

int x(20080331); 
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Consider operator++ on an int versus a Date: 
 

int x(20080331); 

Date y(2008, 03, 31); 
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Consider operator++ on an int versus a Date: 
 

int x(20080331); 

Date y(2008, 03, 31); 
 

++x:   
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Consider operator++ on an int versus a Date: 
 

int x(20080331); 

Date y(2008, 03, 31); 
 

++x: 20080332 

 
 

Basic operations for 
type int lead to 

invalid “date” values. 
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Consider operator++ on an int versus a Date: 
 

int x(20080331); 

Date y(2008, 03, 31); 
 

++x: 20080332 

++y:  
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Consider operator++ on an int versus a Date: 
 

int x(20080331); 

Date y(2008, 03, 31); 
 

++x: 20080332 

++y: (2008, 04, 01) 
 

Operations for 
type Date 
preserve 

invariants. 
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Consider operator++ on an int versus a Date: 
 

int x(20080331); 

Date y(2008, 03, 31); 
 

++x: 20080332 

++y: (2008, 04, 01) 
 

Hence, date values deserve their own C++ type! 
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The “type name” and “variable name” of an 
object serve two distinct roles: 

1. The type name defines the algebraic 
structure. 

2. The variable name indicates intent/purpose 
in context. 

          int    age; 

          string filename; 
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The “type name” and “variable name” of an 
object serve two distinct roles: 

1. The type name defines the algebraic 
structure. 

2. The variable name indicates intent/purpose 
in context. 

          int    age; 

          string filename; 
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integer 
• Age 

• Shoe Size 

• Account Number 

• Year 

• Day of Month 

• Number of Significant Digits 

 

 

string 
• Text 

• Word 

• Username 

• Filename 

• Password 

• Regular Expression 

 

An integer or string value used in a particular 
context should not be a separate type: 
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• Account Number 

• Year 

• Day of Month 

• Number of Significant Digits 

 

 

string 
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• Word 

• Username 

• Filename 

• Password 

• Regular Expression 

 

An integer or string value used in a particular 
context should not be a separate type: 
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integer 
• Age 

• Shoe Size 

• Account Number 

• Year 

• Day of Month 

• Number of Significant Digits 

 

 

string 
• Text 

• Word 

• Username 

• Filename 

• Password 

• Regular Expression 

 

An integer or string value used in a particular 
context should not be a separate type: 
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Templates CAN 
present A 

VOCABULARY 
PROBLEM 
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Template parameters can be partitioned into 
three basic categories: 
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Template parameters can be partitioned into 
three basic categories: 

• Essential Parameters 

– Parameters that must be specified in all cases. 
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Template parameters can be partitioned into 
three basic categories: 

• Essential Parameters 

– Parameters that must be specified in all cases. 

• Interface Policies 
– Optional parameters that do affect logical behavior. 
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Template parameters can be partitioned into 
three basic categories: 

• Essential Parameters 

– Parameters that must be specified in all cases. 

• Interface Policies 
– Optional parameters that do affect logical behavior. 

• Implementation Policies 
– Optional parameters that do not affect logical behavior. 
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Essential Parameters 
• Are necessary for basic operation. 

• Typically do not have reasonable defaults. 
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Essential Parameters 
• Are necessary for basic operation. 

• Typically do not have reasonable defaults. 

Example:  

template <class T> class vector; 
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Essential Parameters 
• Are necessary for basic operation. 

• Typically do not have reasonable defaults. 

Example:  

template <class T> class vector; 

 

 

Essential 
Parameter 
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Essential Parameters 
• Are necessary for basic operation. 

• Typically do not have reasonable defaults. 

Example:  

template <class T> class vector; 
 

template <class Iter> 

void sort(Iter begin, Iter end); 
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Essential Parameters 
• Are necessary for basic operation. 

• Typically do not have reasonable defaults. 

Example:  

template <class T> class vector; 
 

template <class Iter> 

void sort(Iter begin, Iter end); 

 

 

Essential 
Parameter 
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Interface Policies 
• Affect intended “logical” behavior. 

• Typically do have reasonable defaults. 
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Interface Policies 
• Affect intended “logical” behavior. 

• Typically do have reasonable defaults. 

Example:  
 

template <class T, class C = less<T>> 

class OrderedSet; 
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Interface Policies 
• Affect intended “logical” behavior. 

• Typically do have reasonable defaults. 

Example:  
 

template <class T, class C = less<T>> 

class OrderedSet; 

 

 

Essential 
Parameter 
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Interface Policies 
• Affect intended “logical” behavior. 

• Typically do have reasonable defaults. 

Example:  
 

template <class T, class C = less<T>> 

class OrderedSet; 

 

 

Interface 
Policy 

Essential 
Parameter 
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Implementation Policies 
• DO NOT affect intended “logical” behavior. 

• Typically do have reasonable defaults. 
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Implementation Policies 
• DO NOT affect intended “logical” behavior. 

• Typically do have reasonable defaults. 

Example:  

template <class T,  

         class C = hash<T>, zzzzz 

zzzzzzzz int LOAD_FACTOR = 1> 

class UnorderedSet; 
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Implementation Policies 
• DO NOT affect intended “logical” behavior. 

• Typically do have reasonable defaults. 

Example:  

template <class T,  

         class C = hash<T>, zzzzz 

zzzzzzzz int LOAD_FACTOR = 1> 

class UnorderedSet; 

 

 

Essential 
Parameter 
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Implementation Policies 
• DO NOT affect intended “logical” behavior. 

• Typically do have reasonable defaults. 

Example:  

template <class T,  

         class C = hash<T>, zzzzz 

zzzzzzzz int LOAD_FACTOR = 1> 

class UnorderedSet; 

 

 

Implementation 
Policy 

Essential 
Parameter 
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Implementation Policies 
• DO NOT affect intended “logical” behavior. 

• Typically do have reasonable defaults. 

Example:  

template <class T,  

         class C = hash<T>, zzzzz 

zzzzzzzz int LOAD_FACTOR = 1> 

class UnorderedSet; 

 

 

Implementation 
Policy 

Essential 
Parameter 

Implementation 
Policy 
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Implementation Policies 
• DO NOT affect intended “logical” behavior. 

• Typically do have reasonable defaults. 

Example:  

template <class T,  

          class L = DefaultLock> 

class Queue; 
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Implementation Policies 
• DO NOT affect intended “logical” behavior. 

• Typically do have reasonable defaults. 

Example:  

template <class T,  

          class L = DefaultLock> 

class Queue; 

 

 

Essential 
Parameter 
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Implementation Policies 
• DO NOT affect intended “logical” behavior. 

• Typically do have reasonable defaults. 

Example:  

template <class T,  

          class L = DefaultLock> 

class Queue; 

 

 

Essential 
Parameter 

Implementation 
Policy 
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Problem!  

 

Template Parameters 
Affect Object Type. 
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Essential Parameters: 
 

    vector<int> a; 

    vector<int> b; 

    a = b; 

2. Design & Implementation 
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Essential Parameters: 
 

    vector<int> a; 

    vector<double> b; 

    a = b; 

Compiler 
Error 
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Interface Policies: 
 

OrderedSet<int> a; 

OrderedSet<int> b; 

if (a == b) { 

    // … 

2. Design & Implementation 
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Interface Policies: 
 

OrderedSet<int> a; 

OrderedSet<int, MyLess> b; 

if (a == b) { 

    // … Compiler 
Error 
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Implementation Policies: 
 

 

void f(Queue<double> *queue); 
 

void g() 

{ 

    Queue<double> q;  

    f(&q); 

} 
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Implementation Policies: 
 

 

void f(Queue<double> *queue); 
 

void g() 

{ 

    Queue<double, MyLock> q;  

    f(&q); 

} 
Compiler 

Error 
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Implementation Policies: 
 

template<class T> 

void f(T *queue); 
 

void g() 

{ 

    Queue<double, MyLock> q;  

    f(&q); 

} 
Compiles 

Fine 

The Entire 
Implementation 

Must Now 
Reside In the 
Header File 
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Solution!  

 

   Runtime 
Implementation 

Policies 
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Lock 

MyLock 

Queue<int> 
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Lock 

2. Design & Implementation 

Runtime Implementation Policies 

448 



class Lock { 

    // Pure abstract (protocol) class. 

  public: 

    virtual ~Lock(); 

   

    virtual void lock() = 0; 

    virtual void unlock() = 0; 

};  
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class Lock { 

    // Pure abstract (protocol) class. 

  public: 

    virtual ~Lock(); 

   

    virtual void lock() = 0; 

    virtual void unlock() = 0; 

};  
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Lock 

Queue<int> 
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template<class T> class Queue { 

    // … Concrete value-semantic container type. 

    Lock *d_lock_p; 

  public: 

    Queue(Lock *lock = 0); 

    Queue(const Queue<T>& other, Lock *lock = 0); 
 

  // … 

    void pushBack(const T& value); 

  // … 

}; 
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Lock 

MyLock 

Queue<int> 
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class MyLock : public Lock { 

    // … Concrete mechanism. 

  private: 

    MyLock(const MyLock&); 

    MyLock& operator=(const MyLock&); 

  public: 

    MyLock(); 

    virtual ~MyLock();   

    virtual void lock(); 

    virtual void unlock(); 

}; 

2. Design & Implementation 

Runtime Implementation Policies 

454 



class MyLock : public Lock { 

    // … Concrete mechanism. 

   

    MyLock(const MyLock&)            = delete; 

    MyLock& operator=(const MyLock&) = delete; 

  public: 

    MyLock(); 

    virtual ~MyLock();   

    virtual void lock(); 

    virtual void unlock(); 

}; 
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Or, in  
C++11 



  

Lock 

MyLock 

Queue<int> 

f(Queue<int> *q) g() 
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void f(Queue<double> *q); 
 

void g() 

{ 

    MyLock lock; 

    Queue<double> queue(&lock);  

    f(&queue); 

} 
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void f(Queue<double> *q); 
 

void g() 

{ 

    MyLock lock; 

    Queue<double> queue(&lock);  

    f(&queue); 

} 

2. Design & Implementation 

Runtime Implementation Policies 

458 



void f(Queue<double> *q); 
 

void g() 

{ 

    MyLock lock; 

    Queue<double> queue(&lock);  

    f(&queue); 

} 
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void f(Queue<double> *q); 
 

void g() 

{ 

    MyLock lock; 

    Queue<double> queue(&lock);  

    f(&queue); 

} 
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void f(Queue<double> *q); 
 

void g() 

{ 

    MyLock lock; 

    Queue<double> queue(&lock);  

    f(&queue); 

} 
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void f(Queue<double> *q); 
 

void g() 

{ 

    MyLock lock; 

    Queue<double> queue(&lock);  

    f(&queue); 

} 

2. Design & Implementation 

Runtime Implementation Policies 
 

Question: 
What is the lifetime 
of the lock relative 

to the queue? 
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What is a memory allocator? 
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What is a memory allocator? 

• It is a mechanism used to supply memory. 
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What is a memory allocator? 

• It is a mechanism used to supply memory. 

• It does not have value semantics. 

 

 

2. Design & Implementation 

Memory Allocators 

465 



What is a memory allocator? 

• It is a mechanism used to supply memory. 

• It does not have value semantics. 

• It is an Orthogonal Implementation Policy. 
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What is a memory allocator? 

• It is a mechanism used to supply memory. 

• It does not have value semantics. 

• It is an Orthogonal Implementation Policy. 

• It can (should) be a Runtime Policy. 
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What is a memory allocator? 

• It is a mechanism used to supply memory. 

• It does not have value semantics. 

• It is an Orthogonal Implementation Policy. 

• It can (should) be a Runtime Policy. 
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What is a memory allocator? 

• It is a mechanism used to supply memory. 

• It does not have value semantics. 

• It is an Orthogonal Implementation Policy. 

• It can (should) be a Runtime Policy. 
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What is a memory allocator? 

 

It should look like a 
“Lock” or any other 
abstract mechanism. 
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What is a memory allocator? 

 

It should look like a 
“Lock” or any other 
abstract mechanism. 
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An allocator is a mechanism. 
 double f(double *a, size_t n) 

  {    

    double result = init(a, n); 
     bdlma::BufferedSequentialAllocator a; 

     bsl::vector<double> tmp(&a); 

 

     // …  

 

     return result; 

   } 
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An allocator is a mechanism. 
 double f(double *a, size_t n) 

  {    

    double result = init(a, n); 
     bdlma::BufferedSequentialAllocator a; 

     bsl::vector<double> tmp(&a); 

 

     // …  

 

     return result; 

   } 
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An allocator is a mechanism. 
 double f(double *a, size_t n) 

  {    

    double result = init(a, n); 
     bdlma::BufferedSequentialAllocator a; 

     bsl::vector<double> tmp(&a); 

 

     // …  

 

     return result; 

   } 

2. Design & Implementation 

Polymorphic Memory Allocators 

See the 
bslma_allocator 

component. 

(Halpern-13:  Polymorphic Allocators, N3525) 
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2. Design & Implementation 

Essential Strategies and Techniques 

Integral to our design process are: 

a) Common Class Categories 

b) Unique Vocabulary Types 

c) Design By Contract 

d) Appropriately Narrow Contracts 

e) An Overriding Customer Focus 
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2. Design & Implementation 

Essential Strategies and Techniques 

Integral to our design process are: 

a) Common Class Categories 

b) Unique Vocabulary Types 

c) Design By Contract 

d) Appropriately Narrow Contracts 

e) An Overriding Customer Focus 
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What do we mean by Interface versus Contract for  
 

• A Function? 
• A Class? 
• A Component?  

2. Design & Implementation 

Interfaces and Contracts 
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 Function 
  std::ostream& print(std::ostream& stream, 

                                  int                    level                     =  0, 

                                  int                    spacesPerLevel  =  4) const; 
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 Function 
  std::ostream& print(std::ostream& stream, 

                                  int                    level                     =  0, 

                                  int                    spacesPerLevel  =  4) const; 
         

Types Used  

In the Interface 

2. Design & Implementation 
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 Function 
  std::ostream& print(std::ostream& stream, 

                                  int                    level                     =  0, 

                                  int                    spacesPerLevel  =  4) const; 
        // Format this object to the specified output 'stream' at the (absolute 

        // value of) the optionally specified indentation 'level', and return a 

        // reference to 'stream'.  If 'level' is specified, optionally specify 

        // 'spacesPerLevel', the number of spaces per indentation level for 

        // this and all of its nested objects.  If 'level' is negative, 

        // suppress indentation of the first line.  If 'spacesPerLevel' is 

        // negative, format the entire output on one line, suppressing all but 

        // the initial indentation (as governed by 'level').  If 'stream' is 

        // not valid on entry, this operation has no effect. 

2. Design & Implementation 

Interfaces and Contracts 
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 Class  
class Date { 
     // This class implements a value-semantic type representing 
     // a valid date in history between the dates 0001/01/01 and 
     // 9999/12/31 inclusive. 
  

     //… 
    

   public: 

        Date(int year, int month, int day); 
 // Create a valid date from the specified ‘year’, ‘month’, and 
             // ‘day’.  The behavior is undefined unless ‘year’/’month’/’day’ 
             // represents a valid date in the range [0001/01/01 .. 9999/12/31] 
 

        Date(const Date& original); 
             // Create a date having the value of the specified ‘original’ date. 
 

        // … 

}; 

2. Design & Implementation 
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 Class  
class Date { 
     // This class implements a value-semantic type representing 
     // a valid date in history between the dates 0001/01/01 and 
     // 9999/12/31 inclusive. 
  

     //… 
    

   public: 

        Date(int year, int month, int day); 
 // Create a valid date from the specified ‘year’, ‘month’, and 
             // ‘day’.  The behavior is undefined unless ‘year’/’month’/’day’ 
             // represents a valid date in the range [0001/01/01 .. 9999/12/31] 
 

        Date(const Date& original); 
             // Create a date having the value of the specified ‘original’ date. 
 

        // … 

}; 

Public 

Interface 
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 Class  
class Date { 
     // This class implements a value-semantic type representing 
     // a valid date in history between the dates 0001/01/01 and 
     // 9999/12/31 inclusive. 
  

     //… 
    

   public: 

        Date(int year, int month, int day); 
 // Create a valid date from the specified ‘year’, ‘month’, and 
             // ‘day’.  The behavior is undefined unless ‘year’/’month’/’day’ 
             // represents a valid date in the range [0001/01/01 .. 9999/12/31]. 
 

        Date(const Date& original); 
             // Create a date having the value of the specified ‘original’ date. 
 

        // … 

}; 

2. Design & Implementation 

Interfaces and Contracts 



484 

 Class  
class Date { 
     // This class implements a value-semantic type representing 
     // a valid date between the dates 0001/01/01 and 
     // 9999/12/31 inclusive. 
  

     //… 
    

   public: 

        Date(int year, int month, int day); 
 // Create a valid date from the specified ‘year’, ‘month’, and 
             // ‘day’.  The behavior is undefined unless ‘year’/’month’/’day’ 
             // represents a valid date in the range [0001/01/01 .. 9999/12/31]. 
 

        Date(const Date& original); 
             // Create a date having the value of the specified ‘original’ date. 
 

        // … 

}; 
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 Class  
class Date { 
     // This class implements a value-semantic type representing 
     // a valid date between the dates 0001/01/01 and 
     // 9999/12/31 inclusive. 
  

     //… 
    

   public: 

        Date(int year, int month, int day); 
 // Create a valid date from the specified 'year', 'month', and 
             // 'day'.  The behavior is undefined unless 'year'/'month'/'day' 
             // represents a valid date in the range [0001/01/01 .. 9999/12/31]. 
 

        Date(const Date& original); 
             // Create a date having the value of the specified 'original' date. 
 

        // … 

}; 

2. Design & Implementation 
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 Component  
 

class Date { 
    // … 
  public:  
    // … 
}; 
 

bool operator==(const Date& lhs, const Date& rhs); 
    // Return ‘true’ if the specified ‘lhs’ and ‘rhs’ dates have the same 
    // value, ‘and’ false otherwise.  Two ‘Date’ objects have the same 
    // value if their respective ‘year’, ‘month’, and ‘day’ attributes 
    // have the same value. 
 
bool operator!=(const Date& lhs, const Date& rhs); 
    // Return ‘true’ if the specified ‘lhs’ and ‘rhs’ dates no not have the 
    // same value and false otherwise.  Two ‘Date’ objects do not have 
    // the same value if any of their respective ‘year’, ‘month’, and ‘day’ 
    // attributes do not have the same value. 
     
std::ostream& operator<<(std::ostream& stream, const Date& date); 
    // Format the value of the specified ‘date’ object to the specified 
    // output ‘stream’  as  ‘yyyy/mm/dd’.  
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 Component  
 

class Date { 
    // … 
  public:  
    // … 
}; 
 

bool operator==(const Date& lhs, const Date& rhs); 
    // Return ‘true’ if the specified ‘lhs’ and ‘rhs’ dates have the same 
    // value, ‘and’ false otherwise.  Two ‘Date’ objects have the same 
    // value if their respective ‘year’, ‘month’, and ‘day’ attributes 
    // have the same value. 
 
bool operator!=(const Date& lhs, const Date& rhs); 
    // Return ‘true’ if the specified ‘lhs’ and ‘rhs’ dates no not have the 
    // same value and false otherwise.  Two ‘Date’ objects do not have 
    // the same value if any of their respective ‘year’, ‘month’, and ‘day’ 
    // attributes do not have the same value. 
     
std::ostream& operator<<(std::ostream& stream, const Date& date); 
    // Format the value of the specified ‘date’ object to the specified 
    // output ‘stream’  as  ‘yyyy/mm/dd’.  

“Public” 

Interface 
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 Component  
 

class Date { 
    // … 
  public:  
    // … 
}; 
 

bool operator==(const Date& lhs, const Date& rhs); 
    // Return ‘true’ if the specified ‘lhs’ and ‘rhs’ dates have the same 
    // value, ‘and’ false otherwise.  Two ‘Date’ objects have the same 
    // value if their respective ‘year’, ‘month’, and ‘day’ attributes 
    // have the same value. 
 
bool operator!=(const Date& lhs, const Date& rhs); 
    // Return ‘true’ if the specified ‘lhs’ and ‘rhs’ dates no not have the 
    // same value and false otherwise.  Two ‘Date’ objects do not have 
    // the same value if any of their respective ‘year’, ‘month’, and ‘day’ 
    // attributes do not have the same value. 
     
std::ostream& operator<<(std::ostream& stream, const Date& date); 
    // Format the value of the specified ‘date’ object to the specified 
    // output ‘stream’  as  ‘yyyy/mm/dd’.  
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 Component  
 

class Date { 
    // … 
  public:  
    // … 
}; 
 

bool operator==(const Date& lhs, const Date& rhs); 
    // Return 'true' if the specified 'lhs' and 'rhs' dates have the same 
    // value, and 'false' otherwise.  Two 'Date' objects have the same 
    // value if the corresponding values of their 'year', 'month', and 'day‘ 
    // attributes are the same. 
 
bool operator!=(const Date& lhs, const Date& rhs); 
    // Return 'true' if the specified 'lhs' and 'rhs' dates do not have the 
    // same value, and 'false' otherwise.  Two 'Date' objects do not have 
    // the same value if any of the corresponding  values of their 'year',  
    // 'month', or 'day‘ attributes are not the same. 
     
std::ostream& operator<<(std::ostream& stream, const Date& date); 
    // Format the value of the specified 'date' object to the specified 
    // output 'stream'  as  'yyyy/mm/dd', and return a reference to 'stream'.  

2. Design & Implementation 

Interfaces and Contracts 
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Function 

2. Design & Implementation 
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Function 

double sqrt(double value); 
    // Return the square root of the specified 

// 'value'.  The behavior is undefined unless 
// '0 <= value'. 
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Function 

double sqrt(double value); 
    // Return the square root of the specified 

// 'value'.  The behavior is undefined unless 
// '0 <= value'. 
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Function 

double sqrt(double value); 
    // Return the square root of the specified 

// 'value'.  The behavior is undefined unless 
// '0 <= value'. 

Precondition 

2. Design & Implementation 

Preconditions and Postconditions 
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Function 

double sqrt(double value); 
    // Return the square root of the specified 

// 'value'.  The behavior is undefined unless 
// '0 <= value'. 

Precondition 
For a Stateless Function:  

Restriction on syntactically legal inputs. 

2. Design & Implementation 

Preconditions and Postconditions 
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Function 

double sqrt(double value); 
    // Return the square root of the specified 

// 'value'.  The behavior is undefined unless 
// '0 <= value'. 
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Function 

double sqrt(double value); 
    // Return the square root of the specified 

// 'value'.  The behavior is undefined unless 
// '0 <= value'. 

Postcondition 
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Function 

double sqrt(double value); 
    // Return the square root of the specified 

// 'value'.  The behavior is undefined unless 
// '0 <= value'. 

Postcondition 

For a Stateless Function:  

What it “returns”. 

2. Design & Implementation 

Preconditions and Postconditions 
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Object Method 
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Object Method 

 

Preconditions: What must be true of both 
(object) state and method inputs; 
otherwise the behavior is undefined. 
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Object Method 

 

Preconditions: What must be true of both 
(object) state and method inputs; 
otherwise the behavior is undefined. 
 
Postconditions: What must happen as a 

function of (object) state and method 
inputs if all preconditions are satisfied. 
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Object Method 

 

Preconditions: What must be true of both 
(object) state and method inputs; 
otherwise the behavior is undefined. 
 
Postconditions: What must happen as a 

function of (object) state and method 
inputs if all preconditions are satisfied. 
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Object Method 

 

Preconditions: What must be true of both 
(object) state and method inputs; 
otherwise the behavior is undefined. 
 
Postconditions: What must happen as a 

function of (object) state and method 
inputs if all preconditions are satisfied. 

 Observation By   

Kevlin Henny 

Note that Essential Behavior refers to a 
superset of Postconditions that includes  

behavioral guarantees, such as 
 runtime complexity. 
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Defined & Essential Behavior 

 

Essential 
Behavior 

Undefined Behavior 
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Defined & Essential Behavior 

 

Essential 
Behavior 

Undefined Behavior 

Defined  
but not  

Essential 
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Defined & Essential Behavior 

 

Essential 
Behavior 

Undefined Behavior 

Defined  
but not  

Essential 

Unspecified and  
Implementation-

dependent 
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Defined & Essential Behavior 

 
  std::ostream& print(std::ostream& stream, 

                                  int                    level                     =  0, 

                                  int                    spacesPerLevel  =  4) const; 

        // Format this object to the specified output 'stream' at the (absolute 

        // value of) the optionally specified indentation 'level', and return a 

        // reference to 'stream'.  If 'level' is specified, optionally specify 

        // 'spacesPerLevel', the number of spaces per indentation level for 

        // this and all of its nested objects.  If 'level' is negative, 

        // suppress indentation of the first line.  If 'spacesPerLevel' is 

        // negative, format the entire output on one line, suppressing all but 

        // the initial indentation (as governed by 'level').  If 'stream' is 

        // not valid on entry, this operation has no effect. 

2. Design & Implementation 

Preconditions and Postconditions 
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Defined & Essential Behavior 

 
  std::ostream& print(std::ostream& stream, 

                                  int                    level                     =  0, 

                                  int                    spacesPerLevel  =  4) const; 

        // Format this object to the specified output 'stream' at the (absolute 

        // value of) the optionally specified indentation 'level', and return a 

        // reference to 'stream'.  If 'level' is specified, optionally specify 

        // 'spacesPerLevel', the number of spaces per indentation level for 

        // this and all of its nested objects.  If 'level' is negative, 

        // suppress indentation of the first line.  If 'spacesPerLevel' is 

        // negative, format the entire output on one line, suppressing all but 

        // the initial indentation (as governed by 'level').  If 'stream' is 

        // not valid on entry, this operation has no effect. 
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Defined & Essential Behavior 

 
  std::ostream& print(std::ostream& stream, 

                                  int                    level                     =  0, 

                                  int                    spacesPerLevel  =  4) const; 

        // Format this object to the specified output 'stream' at the (absolute 

        // value of) the optionally specified indentation 'level', and return a 

        // reference to 'stream'.  If 'level' is specified, optionally specify 

        // 'spacesPerLevel', the number of spaces per indentation level for 

        // this and all of its nested objects.  If 'level' is negative, 

        // suppress indentation of the first line.  If 'spacesPerLevel' is 

        // negative, format the entire output on one line, suppressing all but 

        // the initial indentation (as governed by 'level').  If 'stream' is 

        // not valid on entry, this operation has no effect. 
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Defined & Essential Behavior 

 
  std::ostream& print(std::ostream& stream, 

                                  int                    level                     =  0, 

                                  int                    spacesPerLevel  =  4) const; 

        // Format this object to the specified output 'stream' at the (absolute 

        // value of) the optionally specified indentation 'level', and return a 

        // reference to 'stream'.  If 'level' is specified, optionally specify 

        // 'spacesPerLevel', the number of spaces per indentation level for 

        // this and all of its nested objects.  If 'level' is negative, 

        // suppress indentation of the first line.  If 'spacesPerLevel' is 

        // negative, format the entire output on one line, suppressing all but 

        // the initial indentation (as governed by 'level').  If 'stream' is 

        // not valid on entry, this operation has no effect. 
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Defined & Essential Behavior 

 
  std::ostream& print(std::ostream& stream, 

                                  int                    level                     =  0, 

                                  int                    spacesPerLevel  =  4) const; 

        // Format this object to the specified output 'stream' at the (absolute 

        // value of) the optionally specified indentation 'level', and return a 

        // reference to 'stream'.  If 'level' is specified, optionally specify 

        // 'spacesPerLevel', the number of spaces per indentation level for 

        // this and all of its nested objects.  If 'level' is negative, 

        // suppress indentation of the first line.  If 'spacesPerLevel' is 

        // negative, format the entire output on one line, suppressing all but 

        // the initial indentation (as governed by 'level').  If 'stream' is 

        // not valid on entry, this operation has no effect. 
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Defined & Essential Behavior 

 
  std::ostream& print(std::ostream& stream, 

                                  int                    level                     =  0, 

                                  int                    spacesPerLevel  =  4) const; 

        // Format this object to the specified output 'stream' at the (absolute 

        // value of) the optionally specified indentation 'level', and return a 

        // reference to 'stream'.  If 'level' is specified, optionally specify 

        // 'spacesPerLevel', the number of spaces per indentation level for 

        // this and all of its nested objects.  If 'level' is negative, 

        // suppress indentation of the first line.  If 'spacesPerLevel' is 

        // negative, format the entire output on one line, suppressing all but 

        // the initial indentation (as governed by 'level').  If 'stream' is 

        // not valid on entry, this operation has no effect. 

2. Design & Implementation 

Preconditions and Postconditions 
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Defined & Essential Behavior 

 
  std::ostream& print(std::ostream& stream, 

                                  int                    level                     =  0, 

                                  int                    spacesPerLevel  =  4) const; 

        // Format this object to the specified output 'stream' at the (absolute 

        // value of) the optionally specified indentation 'level', and return a 

        // reference to 'stream'.  If 'level' is specified, optionally specify 

        // 'spacesPerLevel', the number of spaces per indentation level for 

        // this and all of its nested objects.  If 'level' is negative, 

        // suppress indentation of the first line.  If 'spacesPerLevel' is 

        // negative, format the entire output on one line, suppressing all but 

        // the initial indentation (as governed by 'level').  If 'stream' is 

        // not valid on entry, this operation has no effect. 

Any  
Undefined  
Behavior? 



2. Design & Implementation 
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Defined & Essential Behavior 

 
  std::ostream& print(std::ostream& stream, 

                                  int                    level                     =  0, 

                                  int                    spacesPerLevel  =  4) const; 

        // Format this object to the specified output 'stream' at the (absolute 

        // value of) the optionally specified indentation 'level', and return a 

        // reference to 'stream'.  If 'level' is specified, optionally specify 

        // 'spacesPerLevel', the number of spaces per indentation level for 

        // this and all of its nested objects.  If 'level' is negative, 

        // suppress indentation of the first line.  If 'spacesPerLevel' is 

        // negative, format the entire output on one line, suppressing all but 

        // the initial indentation (as governed by 'level').  If 'stream' is 

        // not valid on entry, this operation has no effect. 

Any  
Non-Essential  

Behavior? 
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Defined & Essential Behavior 

 class Date { 
     // This class implements a value-semantic type representing 
     // a valid date between the dates 0001/01/01 and 
     // 9999/12/31 inclusive. 
  

     //… 
    

   public: 

        Date(int year, int month, int day); 
 // Create a valid date from the specified 'year', 'month', and 
             // 'day'.  The behavior is undefined unless 'year'/'month'/'day' 
             // represents a valid date in the range [0001/01/01 .. 9999/12/31]. 
 

        Date(const Date& original); 
             // Create a date having the value of the specified 'original' date. 
        // … 
}; 
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(Object) Invariants 
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(Object) Invariants 

 class Date { 
     // This class implements a value-semantic type representing 
     // a valid date between the dates 0001/01/01 and 
     // 9999/12/31 inclusive. 
  

     //… 
    

   public: 

        Date(int year, int month, int day); 
 // Create a valid date from the specified 'year', 'month', and 
             // 'day'.  The behavior is undefined unless 'year'/'month'/'day' 
             // represents a valid date in the range [0001/01/01 .. 9999/12/31]. 
 

        Date(const Date& original); 
             // Create a date having the value of the specified 'original' date. 
        // … 
}; 
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(DbC) 

“If you give me valid input*,  
I will behave as advertised; 
otherwise, all bets are off!” 

 
 

*including state 
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Invariants: 
Assert invariants in the destructor. 

Verification 
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Preconditions: 
RTFM (Read the Manual). 
Assert (only in ‘debug’ or ‘safe’ mode). 

  

Verification 

For more about  

Assertions and “Safe Mode”  
see the  bsls_assert component. 
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Preconditions: 
RTFM (Read the Manual). 
Assert (only in ‘debug’ or ‘safe’ mode). 

Postconditions: 
Invariants: 
Assert invariants in the destructor. 

Verification 
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     (DP) 

• What is it? 

Redundant Code that provides 
runtime checks to detect and 
report (but not “handle” or 
“hide”) defects in software. 

2. Design & Implementation 
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     (DP) 

• What is it? 

• Is it Good or Bad? 

Both: It adds overhead, but 
can help identify defects early 
in the development process. 
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     (DP) 

• What is it? 

• Is it Good or Bad? 

• Which is Better: DP or DbC? 

Do you ride the bus to school 
or do you take your lunch? 
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What are we defending against? 
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Narrow Contracts Admit Undefined Behavior: 
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What should happen with the following call? 

 
std::size_t x = std::strlen(0); 
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What should happen with the following call? 

 
std::size_t x = std::strlen(0); 

 
 

How about it must return 0? 
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Narrow Contracts Admit Undefined Behavior: 
 

size_t strlen(const char *s)  

{ 

    if (!s) return 0; 

    // … 

} 
 

How about it must return 0? 
 

  

Wide 
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Narrow Contracts Admit Undefined Behavior: 
 

size_t strlen(const char *s)  

{ 

    assert(s); 

    // … 

} 
 

 

  

Narrow 
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Narrow Contracts Admit Undefined Behavior: 
 

size_t strlen(const char *s)  
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    // … 
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Narrow Contracts Admit Undefined Behavior: 
 

size_t strlen(const char *s)  

{ 

      

    // … 

} 
 

 

  

Narrow 
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Narrow Contracts Admit Undefined Behavior: 

 
Should  

 
Date::setDate(int, int, int); 

 

Return a status? 
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Narrow Contracts Admit Undefined Behavior: 

 
Should  

 
Date::setDate(int, int, int); 

 

Return a status? 
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Narrow Contracts Admit Undefined Behavior: 

 
I “know” this date is valid (It’s my birthday)!  

 
date.setDate(3, 8, 59); 

 

Therefore, why should I bother to check status? 
 

date.setDate(1959, 3, 8); 
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Narrow Contracts Admit Undefined Behavior: 
 

Returning status implies a 
wide interface contract. 

 

Wide contracts prevent 
defending against such 
errors in any build mode. 
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wide interface contract. 
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Narrow Contracts Admit Undefined Behavior: 
 

void Date::setDate(int y, 
                   int m, 
                   int d) 
{ 
     
    d_year  = y; 
    d_month = m; 
    d_day   = d; 
} 
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void Date::setDate(int y, 
                   int m, 
                   int d) 
{ 
    assert(isValid(y,m,d)); 
    d_year  = y; 
    d_month = m; 
    d_day   = d; 
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Narrow Contracts Admit Undefined Behavior: 
 

void Date::setDate(int y, 
                   int m, 
                   int d) 
{ 
    assert(isValid(y,m,d)); 
    d_year  = y; 
    d_month = m; 
    d_day   = d; 
} 

Narrow Contract: 

Checked Only In  

“Debug Mode” 
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Narrow Contracts Admit Undefined Behavior: 

int Date::setDateIfValid(int y, 
                         int m, 
                         int d) 
{ 
    if (!isValid(y, m, d)) { 
        return !0; 
    } 
    d_year  = y; 
    d_month = m; 
    d_day   = d; 
    return 0; 
} 
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Narrow Contracts Admit Undefined Behavior: 

int Date::setDateIfValid(int y, 
                         int m, 
                         int d) 
{ 
    if (!isValid(y, m, d)) { 
        return !0; 
    } 
    d_year  = y; 
    d_month = m; 
    d_day   = d; 
    return 0; 
} 

Wide Contract:  

 Checked in 

Every Build Mode 
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Narrow Contracts Admit Undefined Behavior: 

 
• What should happen when the behavior is 

undefined? 
TYPE& vector<TYPE>::operator[](int idx); 
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Narrow Contracts Admit Undefined Behavior: 

 
• What should happen when the behavior is 

undefined?   It depends on the build mode. 
TYPE& vector<TYPE>::operator[](int idx); 

 
 

• Should what happens be part of the 
contract?   If it is, then it’s defined behavior! 

    TYPE& vector<TYPE>::at(int idx); 

 
 

CRASH! 
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Narrow Contracts Admit Undefined Behavior: 

 
• What should happen when the behavior is 

undefined?   It depends on the build mode. 
TYPE& vector<TYPE>::operator[](int idx); 

 
 

• Should what happens be part of the 
contract?   If it is, then it’s defined behavior! 

    TYPE& vector<TYPE>::at(int idx); 

 
 

Or, as we will soon see, … 
Something Much Better! 
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Preconditions always Imply Postconditions: 

 If a function cannot satisfy its contract (given valid 

preconditions) it must not return normally. 

abort() should be considered a viable alternative to 

throw  in virtually all cases (if exceptions are disabled). 

Good library components are exception agnostic  (via RAII). 
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Narrow contracts admit undefined behavior. 

• Appropriately narrow contracts are GOOD: 

– Reduce costs associated with development/testing. 

– Improve performance and reduces object-code size. 

– Allow useful behavior to be added as needed. 

– Enable practical/effective Defensive Programming. 

• Defensive programming means:  

Fault Intolerance!  
 600 
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Usage Example 
///Usage 

///----- 

// This section illustrates intended use of this component. 

// 

///Example 1: Converting Between UTC and Local Times 

///- - - - - - - - - - - - - - - - - - - - - - - - - 

// When using the "Zoneinfo" database, we want to represent and access the 

// local time information contained in the "Zoneinfo" binary data files.  Once 

// we have obtained this information, we can use it to convert times from one 

// time zone to another.  The following code illustrates how to perform such 

// conversions using 'baltzo::LocalTimeDescriptor'. 

// 

// First, we define a 'baltzo::LocalTimeDescriptor' object that characterizes 

// the local time in effect for New York Daylight-Saving Time in 2010: 

//.. 

//  enum { NEW_YORK_DST_OFFSET = -4 * 60 * 60 };  // -4 hours in seconds 

// 

//  baltzo::LocalTimeDescriptor newYorkDst(NEW_YORK_DST_OFFSET, true, "EDT"); 

// 

//  assert(NEW_YORK_DST_OFFSET == newYorkDst.utcOffsetInSeconds()); 

//  assert(               true == newYorkDst.dstInEffectFlag()); 

//  assert(              "EDT" == newYorkDst.description()); 

//.. 

// Then, we create a 'bdlt::Datetime' representing the time 

// "Jul 20, 2010 11:00" in New York: 

//.. 

//  bdlt::Datetime newYorkDatetime(2010, 7, 20, 11, 0, 0); 

//.. 

// Next, we convert 'newYorkDatetime' to its corresponding UTC value using the 

// 'newYorkDst' descriptor (created above); note that, when converting from a 

// local time to a UTC time, the *signed* offset from UTC is *subtracted* from 

// the local time: 

 

//.. 

//  bdlt::Datetime utcDatetime = newYorkDatetime; 

//  utcDatetime.addSeconds(-newYorkDst.utcOffsetInSeconds()); 

//.. 

// Then, we verify that the result corresponds to the expected UTC time, 

// "Jul 20, 2010 15:00": 

//.. 

//  assert(bdlt::Datetime(2010, 7, 20, 15, 0, 0) == utcDatetime); 

//.. 

// Next, we define a 'baltzo::LocalTimeDescriptor' object that describes the 

// local time in effect for Rome in the summer of 2010: 

//.. 

//  enum { ROME_DST_OFFSET = 2 * 60 * 60 };  // 2 hours in seconds 

// 

//  baltzo::LocalTimeDescriptor romeDst(ROME_DST_OFFSET, true, "CEST"); 

// 

//  assert(ROME_DST_OFFSET == romeDst.utcOffsetInSeconds()); 

//  assert(           true == romeDst.dstInEffectFlag()); 

//  assert(         "CEST" == romeDst.description()); 

//.. 

// Now, we convert 'utcDatetime' to its corresponding local-time value in Rome 

// using the 'romeDst' descriptor (created above): 

//.. 

//  bdlt::Datetime romeDatetime = utcDatetime; 

//  romeDatetime.addSeconds(romeDst.utcOffsetInSeconds()); 

//.. 

// Notice that, when converting from UTC time to local time, the signed 

// offset from UTC is *added* to UTC time rather than subtracted. 

// 

// Finally, we verify that the result corresponds to the expected local time, 

// "Jul 20, 2010 17:00": 

//.. 

//  assert(bdlt::Datetime(2010, 7, 20, 17, 0, 0) == romeDatetime); 

//.. 
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