
1. Process & Architecture

Organizing Principles

Sound Physical Design:
Regular, Fine-Grained Physical

Packaging.
Uniform Depth of Physical

Aggregation.
Logical/Physical Synergy.

147

1. Process & Architecture

Organizing Principles

Sound Physical Design:
Regular, Fine-Grained Physical

Packaging.
Uniform Depth of Physical

Aggregation.
Logical/Physical Synergy.

148

1. Process & Architecture

Logical versus Physical Design

What distinguishes Logical from Physical Design?

Logical

physical

149

1. Process & Architecture

Logical versus Physical Design

What distinguishes Logical from Physical Design?

 Logical: Classes and Functions

Logical

physical

150

1. Process & Architecture

Logical versus Physical Design

What distinguishes Logical from Physical Design?

 Logical: Classes and Functions
 Physical: Files and Libraries

Logical

physical

151

1. Process & Architecture

Logical versus Physical Design

Logical content aggregated into a
Physical hierarchy of components

a b

c

152

1. Process & Architecture

 Component: Uniform Physical Structure

// component.t.cpp

#include <component.h>

// ...

int main(...)

{

 //...

}

//-- END OF FILE --

component.t.cpp

// component.h

// ...

//-- END OF FILE --

// component.cpp

#include <component.h>

// ...

//-- END OF FILE --

component.h component.cpp

component

A Component Is Physical

153

1. Process & Architecture

 Component: Uniform Physical Structure

// component.t.cpp

#include <component.h>

// ...

int main(...)

{

 //...

}

//-- END OF FILE --

component.t.cpp

// component.h

// ...

//-- END OF FILE --

// component.cpp

#include <component.h>

// ...

//-- END OF FILE --

component.h component.cpp

component

Implementation

154

1. Process & Architecture

 Component: Uniform Physical Structure

// component.t.cpp

#include <component.h>

// ...

int main(...)

{

 //...

}

//-- END OF FILE --

component.t.cpp

// component.h

// ...

//-- END OF FILE --

// component.cpp

#include <component.h>

// ...

//-- END OF FILE --

component.h component.cpp

component

Header

155

1. Process & Architecture

 Component: Uniform Physical Structure

// component.t.cpp

#include <component.h>

// ...

int main(...)

{

 //...

}

//-- END OF FILE --

component.t.cpp

// component.h

// ...

//-- END OF FILE --

// component.cpp

#include <component.h>

// ...

//-- END OF FILE --

component.h component.cpp

component

Test Driver

156

1. Process & Architecture

 Component: Uniform Physical Structure

// component.t.cpp

#include <component.h>

// ...

int main(...)

{

 //...

}

//-- END OF FILE --

component.t.cpp

// component.h

// ...

//-- END OF FILE --

// component.cpp

#include <component.h>

// ...

//-- END OF FILE --

component.h component.cpp

component

The Fundamental Unit of Design

157

1. Process & Architecture

Component: Not Just a .h /.cpp Pair

 my::Widget

my_widget

158

1. Process & Architecture

Component: Not Just a .h /.cpp Pair

1. The .cpp file includes its .h file as the first
substantive line of code.

159

1. Process & Architecture

Component: Not Just a .h /.cpp Pair

1. The .cpp file includes its .h file as the first
substantive line of code.

160

1. Process & Architecture

Component: Not Just a .h /.cpp Pair

1. The .cpp file includes its .h file as the first
substantive line of code.

2. All logical constructs (effectively) having external
physical linkage defined in a .cpp file are declared in
the corresponding .h file.

161

1. Process & Architecture

Component: Not Just a .h /.cpp Pair

1. The .cpp file includes its .h file as the first
substantive line of code.

2. All logical constructs (effectively) having external
physical linkage defined in a .cpp file are declared in
the corresponding .h file.

3. All constructs having external physical linkage
declared in a .h file (if defined at all) are defined
within the component.

162

1. Process & Architecture

Component: Not Just a .h /.cpp Pair

1. The .cpp file includes its .h file as the first
substantive line of code.

2. All logical constructs (effectively) having external
physical linkage defined in a .cpp file are declared in
the corresponding .h file.

3. All constructs having external physical linkage
declared in a .h file (if defined at all) are defined
within the component.

4. A component’s functionality is accessed via a
#include of its header, and never via a forward
(extern) declaration.

163

1. Process & Architecture

Logical Relationships

Shape

PointList

PointList_Link

Is-A Uses-in-the-Implementation

Uses-in-the-Interface Uses in name only

Polygon

Point

164

1. Process & Architecture

Logical Relationships

Shape

PointList

PointList_Link

Is-A Uses-in-the-Implementation

Uses-in-the-Interface Uses in name only

Polygon

Point

165

1. Process & Architecture

Implied Dependency

Shape

PointList

PointList_Link

Is-A Uses-in-the-Implementation

Uses-in-the-Interface Uses in name only

Depends-On

Polygon

Point

166

1. Process & Architecture

Implied Dependency

Shape

PointList

PointList_Link

Is-A Uses-in-the-Implementation

Uses-in-the-Interface Uses in name only

Depends-On

Polygon

Point

167

1. Process & Architecture

Level Numbers

Shape

PointList

PointList_Link

Is-A Uses-in-the-Implementation

Uses-in-the-Interface Uses in name only

Depends-On

Polygon

Point

168

1. Process & Architecture

Level Numbers

Shape

PointList

PointList_Link

Is-A Uses-in-the-Implementation

Uses-in-the-Interface

1 1

2

Uses in name only

Depends-On

Polygon

Point

3

169

1. Process & Architecture

Levelization

Levelize (v.); Levelizable (a.); Levelization (n.)

170

1. Process & Architecture

Levelization

Levelize (v.); Levelizable (a.); Levelization (n.)
Usage:

171

1. Process & Architecture

Levelization

Levelize (v.); Levelizable (a.); Levelization (n.)
Usage:

172

1. Process & Architecture

Levelization

Levelize (v.); Levelizable (a.); Levelization (n.)
Usage:

• We need to levelize that design – i.e., we need to make
its physical dependency graph acyclic.

173

1. Process & Architecture

Levelization

Levelize (v.); Levelizable (a.); Levelization (n.)
Usage:

• We need to levelize that design – i.e., we need to make
its physical dependency graph acyclic.

174

1. Process & Architecture

Levelization

Levelize (v.); Levelizable (a.); Levelization (n.)
Usage:

• We need to levelize that design – i.e., we need to make
its physical dependency graph acyclic.

• Are you sure that design is levelizable – i.e., do we know
how to make its physical dependencies acyclic?

175

1. Process & Architecture

Levelization

Levelize (v.); Levelizable (a.); Levelization (n.)
Usage:

• We need to levelize that design – i.e., we need to make
its physical dependency graph acyclic.

• Are you sure that design is levelizable – i.e., do we know
how to make its physical dependencies acyclic?

176

1. Process & Architecture

Levelization

Levelize (v.); Levelizable (a.); Levelization (n.)
Usage:

• We need to levelize that design – i.e., we need to make
its physical dependency graph acyclic.

• Are you sure that design is levelizable – i.e., do we know
how to make its physical dependencies acyclic?

• What levelization techniques would you use – i.e., what
techniques would you use to levelize your design?

177

1. Process & Architecture

Levelization

Levelize (v.); Levelizable (a.); Levelization (n.)
Usage:

• We need to levelize that design – i.e., we need to make
its physical dependency graph acyclic.

• Are you sure that design is levelizable – i.e., do we know
how to make its physical dependencies acyclic?

• What levelization techniques would you use – i.e., what
techniques would you use to levelize your design?

Note that Lakos’96 described 9 different ways to untangle
cyclic physical dependencies: Escalation, Demotion,

Opaque Pointers, Dumb Data, Redundancy, Callbacks,
Manager Class, Factoring, and Escalating Encapsulation. 178

1. Process & Architecture

Levelization Techniques (Summary)

 Escalation – Moving mutually dependent functionality higher in the physical hierarchy.

 Demotion – Moving common functionality lower in the physical hierarchy.

 Opaque Pointers – Having an object use another in name only.

 Dumb Data – Using Data that indicates a dependency on a peer object, but only in the context of a

separate, higher-level object.

 Redundancy – Deliberately avoiding reuse by repeating a small amount of code or data to avoid

coupling.

 Callbacks – Client-supplied functions that enable lower-level subsystems to perform specific tasks

in a more global context.

 Manager Class – Establishing a class that owns and coordinates lower-level objects.

 Factoring – Moving independently testable sub-behavior out of the implementation of complex

component involved in excessive physical coupling.

 Escalating Encapsulation – Moving the point at which implementation details are hidden from

clients to a higher level in the physical hierarchy.

179

1. Process & Architecture

Levelization Techniques (Summary)

 Escalation – Moving mutually dependent functionality higher in the physical hierarchy.

 Demotion – Moving common functionality lower in the physical hierarchy.

 Opaque Pointers – Having an object use another in name only.

 Dumb Data – Using Data that indicates a dependency on a peer object, but only in the context of a

separate, higher-level object.

 Redundancy – Deliberately avoiding reuse by repeating a small amount of code or data to avoid

coupling.

 Callbacks – Client-supplied functions that enable lower-level subsystems to perform specific tasks

in a more global context.

 Manager Class – Establishing a class that owns and coordinates lower-level objects.

 Factoring – Moving independently testable sub-behavior out of the implementation of complex

component involved in excessive physical coupling.

 Escalating Encapsulation – Moving the point at which implementation details are hidden from

clients to a higher level in the physical hierarchy.

180

1. Process & Architecture

Essential Physical Design Rules

181

1. Process & Architecture

Essential Physical Design Rules

There are two:

182

1. Process & Architecture

Essential Physical Design Rules

There are two:

1.No Cyclic Physical
Dependencies!

183

1. Process & Architecture

Essential Physical Design Rules

There are two:

1.No Cyclic Physical
Dependencies!

2.No Long-Distance
Friendships!

184

1. Process & Architecture

Criteria for Collocating “Public” Classes

185

1. Process & Architecture

Criteria for Collocating “Public” Classes

There are four:

186

1. Process & Architecture

Criteria for Collocating “Public” Classes

There are four:

1. Friendship.

187

1. Process & Architecture

Criteria for Collocating “Public” Classes

There are four:

1. Friendship.
2. Cyclic Dependency.

188

1. Process & Architecture

Criteria for Collocating “Public” Classes

There are four:

1. Friendship.
2. Cyclic Dependency.
3. Single Solution.

189

1. Process & Architecture

Criteria for Collocating “Public” Classes

Single Solution Hierarchy of Solutions

Not reusable

independently.

Single Solution

Independently

reusable.

190

1. Process & Architecture

Criteria for Collocating “Public” Classes

There are four:

1. Friendship.
2. Cyclic Dependency.
3. Single Solution.
4. “Flea on an Elephant.”

191

1. Process & Architecture

Criteria for Collocating “Public” Classes

Elephant

Flea

Flea

Elephant

“Flea on an Elephant” (Elephant on a Flea)
192

1. Process & Architecture

Organizing Principles

Sound Physical Design:
Regular, Fine-Grained Physical

Packaging.
Uniform Depth of Physical

Aggregation.
Logical/Physical Synergy.

193

1. Process & Architecture

Organizing Principles

Sound Physical Design:
Regular, Fine-Grained Physical

Packaging.
Uniform Depth of Physical

Aggregation.
Logical/Physical Synergy.

194

main

1 1, 2, & 3 1, 2, 3, & 4 deep 1, 2, 3, 4, & 5 deep 1 & 2

1. Process & Architecture

Uniform Depth of Physical Aggregation

195

main

1 1, 2, & 3 1, 2, 3, & 4 deep 1, 2, 3, 4, & 5 deep 1 & 2

1. Process & Architecture

Uniform Depth of Physical Aggregation

196

main

1 1, 2, & 3 1, 2, 3, & 4 deep 1, 2, 3, 4, & 5 deep 1 & 2

1. Process & Architecture

Uniform Depth of Physical Aggregation

197

1. Process & Architecture

Uniform Depth of Physical Aggregation

Component Package Package Group

198

1. Process & Architecture

Uniform Depth of Physical Aggregation

Component Package Package Group

199

1. Process & Architecture

Uniform Depth of Physical Aggregation

main

Component Package Package Group Package Group Hierarchy

200

1. Process & Architecture

Uniform Depth of Physical Aggregation

main

Component Package Package Group Package Group Hierarchy

201

1. Process & Architecture

Uniform Depth of Physical Aggregation

main

Component Package Package Group Package Group Hierarchy

202

1. Process & Architecture

Components

Five levels of physical dependency:

Level 5:

Level 4:

Level 3:

Level 2:

Level 1:

203

1. Process & Architecture

Components

Only one level of physical aggregation:

Level 5:

Level 4:

Level 3:

Level 2:

Level 1:

a b

c

204

1. Process & Architecture

Packages

Two levels of physical aggregation:

“Dependency by

Decree”

(Metadata)

“A Hierarchy of Component Hierarchies”

205

1. Process & Architecture

Packages

Two levels of physical aggregation:

“Dependency by

Decree”

(Metadata)

Metadata governs, even absent of any components!

206

1. Process & Architecture

Packages

Two levels of physical aggregation:

Allowed

Dependencies

Metadata governs allowed dependencies.

207

1. Process & Architecture

Packages

Properties of an aggregate:

208

?

1. Process & Architecture

Packages

Properties of an aggregate:
Manifest

(Metadata)

209

1. Process & Architecture

Packages

Properties of an aggregate:

Allowed Dependencies

(Metadata)

210

1. Process & Architecture

Packages

Aggregate dependencies:

Aggregate Level 3:

Internally,

dependencies

among components

are inferred.

Allowed direct

external

dependencies

are stated

explicitly

(with simple

metadata).

Aggregate Level 2:

Aggregate Level 1:

211

1. Process & Architecture

Package Groups

Package Groups

Components

Packages

Important
“Dependency by

Decree”

212

1. Process & Architecture

What About a Fourth-Level Aggregate?

U3

U2

U1

U4

U8

U6

U5

U7

MEGA2

MEGA1

213

1. Process & Architecture

What About a Fourth-Level Aggregate?

We find two or three levels of

aggregation per library sufficient.

U3

U2

U1

U4

U8

U6

U5

U7

U8

U6

U5

U7

U3

U2

U1

U4

MEGA2

MEGA1

214

1. Process & Architecture

What About a Fourth-Level Aggregate?

We find two or three levels of

aggregation per library sufficient.

U3

U2

U1

U4

U8

U6

U5

U7

U8

U6

U5

U7

U3

U2

U1

U4

MEGA2

MEGA1

215

1. Process & Architecture

Organizing Principles

Sound Physical Design:
Regular, Fine-Grained Physical

Packaging.
Uniform Depth of Physical

Aggregation.
Logical/Physical Synergy.

216

1. Process & Architecture

Organizing Principles

Sound Physical Design:
Regular, Fine-Grained Physical

Packaging.
Uniform Depth of Physical

Aggregation.
Logical/Physical Synergy.

217

1. Process & Architecture

Logical/Physical Synergy

There are two distinct aspects:
1. Logical/Physical Coherence

 Each logical subsystem is tightly encapsulated by
a corresponding physical aggregate.

2. Logical/Physical Name Cohesion

 The precise physical location of the definition of
a logical construct can be determined directly
from its point of use (i.e., its qualified name).

218

1. Process & Architecture

Logical/Physical Synergy

There are two distinct aspects:
1. Logical/Physical Coherence

 Each logical subsystem is tightly encapsulated by
a corresponding physical aggregate.

2. Logical/Physical Name Cohesion

 The precise physical location of the definition of
a logical construct can be determined directly
from its point of use (i.e., its qualified name).

219

1. Process & Architecture

Logical/Physical Incoherence

 A Component Defines Only What It Declares.

Library

Calendar
Client

Date

220

1. Process & Architecture

Logical/Physical Incoherence

 A Component Defines Only What It Declares.

Library

Calendar
Client

ostream& operator<<(
 ostream& stream,
 const Date& date);

Date

221

1. Process & Architecture

Logical/Physical Incoherence

 A Component Defines Only What It Declares.

Library

Calendar
Client

ostream& operator<<(
 ostream& stream,
 const Date& date);
 // Not implemented

Date

222

1. Process & Architecture

Logical/Physical Incoherence

 A Component Defines Only What It Declares.

Library

ostream& operator<<(
 ostream& stream,
 const Date& date) {
 // ...
}

Calendar
Client

ostream& operator<<(
 ostream& stream,
 const Date& date);
 // Not implemented

Date

223

1. Process & Architecture

Logical/Physical Incoherence

 A Component Defines Only What It Declares.

Library

ostream& operator<<(
 ostream& stream,
 const Date& date) {
 // ...
}

Calendar
cout << date;

Client

ostream& operator<<(
 ostream& stream,
 const Date& date);
 // Not implemented

Date

224

1. Process & Architecture

Logical/Physical Incoherence

 A Component Defines Only What It Declares.

Library

ostream& operator<<(
 ostream& stream,
 const Date& date) {
 // ...
}

Calendar
cout << date;

Client

ostream& operator<<(
 ostream& stream,
 const Date& date);
 // Not implemented

Date

225

1. Process & Architecture

Logical/Physical Incoherence

 A Component Defines Only What It Declares.

Library

ostream& operator<<(
 ostream& stream,
 const Date& date) {
 // ...
}

Calendar
cout << date;

Client

ostream& operator<<(
 ostream& stream,
 const Date& date);
 // Not implemented

Date

226

1. Process & Architecture

Logical/Physical Incoherence

 A Component Defines Only What It Declares.

Library

ostream& operator<<(
 ostream& stream,
 const Date& date) {
 // ...
}

Calendar
cout << date;

Client

ostream& operator<<(
 ostream& stream,
 const Date& date);
 // Not implemented

Date

227

1. Process & Architecture

Logical/Physical Incoherence

 A Component Defines Only What It Declares.

Library

Calendar
cout << date;

Client

ostream& operator<<(
 ostream& stream,
 const Date& date);
 // IMPLEMENTED!!!

Date

228

sellside::ClassA

sellside::ClassB

sellside::ClassC

sellside::ClassD

sellside

lib2

1. Process & Architecture

Logical/Physical Coherence

229

buyside::ClassA

buyside::ClassB

buyside::ClassC

buyside::ClassD

buyside

lib1

sellside::ClassA

sellside::ClassB

sellside::ClassC

sellside::ClassD

sellside

lib2

1. Process & Architecture

Logical/Physical Coherence

230

buyside::ClassA

buyside::ClassB

buyside::ClassC

buyside

lib1

buyside::ClassD

sellside::ClassA

sellside::ClassB

sellside::ClassC

sellside::ClassD

sellside

lib2

1. Process & Architecture

Logical/Physical Coherence

231

buyside::ClassA

buyside::ClassB

buyside::ClassC

buyside

lib1

buyside::ClassD

sellside::ClassA

sellside::ClassB

sellside::ClassC

sellside::ClassD

sellside

lib2

1. Process & Architecture

Logical/Physical Coherence

232

buyside::ClassA

buyside::ClassB

buyside::ClassC

buyside

lib1

buyside::ClassD

sellside::ClassA

sellside::ClassB

sellside::ClassC

sellside::ClassD

sellside

lib2

1. Process & Architecture

Logical/Physical Coherence

233

buyside::ClassA

buyside::ClassB

buyside::ClassC

buyside

lib1

buyside::ClassD

lib4

1. Process & Architecture

Logical/Physical Incoherence

234

buyside::ClassA

buyside::ClassB

buyside::ClassC

buyside::ClassD

buyside

sellside::ClassA

sellside::ClassB

sellside::ClassC

sellside::ClassD

sellside
lib3

lib4

1. Process & Architecture

Logical/Physical Incoherence

235

buyside::ClassA

buyside::ClassB

buyside::ClassC

buyside::ClassD

buyside

sellside::ClassA

sellside::ClassB

sellside::ClassC

sellside::ClassD

sellside
lib3

lib4

1. Process & Architecture

Logical/Physical Incoherence

236

buyside::ClassA

buyside::ClassB

buyside::ClassC

buyside::ClassD

buyside

sellside::ClassA

sellside::ClassB

sellside::ClassC

sellside::ClassD

sellside
lib3

lib4

1. Process & Architecture

Logical/Physical Incoherence

237

buyside::ClassA

buyside::ClassB

buyside::ClassC

buyside::ClassD

buyside

sellside::ClassA

sellside::ClassB

sellside::ClassC

sellside::ClassD

sellside
lib3

lib4

1. Process & Architecture

Logical/Physical Incoherence

238

buyside::ClassA

buyside::ClassB

buyside::ClassC

buyside::ClassD

buyside

sellside::ClassA

sellside::ClassB

sellside::ClassC

sellside::ClassD

sellside
lib3

lib4

1. Process & Architecture

Logical/Physical Incoherence

239

buyside::ClassA

buyside::ClassB

buyside::ClassC

buyside::ClassD

buyside

sellside::ClassA

sellside::ClassB

sellside::ClassC

sellside::ClassD

sellside
lib3

lib4

1. Process & Architecture

Logical/Physical Incoherence

240

buyside::ClassA

buyside::ClassB

buyside::ClassC

buyside::ClassD

buyside

sellside::ClassA

sellside::ClassB

sellside::ClassC

sellside::ClassD

sellside
lib3

lib4

1. Process & Architecture

Logical/Physical Incoherence

241

buyside::ClassA

buyside::ClassB

buyside::ClassC

buyside::ClassD

buyside

sellside::ClassA

sellside::ClassB

sellside::ClassC

sellside::ClassD

sellside
lib3

lib4

1. Process & Architecture

Logical/Physical Incoherence

242

buyside::ClassA

buyside::ClassB

buyside::ClassC

buyside::ClassD

buyside

sellside::ClassA

sellside::ClassB

sellside::ClassC

sellside::ClassD

sellside
lib3

lib4

1. Process & Architecture

Logical/Physical Incoherence

243

buyside::ClassA

buyside::ClassB

buyside::ClassC

buyside::ClassD

buyside

sellside::ClassA

sellside::ClassB

sellside::ClassC

sellside::ClassD

sellside
lib3

lib4

1. Process & Architecture

Logical/Physical Incoherence

244

buyside::ClassA

buyside::ClassB

buyside::ClassC

buyside::ClassD

buyside

sellside::ClassA

sellside::ClassB

sellside::ClassC

sellside::ClassD

sellside
lib3

lib4

1. Process & Architecture

Logical/Physical Incoherence

245

buyside::ClassA

buyside::ClassB

buyside::ClassC

buyside::ClassD

buyside

sellside::ClassA

sellside::ClassB

sellside::ClassC

sellside::ClassD

sellside
lib3

lib4

seller

buyer

1. Process & Architecture

Logical/Physical Coherence

246

seller::ClassY

seller::ClassW

buyer::ClassY

buyer::ClassW

seller::ClassZ

seller::ClassX

buyer::ClassZ

buyer::ClassX

lib3

lib4

seller

buyer

1. Process & Architecture

Logical/Physical Coherence

247

seller::ClassY

seller::ClassW

buyer::ClassY

buyer::ClassW

seller::ClassZ

seller::ClassX

buyer::ClassZ

buyer::ClassX

lib3

lib4

seller

buyer

1. Process & Architecture

Logical/Physical Coherence

248

seller::ClassY

seller::ClassW

buyer::ClassY

buyer::ClassW

seller::ClassZ

seller::ClassX

buyer::ClassZ

buyer::ClassX

lib3

lib4

seller

buyer

1. Process & Architecture

Logical/Physical Coherence

249

seller::ClassY

seller::ClassW

buyer::ClassY

buyer::ClassW

seller::ClassZ

seller::ClassX

buyer::ClassZ

buyer::ClassX

lib3

lib4

seller

buyer

1. Process & Architecture

Logical/Physical Coherence

250

seller::ClassY

seller::ClassW

buyer::ClassY

buyer::ClassW

seller::ClassZ

seller::ClassX

buyer::ClassZ

buyer::ClassX

lib3

lib4

seller

buyer

1. Process & Architecture

Logical/Physical Coherence

251

seller::ClassY

seller::ClassW

buyer::ClassY

buyer::ClassW

seller::ClassZ

seller::ClassX

buyer::ClassZ

buyer::ClassX

lib3

This is the goal!

1. Process & Architecture

Logical/Physical Synergy

There are two distinct aspects:
1. Logical/Physical Coherence

 Each logical subsystem is tightly encapsulated by
a corresponding physical aggregate.

2. Logical/Physical Name Cohesion

 The precise physical location of the definition of
a logical construct can be determined directly
from its point of use (i.e., its qualified name).

252

1. Process & Architecture

Logical/Physical Name Cohesion

  Key Concept 

!

!::

!

! 253

1. Process & Architecture

Packages

 Classical Definition
• A package is an acyclic collection of components organized

as a logically and physically cohesive unit.

$

$

$

254

High-Level Interpreter Architecture

1. Process & Architecture

Packages

formatter

interpreter

evaluator parser

runtime database

255

1. Process & Architecture

Architecturally Significant Names

bts

BondPrice

 cost.h cost.cpp

#include <cost.h>

BAD IDEA!

Package Name: bts

Component Name: cost

Class Name: BondPrice

Non-Cohesive Logical

and Physical Names

256

1. Process & Architecture

Architecturally Significant Names

bts

BondPrice

 cost.h cost.cpp

#include <cost.h>

BAD IDEA!

Package Name: bts

Component Name: cost

Class Name: BondPrice

Non-Cohesive Logical

and Physical Names

257

1. Process & Architecture

Architecturally Significant Names

bts

BondPrice

 cost.h cost.cpp

#include <cost.h>

BAD IDEA!

Package Name: bts

Component Name: cost

Class Name: BondPrice

Non-Cohesive Logical

and Physical Names

258

1. Process & Architecture

Architecturally Significant Names

bts

BondPrice

 cost.h cost.cpp

#include <cost.h>

BAD IDEA!

Package Name: bts

Component Name: cost

Class Name: BondPrice

Non-Cohesive Logical

and Physical Names

259

1. Process & Architecture

Architecturally Significant Names

 Definition
An entity is Architecturally Significant if its name (or
symbol) is intentionally visible outside the UOR that
defines it.

260

1. Process & Architecture

Architecturally Significant Names

 Definition
An entity is Architecturally Significant if its name (or
symbol) is intentionally visible outside the UOR that
defines it.

Design Rule
The name of each

– Unit Of Release (UOR)
– (library) component

must be unique throughout the enterprise.

261

1. Process & Architecture

Physical Package Prefixes

 Component Name Not Matching Package Name:

cost

bts

BondPrice

 cost.h cost.cpp

#include <cost.h>

262

1. Process & Architecture

Physical Package Prefixes

 Component Name Not Matching Package Name:

cost

bts

BondPrice

 cost.h cost.cpp

#include <cost.h>

263

1. Process & Architecture

Physical Package Prefixes

 Design Rule
Each component name begins with the name of the
package in which it resides, followed by an underscore
('_').

264

1. Process & Architecture

Physical Package Prefixes

 Component Prefix Doesn’t Match Package Name:

abc_cost

bts

BondPrice

 abc_cost.h abc_cost.cpp

#include <abc_cost.h>

265

1. Process & Architecture

Physical Package Prefixes

 Component Prefix Doesn’t Match Package Name:

abc_cost

bts

BondPrice

 abc_cost.h abc_cost.cpp

#include <abc_cost.h>

266

1. Process & Architecture

Physical Package Prefixes

 Component Prefix Matches Package Name:

bts_cost

bts

BondPrice

 bts_cost.h bts_cost.cpp

#include <bts_cost.h>

267

1. Process & Architecture

Physical Package Prefixes

 Component Prefix Matches Package Name:

bts_cost

bts

BondPrice

 bts_cost.h bts_cost.cpp

#include <bts_cost.h>

268

1. Process & Architecture

Logical Package Namespaces

 Package Namespace Should Match Package Name

bts

bts

BondPrice

 bts_cost.h bts_cost.cpp

#include <bts_cost.h>

269

1. Process & Architecture

Logical Package Namespaces

 Package Namespace Matches Package Name

bts

bts

BondPrice

 bts_cost.h bts_cost.cpp

#include <bts_cost.h>

bts::

270

1. Process & Architecture

Logical Package Namespaces

 Package Namespace Matches Package Name

bts

bts

BondPrice

 bts_cost.h bts_cost.cpp

#include <bts_cost.h>

bts::

271

1. Process & Architecture

(Logical) Enterprise-Wide Namespace

 Package Namespace Matches Package Name

bts

BondPrice

 bts_cost.h bts_cost.cpp

#include <bts_cost.h>

bts::

MyLongCompanyName::

272

1. Process & Architecture

Logical Package Namespaces

 Package Namespace Matches Package Name

bts

bts

BondPrice

 bts_cost.h bts_cost.cpp

#include <bts_cost.h>

bts::

273

1. Process & Architecture

Logical/Physical Name Cohesion

 Design Goal
The use of each logical entity should alone be sufficient
to know the component in which it is defined.

274

1. Process & Architecture

Logical/Physical Name Cohesion

 Design Goal
The use of each logical entity should alone be sufficient
to know the component in which it is defined.

Design Rule
The (lowercased) name of every logical construct (other
than free operators) declared at package-namespace
scope must have, as a prefix, the name of the component
that implements it.

275

1. Process & Architecture

Logical/Physical Name Cohesion

 Class name should match Component name

BondPrice  cost

bts

BondPrice

 bts_cost.h bts_cost.cpp

#include <bts_cost.h>

bts::

276

1. Process & Architecture

Logical/Physical Name Cohesion

 Class name should match Component name

BondPrice  cost

bts

BondPrice

 bts_cost.h bts_cost.cpp

#include <bts_cost.h>

bts::

277

1. Process & Architecture

Logical/Physical Name Cohesion

 Class name does match Component name

BondPrice  bondprice

bts

BondPrice

 bts_bondprice.h bts_bondprice.cpp

#include <bts_bondprice.h>

bts::

278

1. Process & Architecture

Logical/Physical Name Cohesion

 Class name does match Component name

BondPrice  bondprice

bts

BondPrice

 bts_bondprice.h bts_bondprice.cpp

#include <bts_bondprice.h>

bts::

279

1. Process & Architecture

Logical/Physical Name Cohesion

Some more details:

Namespaces used for enterprise and package.

Only classes* at package namespace scope.

No free functions: C-style functions are
implemented as static members of a struct.

Operators are defined only in components that
also define at least one of their parameter types.

Ultra short package names mean: No using!

*Also structs, class templates, operators, and certain aspect functions (e.g., swap).
280

1. Process & Architecture

Logical/Physical Name Cohesion

Some more details:

Namespaces used for enterprise and package.

Only classes* at package namespace scope.

No free functions: C-style functions are
implemented as static members of a struct.

Operators are defined only in components that
also define at least one of their parameter types.

Ultra short package names mean: No using!

*Also structs, class templates, operators, and certain aspect functions (e.g., swap).
281

1. Process & Architecture

Logical/Physical Name Cohesion

Package naming is more than just a convention:

subc_comp4

subim_comp1

subc_comp2

subim_comp2

subc_comp1 subc_comp3

282

1. Process & Architecture

Logical/Physical Name Cohesion

Package naming is more than just a convention:

subc_comp4

subim_comp1

subc_comp2

subim_comp2

subc_comp1 subc_comp3

subim

283

Package naming is more than just a convention:

1. Process & Architecture

Logical/Physical Name Cohesion

subc_comp4

subim_comp1

subc_comp2

subim_comp2

subc_comp1 subc_comp3

subc

subim

284

Package naming is more than just a convention:

1. Process & Architecture

Logical/Physical Name Cohesion

subc_comp4

subim_comp1

subc_comp2

subim_comp2

subc_comp1 subc_comp3

subc

subim

285

Package naming is more than just a convention:

1. Process & Architecture

Logical/Physical Name Cohesion

subc_comp4

subim_comp1

subc_comp2

subim_comp2

subc_comp1 subc_comp3

subc

subim

286

Package naming is more than just a convention:

1. Process & Architecture

Logical/Physical Name Cohesion

subc_comp4

subim_comp1

subc_comp2

subim_comp2

subc_comp1 subc_comp3

subc

subim

287

1. Process & Architecture

Logical/Physical Name Cohesion

Package naming is more than just a convention:

subw_comp1

subim_comp1

subt_comp2

subim_comp2

subt_comp1 subt_comp3

subw

subim

subt

288

1. Process & Architecture

Logical/Physical Name Cohesion

subw_comp1

subim_comp1

subt_comp1

subim_comp2

subp_comp1 subt_comp2

subw

subim

subp subt

Package Group

289

1. Process & Architecture

Logical/Physical Name Cohesion

subw_comp1

subim_comp1

subt_comp1

subim_comp2

subp_comp1 subt_comp2

subw

subim

subp subt

Package Group

290

1. Process & Architecture

Logical/Physical Name Cohesion

subw_comp1

subim_comp1

subt_comp1

subim_comp2

subp_comp1 subt_comp2

subw

subim

subp subt

sub

Package Group

291

1. Process & Architecture

Logical/Physical Name Cohesion

subw_comp1

subim_comp1

subt_comp1

subim_comp2

subp_comp1 subt_comp2

subw

subim

subp subt

sub

Package Group

Exactly Three Characters
292

 …
 bool flag = bdlt::Date::isValidYMD(1959, 3, 8);
 …

1. Process & Architecture

Logical/Physical Name Cohesion

293

 …
 bool flag = bdlt::Date::isValidYMD(1959, 3, 8);
 …

1. Process & Architecture

Logical/Physical Name Cohesion

Package Group: bdl

Package: bdlt

Component: bdlt_date
Class: bdlt::Date
Function: bdlt::Date::isValidYMD

294

 …
 bool flag = bdlt::Date::isValidYMD(1959, 3, 8);
 …

1. Process & Architecture

Logical/Physical Name Cohesion

Package Group: bdl

Package: bdlt

Component: bdlt_date
Class: bdlt::Date
Function: bdlt::Date::isValidYMD

295

 …
 bool flag = bdlt::Date::isValidYMD(1959, 3, 8);
 …

1. Process & Architecture

Logical/Physical Name Cohesion

Package Group: bdl

Package: bdlt

Component: bdlt_date
Class: bdlt::Date
Function: bdlt::Date::isValidYMD

296

 …
 bool flag = bdlt::Date::isValidYMD(1959, 3, 8);
 …

1. Process & Architecture

Logical/Physical Name Cohesion

Package Group: bdl

Package: bdlt

Component: bdlt_date
Class: bdlt::Date
Function: bdlt::Date::isValidYMD

297

 …
 bool flag = bdlt::Date::isValidYMD(1959, 3, 8);
 …

1. Process & Architecture

Logical/Physical Name Cohesion

Package Group: bdl

Package: bdlt

Component: bdlt_date
Class: bdlt::Date
Function: bdlt::Date::isValidYMD

298

1. Process & Architecture

Logical/Physical Name Cohesion

 …
 bool flag = bdlt::Date::isValidYMD(1959, 3, 8);
 …
 libraries
 / | \
 bdl Package Groups
 / | \
 ____bdlt____ Packages
 …
 bdlt_date.h Components
 bdlt_date.cpp

 bdlt_date.t.cpp

299

1. Process & Architecture

Logical/Physical Name Cohesion

 …
 bool flag = bdlt::Date::isValidYMD(1959, 3, 8);
 …
 libraries
 / | \
 bdl Package Groups
 / | \
 ____bdlt____ Packages
 …
 bdlt_date.h Components
 bdlt_date.cpp

 bdlt_date.t.cpp

300

1. Process & Architecture

Logical/Physical Name Cohesion

 …
 bool flag = bdlt::Date::isValidYMD(1959, 3, 8);
 …
 libraries
 / | \
 bdl Package Groups
 / | \
 ____bdlt____ Packages
 …
 bdlt_date.h Components
 bdlt_date.cpp

 bdlt_date.t.cpp

301

1. Process & Architecture

Logical/Physical Name Cohesion

 …
 bool flag = bdlt::Date::isValidYMD(1959, 3, 8);
 …
 libraries
 / | \
 bdl Package Groups
 / | \
 ____bdlt____ Packages
 …
 bdlt_date.h Components
 bdlt_date.cpp

 bdlt_date.t.cpp

302

1. Process & Architecture

Logical/Physical Name Cohesion

 …
 bool flag = bdlt::Date::isValidYMD(1959, 3, 8);
 …
 libraries
 / | \
 bdl Package Groups
 / | \
 ____bdlt____ Packages
 …
 bdlt_date.h Components
 bdlt_date.cpp

 bdlt_date.t.cpp

303

1. Process & Architecture

Unit Of Release

root

libraries applications

m_app1 ... m_app3 m_app2 lib1 ... lib3 lib2

UOR

304

1. Process & Architecture

Unit Of Release

root

libraries applications

m_app1 ... m_app3 m_app2 lib1 ... lib3 lib2

UOR

305

1. Process & Architecture

Development vs. Deployment

abc

libraries

include

hp sun ... abc ibm

libabc.a

libabc.so

libabc_dbg.a

libabc_dbg.so

*.h
lib

(Really: unix-SunOS-sparc-5.10-cc-5.11)

One-to-Many

root

Source Code Deployment

306

1. Process & Architecture

Development vs. Deployment

abc

libraries

hp sun ... abc ibm

libabc.a

libabc.so

libabc_dbg.a

libabc_dbg.so

lib

One-to-Many

root

Source Code Deployment

include

*.h

(Really: unix-SunOS-sparc-5.10-cc-5.11)
307

1. Process & Architecture

Development vs. Deployment

abc

libraries

include

hp sun ... abc

Source Code

ibm

libabc.a

libabc.so

libabc_dbg.a

libabc_dbg.so

*.h

lib

One-to-Many

Deployment

root

(Really: unix-SunOS-sparc-5.10-cc-5.11)
308

1. Process & Architecture

Designing with Dependency in Mind

Good Physical Design…

309

1. Process & Architecture

Designing with Dependency in Mind

Good Physical Design…

Is not an afterthought.

310

1. Process & Architecture

Designing with Dependency in Mind

Good Physical Design…

Is not an afterthought.

Is an integral part of logical design.

311

1. Process & Architecture

Designing with Dependency in Mind

Good Physical Design…

Is not an afterthought.

Is an integral part of logical design.

Is something we first consider long
before we start to write code.

312

1. Process & Architecture

Designing with Dependency in Mind

Good Physical Design…

Is not an afterthought.

Is an integral part of logical design.

Is something we first consider long
before we start to write code.

Is something we must consider when
decomposing the problem itself!
 313

Outline

0. Goals
 What we are trying to do, for whom, and how.

1. Process & Architecture
Organizing Software as Components, Packages, & Package Groups.

2. Design & Implementation
Using Class Categories, Value Semantics, & Vocabulary Types.

3. Verification & Testing
Component-Level Test Drivers, Peer Review, & Defensive Checks.

4. Bloomberg Development Environment
Rendered as Fine-Grained Hierarchically Reusable Components.

314

Outline

0. Goals
 What we are trying to do, for whom, and how.

1. Process & Architecture
Organizing Software as Components, Packages, & Package Groups.

2. Design & Implementation
Using Class Categories, Value Semantics, & Vocabulary Types.

3. Verification & Testing
Component-Level Test Drivers, Peer Review, & Defensive Checks.

4. Bloomberg Development Environment
Rendered as Fine-Grained Hierarchically Reusable Components.

315

2. Design & Implementation

Essential Strategies and Techniques

Integral to our design process are:

a) Common Class Categories

b) Unique Vocabulary Types

c) Design By Contract

d) Appropriately Narrow Contracts

e) An Overriding Customer Focus

316

2. Design & Implementation

Essential Strategies and Techniques

Integral to our design process are:

a) Common Class Categories

b) Unique Vocabulary Types

c) Design By Contract

d) Appropriately Narrow Contracts

e) An Overriding Customer Focus

317

2. Design & Implementation

The Value of a “Value”

Getting Started:

• Not all useful C++ classes are value types.

318

2. Design & Implementation

The Value of a “Value”

Getting Started:

• Not all useful C++ classes are value types.

• Still, value types form an important category.

319

2. Design & Implementation

The Value of a “Value”

Getting Started:

• Not all useful C++ classes are value types.

• Still, value types form an important category.

• Let’s begin with understanding properties of
value types.

320

2. Design & Implementation

The Value of a “Value”

Getting Started:

• Not all useful C++ classes are value types.

• Still, value types form an important category.

• Let’s begin with understanding properties of
value types.

• Then generalize to build a small type-category
hierarchy.

321

2. Design & Implementation

So, what do we mean by “value”?

class Date {

 short d_year;

 char d_month;

 char d_day;

 public:
 // …

 int year();

 int month();

 int day();

};

322

2. Design & Implementation

So, what do we mean by “value”?

class Date {

 short d_year;

 char d_month;

 char d_day;

 public:
 // …

 int year();

 int month();

 int day();

};

323

2. Design & Implementation

So, what do we mean by “value”?

class Date {

 short d_year;

 char d_month;

 char d_day;

 public:
 // …

 int year();

 int month();

 int day();

};

324

2. Design & Implementation

So, what do we mean by “value”?

class Date {

 short d_year;

 char d_month;

 char d_day;

 public:
 // …

 int year()

 int month()

 int day()

};

int day() const;

int month() const;

int year() const;

325

2. Design & Implementation

So, what do we mean by “value”?

class Date {

 short d_year;

 char d_month;

 char d_day;

 public:
 // …

 int year();

 int month();

 int day();

};

class Date {

 int d_serial;

 public:
 // …

 int year();

 int month();

 int day();

};

326

2. Design & Implementation

So, what do we mean by “value”?

class Date {

 short d_year;

 char d_month;

 char d_day;

 public:
 // …

 int year();

 int month();

 int day();

};

class Date {

 int d_serial;

 public:
 // …

 int year();

 int month();

 int day();

};

327

2. Design & Implementation

So, what do we mean by “value”?

 Salient Attributes

 int year();

 int month();

 int day();

328

2. Design & Implementation

So, what do we mean by “value”?

 Salient Attributes
The documented set of (observable)
named attributes of a type T that
must respectively “have” (refer to)
the same value in order for two
instances of T to “have” (refer to) the
same value.

329

2. Design & Implementation

So, what do we mean by “value”?

class Time {

 char d_hour;

 char d_minute;

 char d_second;

 short d_millisec;

 public:

 // …

 int hour();

 int minute();

 int second();

 int millisecond();

};

class Time {

 int d_mSeconds;

 public:

 // …

 int hour();

 int minute();

 int second();

 int millisecond();

};

330

class Time {

 Internal Representation

 public:

 // …

 int hour();

 int minute();

 int second();

 int millisecond();

};

2. Design & Implementation

So, what do we mean by “value”?

class Time {

 Internal Representation

 public:

 // …

 int hour();

 int minute();

 int second();

 int millisecond();

};

VALUE

331

2. Design & Implementation

So, what do we mean by “value”?

Value:

332

2. Design & Implementation

So, what do we mean by “value”?

Value:
• An “interpretation” of object state –

333

2. Design & Implementation

So, what do we mean by “value”?

Value:
• An “interpretation” of object state –

i.e., Salient Attributes, not the object
state itself.

334

2. Design & Implementation

So, what do we mean by “value”?

Value:
• An “interpretation” of object state –

i.e., Salient Attributes, not the object
state itself.

• No non-object state is relevant.

335

2. Design & Implementation

What are “Salient Attributes”?

336

2. Design & Implementation

What are “Salient Attributes”?

class vector {

 T *d_array_p;

 size_type d_capacity;

 size_type d_size;
 // ...

 public:

 vector();

 vector(const vector<T>& orig);

 // ...

};
337

2. Design & Implementation

What are “Salient Attributes”?

class vector {

 T *d_array_p;

 size_type d_capacity;

 size_type d_size;
 // ...

 public:

 vector();

 vector(const vector<T>& orig);

 // ...

};
338

2. Design & Implementation

What are “Salient Attributes”?

Consider std::vector<int>:

 What are its salient attributes?

339

2. Design & Implementation

What are “Salient Attributes”?

Consider std::vector<int>:

 What are its salient attributes?

1. The number of elements: size().

340

2. Design & Implementation

What are “Salient Attributes”?

Consider std::vector<int>:

 What are its salient attributes?

1. The number of elements: size().

2. The values of the respective elements.

341

2. Design & Implementation

What are “Salient Attributes”?

Consider std::vector<int>:

 What are its salient attributes?

1. The number of elements: size().

2. The values of the respective elements.

3. What about capacity()?

342

2. Design & Implementation

What are “Salient Attributes”?

Consider std::vector<int>:

 What are its salient attributes?

1. The number of elements: size().

2. The values of the respective elements.

3. What about capacity()?

 How is the client supposed to know for sure?

343

2. Design & Implementation

What are “Salient Attributes”?

Consider std::vector<int>:

 What are its salient attributes?

1. The number of elements: size().

2. The values of the respective elements.

3. What about capacity()?

 How is the client supposed to know for sure?

They must be documented (somewhere).

344

Note that two distinct objects a and b of
type T that have the same value might not
exhibit “the same” observable behavior.

 However
1. If a and b initially have the same value, and

2. (absent any exceptions or undefined behavior)

2. Design & Implementation

Value-Semantic Properties

345

Note that two distinct objects a and b of
type T that have the same value might not
exhibit “the same” observable behavior.

 However
1. If a and b initially have the same value, and

2. the same operation is applied to each object, then

3. (absent any exceptions or undefined behavior)

2. Design & Implementation

Value-Semantic Properties

std::vector<int> a;

a.reserve(65536);

std::vector<int> b(a);// is capacity copied?

assert(a == b)

a.resize(65536); // no reallocation!

b.resize(65536); // memory allocation?
346

Note that two distinct objects a and b of
type T that have the same value might not
exhibit “the same” observable behavior.

 However
1. If a and b initially have the same value, and

2. the same operation is applied to each object, then

3. (absent any exceptions or undefined behavior)

2. Design & Implementation

Value-Semantic Properties

std::vector<int> a;

a.reserve(65536);

std::vector<int> b(a);// is capacity copied?

assert(a == b)

a.resize(65536); // no reallocation!

b.resize(65536); // memory allocation?
347

Note that two distinct objects a and b of
type T that have the same value might not
exhibit “the same” observable behavior.

 However
1. If a and b initially have the same value, and

2. the same operation is applied to each object, then

3. (absent any exceptions or undefined behavior)

2. Design & Implementation

Value-Semantic Properties

std::vector<int> a;

a.reserve(65536);

std::vector<int> b(a);// is capacity copied?

assert(a == b)

a.resize(65536); // no reallocation!

b.resize(65536); // memory allocation?
348

Note that two distinct objects a and b of
type T that have the same value might not
exhibit “the same” observable behavior.

 However
1. If a and b initially have the same value, and

2. the same operation is applied to each object, then

3. (absent any exceptions or undefined behavior)

2. Design & Implementation

Value-Semantic Properties

349

Note that two distinct objects a and b of
type T that have the same value might not
exhibit “the same” observable behavior.

 However
1. If a and b initially have the same value, and

2. the same operation is applied to each object, then

3. (absent any exceptions or undefined behavior)

2. Design & Implementation

Value-Semantic Properties

350

Note that two distinct objects a and b of
type T that have the same value might not
exhibit “the same” observable behavior.

 However
1. If a and b initially have the same value, and

2. the same operation is applied to each object, then

2. Design & Implementation

Value-Semantic Properties

351

Note that two distinct objects a and b of
type T that have the same value might not
exhibit “the same” observable behavior.

 However
1. If a and b initially have the same value, and

2. the same operation is applied to each object, then

3. (absent any exceptions or undefined behavior)

2. Design & Implementation

Value-Semantic Properties

352

Note that two distinct objects a and b of
type T that have the same value might not
exhibit “the same” observable behavior.

 However
1. If a and b initially have the same value, and

2. the same operation is applied to each object, then

3. (absent any exceptions or undefined behavior)

4. both objects will again have the same value!

2. Design & Implementation

Value-Semantic Properties

353

Note that two distinct objects a and b of
type T that have the same value might not
exhibit “the same” observable behavior.

 However
1. If a and b initially have the same value, and

2. the same operation is applied to each object, then

3. (absent any exceptions or undefined behavior)

4. both objects will again have the same value!

2. Design & Implementation

Value-Semantic Properties

354

Note that two distinct objects a and b of
type T that have the same value might not
exhibit “the same” observable behavior.

 However
1. If a and b initially have the same value, and

2. the same operation is applied to each object, then

3. (absent any exceptions or undefined behavior)

4. both objects will again have the same value!

2. Design & Implementation

Value-Semantic Properties

355

Note that two distinct objects a and b of
type T that have the same value might not
exhibit “the same” observable behavior.

 However
1. If a and b initially have the same value, and

2. the same operation is applied to each object, then

3. (absent any exceptions or undefined behavior)

4. both objects will again have the same value!

2. Design & Implementation

Value-Semantic Properties

356

Note that two distinct objects a and b of
type T that have the same value might not
exhibit “the same” observable behavior.

 However
1. If a and b initially have the same value, and

2. the same operation is applied to each object, then

3. (absent any exceptions or undefined behavior)

4. both objects will again have the same value!

2. Design & Implementation

Value-Semantic Properties
There is a lot more to this story!

357

2. Design & Implementation

Does state always imply a “value”?

358

2. Design & Implementation

Does state always imply a “value”?

359

2. Design & Implementation

Does state always imply a “value”?

360

What is its state?

2. Design & Implementation

Does state always imply a “value”?

361

What is its state? OFF

2. Design & Implementation

Does state always imply a “value”?

362

What is its state?

2. Design & Implementation

Does state always imply a “value”?

363

What is its state? ON

2. Design & Implementation

Does state always imply a “value”?

364

What is its state? ON

What is its value? $5.00

2. Design & Implementation

Does state always imply a “value”?

365

What is its state? ON

What is its value? ?

2. Design & Implementation

Does state always imply a “value”?

366

What is its state? ON

What is its value? £5.00 ?

2. Design & Implementation

Does state always imply a “value”?

367

What is its state? ON

What is its value? $5.00 ?

Cheap at half
the price!

2. Design & Implementation

Does state always imply a “value”?

368

What is its state? ON

What is its value? ?

Any notion of “value”

here would be artificial!

2. Design & Implementation

Does state always imply a “value”?

369

Not every stateful object has an obvious value.

2. Design & Implementation

Does state always imply a “value”?

370

Not every stateful object

• TCP/IP Socket

• Thread Pool

• Condition Variable

• Mutex Lock

• Reader/Writer Lock

• Scoped Guard

has an obvious value.

2. Design & Implementation

Does state always imply a “value”?

371

Not every stateful object

• TCP/IP Socket

• Thread Pool

• Condition Variable

• Mutex Lock

• Reader/Writer Lock

• Scoped Guard

has an obvious value.

• Base64 En(De)coder

• Expression Evaluator

• Language Parser

• Event Logger

• Object Persistor

• Widget Factory

2. Design & Implementation

Does state always imply a “value”?

372

Not every stateful object

• TCP/IP Socket

• Thread Pool

• Condition Variable

• Mutex Lock

• Reader/Writer Lock

• Scoped Guard

has an obvious value.

• Base64 En(De)coder

• Expression Evaluator

• Language Parser

• Event Logger

• Object Persistor

• Widget Factory

2. Design & Implementation

Does state always imply a “value”?

373

2. Design & Implementation

Categorizing Object Types

MyObjectType

374

The first question: “Does it have state?”

Object

2. Design & Implementation

Categorizing Object Types

375

The first question: “Does it have state?”

Object

Stateful Object Stateless Object

2. Design & Implementation

Categorizing Object Types

376

The first question: “Does it have state?”

Object

Stateful Object Stateless Object

DateUtil IsConvertible<U,V> std::less<T>

2. Design & Implementation

Categorizing Object Types

377

The first question: “Does it have state?”

Object

Stateless Object

DateUtil

struct DateUtil {

 // This struct provides a namespace

 // for a suite of non-primitive functions

 // operating on Date objects.

 static Date lastDateInMonth(const Date& value);

 // Return the last date in the same month

 // as the specified date 'value'. Note

 // that the particular day of the month

 // of 'value' is ignored.

 // …

}

2. Design & Implementation

Categorizing Object Types

378

The first question: “Does it have state?”

Object

Stateless Object

DateUtil

struct DateUtil {

 // This struct provides a namespace

 // for a suite of non-primitive functions

 // operating on Date objects.

 static Date lastDateInMonth(const Date& value);

 // Return the last date in the same month

 // as the specified date 'value'. Note

 // that the particular day of the month

 // of 'value' is ignored.

 // …

}

2. Design & Implementation

Categorizing Object Types

379

The second question: “Does it have value?”

Object

Stateful Object Stateless Object

2. Design & Implementation

Categorizing Object Types

380

The second question: “Does it have value?”

Object

Stateful Object Stateless Object

2. Design & Implementation

Categorizing Object Types

Mechanism Value Type

381

2

2

2

2

no yes

yesno
Takes allocator?

Has “value”?

Value-

Semantic Type

Is object-

instantiable?

Type only

2

Mechanism

2. Design & Implementation

Top-Level Categorizations

start here

382

2. Design & Implementation

The Big Picture

factory bteso::InetStreamSocketFactory

baetzo::LocalTimeDescriptor

no

bdea::BitArray

singleton

guard/

proctor

reference

semantic

type

2
2

4

64

general

VST
enumeration

2

2

bslma::NewDeleteAllocator

bsls::AlignmentUtil

baetzo::LocalTimeValidity

bslmf::IsFundamental baetzo::Loader

bslma::DeallocatorGuard

bslma::DestructorProctor

utility
meta-

function
protocol

bdet::Date

bdem::ElemRef

2

externalizable,

no allocator

2

no yes

yesno

2

2

2

attribute

unconstrained
simply

constrained

complex

constrained
pure

baet::LocalDatetime baetzo::LocalTimePeriod

bsl::vector

standard

container

packed

container

yes

64 64

Referable

elements?

4

4

Externalizable?

bteso::LingerOptions

Takes allocator?

Has “value”?

Value-

Semantic Type

Mechanism

Is object-

instantiable?

container:
associative?

X ordered?

X unique?

X indexed?

Type only

a x

a

 x

a

a

externalization

available from

bslx

a x

 x

a

bassvc::ControlMessageResponse

a x

stateless

functor
bsl::less

a

383

2. Design & Implementation

The Big Picture

factory bteso::InetStreamSocketFactory

baetzo::LocalTimeDescriptor

no

bdea::BitArray

singleton

guard/

proctor

reference

semantic

type

2
2

4

64

general

VST
enumeration

2

2

bslma::NewDeleteAllocator

bsls::AlignmentUtil

baetzo::LocalTimeValidity

bslmf::IsFundamental baetzo::Loader

bslma::DeallocatorGuard

bslma::DestructorProctor

utility
meta-

function
protocol

bdet::Date

bdem::ElemRef

2

externalizable,

no allocator

2

no yes

yesno

2

2

2

attribute

unconstrained
simply

constrained

complex

constrained
pure

baet::LocalDatetime baetzo::LocalTimePeriod

bsl::vector

standard

container

packed

container

yes

64 64

Referable

elements?

4

4

Externalizable?

bteso::LingerOptions

Takes allocator?

Has “value”?

Value-

Semantic Type

Mechanism

Is object-

instantiable?

container:
associative?

X ordered?

X unique?

X indexed?

Type only

a x

a

 x

a

a

externalization

available from

bslx

a x

 x

a

bassvc::ControlMessageResponse

a x

stateless

functor
bsl::less

a

384

2. Design & Implementation

The Big Picture

factory bteso::InetStreamSocketFactory

baetzo::LocalTimeDescriptor

no

bdea::BitArray

singleton

guard/

proctor

reference

semantic

type

2
2

4

64

general

VST
enumeration

2

2

bslma::NewDeleteAllocator

bsls::AlignmentUtil

baetzo::LocalTimeValidity

bslmf::IsFundamental baetzo::Loader

bslma::DeallocatorGuard

bslma::DestructorProctor

utility
meta-

function
protocol

bdet::Date

bdem::ElemRef

2

externalizable,

no allocator

2

no yes

yesno

2

2

2

attribute

unconstrained
simply

constrained

complex

constrained
pure

baet::LocalDatetime baetzo::LocalTimePeriod

bsl::vector

standard

container

packed

container

yes

64 64

Referable

elements?

4

4

Externalizable?

bteso::LingerOptions

Takes allocator?

Has “value”?

Value-

Semantic Type

Mechanism

Is object-

instantiable?

container:
associative?

X ordered?

X unique?

X indexed?

Type only

a x

a

 x

a

a

externalization

available from

bslx

a x

 x

a

bassvc::ControlMessageResponse

a x

stateless

functor
bsl::less

a

Common
Category

Common
Category

Common
Category

Common
Category

385

2. Design & Implementation

Essential Strategies and Techniques

Integral to our design process are:

a) Common Class Categories

b) Unique Vocabulary Types

c) Design By Contract

d) Appropriately Narrow Contracts

e) An Overriding Customer Focus

386

2. Design & Implementation

Essential Strategies and Techniques

Integral to our design process are:

a) Common Class Categories

b) Unique Vocabulary Types

c) Design By Contract

d) Appropriately Narrow Contracts

e) An Overriding Customer Focus

387

A key feature of reuse is interoperability.

2. Design & Implementation

Vocabulary Types

388

A key feature of reuse is interoperability.

• We achieve interoperability by the
ubiquitous use of:

Vocabulary Types

2. Design & Implementation

Vocabulary Types

389

my::Date

(An Example)

2. Design & Implementation

Vocabulary Types

390

f(my::Date)

my::DateUtil

(An Example)

2. Design & Implementation

Vocabulary Types

391

my::Date

f(my::Date)

my::DateUtil

your::Date

(An Example)

2. Design & Implementation

Vocabulary Types

392

my::Date

f(my::Date) g(your::Date)

your::DateUtil my::DateUtil

(An Example)

2. Design & Implementation

Vocabulary Types

393

my::Date your::Date

their::DateUtil

f(my::Date) g(your::Date)

my::DateUtil

my::Date

(An Example)

2. Design & Implementation

Vocabulary Types

394

your::Date

your::DateUtil

their::DateUtil

f(my::Date) g(your::Date)

h(???)

my::DateUtil

(An Example)

2. Design & Implementation

Vocabulary Types

395

my::Date your::Date

your::DateUtil

their::DateUtil

Interoperability Problem!

f(my::Date) g(your::Date)

h(???)

my::DateUtil

(An Example)

2. Design & Implementation

Vocabulary Types

396

my::Date your::Date

your::DateUtil

their::DateUtil

f(my::Date) g(your::Date)

h(???)

my::DateUtil

(An Example)

2. Design & Implementation

Vocabulary Types

397

What should we do?

my::Date your::Date

your::DateUtil

their::DateUtil

What should we do?

f(my::Date) g(your::Date)

h(???)

my::DateUtil

(An Example)

2. Design & Implementation

Vocabulary Types

398

the::Date

your::DateUtil

What should we do?

their::DateUtil

f(the::Date) g(the::Date)

h(the::Date)

my::DateUtil

the::Date

(An Example)

2. Design & Implementation

Vocabulary Types

399

your::DateUtil

No Interoperability Problem!

their::DateUtil

f(the::Date) g(the::Date)

h(the::Date)

my::DateUtil

the::Date

(An Example)

2. Design & Implementation

Vocabulary Types

400

your::DateUtil

On the other hand…

Distinct algebraic structures

deserve distinct C++ types.

2. Design & Implementation

Vocabulary Types

401

Consider operator++ on an int versus a Date:

2. Design & Implementation

Vocabulary Types

402

Consider operator++ on an int versus a Date:

int x(20080331);

2. Design & Implementation

Vocabulary Types

403

Consider operator++ on an int versus a Date:

int x(20080331);

Date y(2008, 03, 31);

2. Design & Implementation

Vocabulary Types

404

Consider operator++ on an int versus a Date:

int x(20080331);

Date y(2008, 03, 31);

++x:

2. Design & Implementation

Vocabulary Types

405

Consider operator++ on an int versus a Date:

int x(20080331);

Date y(2008, 03, 31);

++x: 20080332

Basic operations for
type int lead to

invalid “date” values.

2. Design & Implementation

Vocabulary Types

406

Consider operator++ on an int versus a Date:

int x(20080331);

Date y(2008, 03, 31);

++x: 20080332

++y:

2. Design & Implementation

Vocabulary Types

407

Consider operator++ on an int versus a Date:

int x(20080331);

Date y(2008, 03, 31);

++x: 20080332

++y: (2008, 04, 01)

Operations for
type Date
preserve

invariants.

2. Design & Implementation

Vocabulary Types

408

Consider operator++ on an int versus a Date:

int x(20080331);

Date y(2008, 03, 31);

++x: 20080332

++y: (2008, 04, 01)

Hence, date values deserve their own C++ type!

2. Design & Implementation

Vocabulary Types

409

The “type name” and “variable name” of an
object serve two distinct roles:

1. The type name defines the algebraic
structure.

2. The variable name indicates intent/purpose
in context.

 int age;

 string filename;

2. Design & Implementation

Vocabulary Types

410

The “type name” and “variable name” of an
object serve two distinct roles:

1. The type name defines the algebraic
structure.

2. The variable name indicates intent/purpose
in context.

 int age;

 string filename;

2. Design & Implementation

Vocabulary Types

411

The “type name” and “variable name” of an
object serve two distinct roles:

1. The type name defines the algebraic
structure.

2. The variable name indicates intent/purpose
in context.

 int age;

 string filename;

2. Design & Implementation

Vocabulary Types

412

integer
• Age

• Shoe Size

• Account Number

• Year

• Day of Month

• Number of Significant Digits

string
• Text

• Word

• Username

• Filename

• Password

• Regular Expression

An integer or string value used in a particular
context should not be a separate type:

2. Design & Implementation

Vocabulary Types

413

integer
• Age

• Shoe Size

• Account Number

• Year

• Day of Month

• Number of Significant Digits

string
• Text

• Word

• Username

• Filename

• Password

• Regular Expression

An integer or string value used in a particular
context should not be a separate type:

2. Design & Implementation

Vocabulary Types

414

integer
• Age

• Shoe Size

• Account Number

• Year

• Day of Month

• Number of Significant Digits

string
• Text

• Word

• Username

• Filename

• Password

• Regular Expression

An integer or string value used in a particular
context should not be a separate type:

2. Design & Implementation

Vocabulary Types

415

Templates CAN
present A

VOCABULARY
PROBLEM

2. Design & Implementation

Template Policies

416

Template parameters can be partitioned into
three basic categories:

2. Design & Implementation

Template Policies

417

Template parameters can be partitioned into
three basic categories:

• Essential Parameters

– Parameters that must be specified in all cases.

2. Design & Implementation

Template Policies

418

Template parameters can be partitioned into
three basic categories:

• Essential Parameters

– Parameters that must be specified in all cases.

• Interface Policies
– Optional parameters that do affect logical behavior.

2. Design & Implementation

Template Policies

419

Template parameters can be partitioned into
three basic categories:

• Essential Parameters

– Parameters that must be specified in all cases.

• Interface Policies
– Optional parameters that do affect logical behavior.

• Implementation Policies
– Optional parameters that do not affect logical behavior.

2. Design & Implementation

Template Policies

420

Essential Parameters
• Are necessary for basic operation.

• Typically do not have reasonable defaults.

2. Design & Implementation

Template Policies

421

Essential Parameters
• Are necessary for basic operation.

• Typically do not have reasonable defaults.

Example:

template <class T> class vector;

2. Design & Implementation

Template Policies

422

Essential Parameters
• Are necessary for basic operation.

• Typically do not have reasonable defaults.

Example:

template <class T> class vector;

Essential
Parameter

2. Design & Implementation

Template Policies

423

Essential Parameters
• Are necessary for basic operation.

• Typically do not have reasonable defaults.

Example:

template <class T> class vector;

template <class Iter>

void sort(Iter begin, Iter end);

2. Design & Implementation

Template Policies

424

Essential Parameters
• Are necessary for basic operation.

• Typically do not have reasonable defaults.

Example:

template <class T> class vector;

template <class Iter>

void sort(Iter begin, Iter end);

Essential
Parameter

2. Design & Implementation

Template Policies

425

Interface Policies
• Affect intended “logical” behavior.

• Typically do have reasonable defaults.

2. Design & Implementation

Template Policies

426

Interface Policies
• Affect intended “logical” behavior.

• Typically do have reasonable defaults.

Example:

template <class T, class C = less<T>>

class OrderedSet;

2. Design & Implementation

Template Policies

427

Interface Policies
• Affect intended “logical” behavior.

• Typically do have reasonable defaults.

Example:

template <class T, class C = less<T>>

class OrderedSet;

Essential
Parameter

2. Design & Implementation

Template Policies

428

Interface Policies
• Affect intended “logical” behavior.

• Typically do have reasonable defaults.

Example:

template <class T, class C = less<T>>

class OrderedSet;

Interface
Policy

Essential
Parameter

2. Design & Implementation

Template Policies

429

Implementation Policies
• DO NOT affect intended “logical” behavior.

• Typically do have reasonable defaults.

2. Design & Implementation

Template Policies

430

Implementation Policies
• DO NOT affect intended “logical” behavior.

• Typically do have reasonable defaults.

Example:

template <class T,

 class C = hash<T>, zzzzz

zzzzzzzz int LOAD_FACTOR = 1>

class UnorderedSet;

2. Design & Implementation

Template Policies

431

Implementation Policies
• DO NOT affect intended “logical” behavior.

• Typically do have reasonable defaults.

Example:

template <class T,

 class C = hash<T>, zzzzz

zzzzzzzz int LOAD_FACTOR = 1>

class UnorderedSet;

Essential
Parameter

2. Design & Implementation

Template Policies

432

Implementation Policies
• DO NOT affect intended “logical” behavior.

• Typically do have reasonable defaults.

Example:

template <class T,

 class C = hash<T>, zzzzz

zzzzzzzz int LOAD_FACTOR = 1>

class UnorderedSet;

Implementation
Policy

Essential
Parameter

2. Design & Implementation

Template Policies

433

Implementation Policies
• DO NOT affect intended “logical” behavior.

• Typically do have reasonable defaults.

Example:

template <class T,

 class C = hash<T>, zzzzz

zzzzzzzz int LOAD_FACTOR = 1>

class UnorderedSet;

Implementation
Policy

Essential
Parameter

Implementation
Policy

2. Design & Implementation

Template Policies

434

Implementation Policies
• DO NOT affect intended “logical” behavior.

• Typically do have reasonable defaults.

Example:

template <class T,

 class L = DefaultLock>

class Queue;

2. Design & Implementation

Template Policies

435

Implementation Policies
• DO NOT affect intended “logical” behavior.

• Typically do have reasonable defaults.

Example:

template <class T,

 class L = DefaultLock>

class Queue;

Essential
Parameter

2. Design & Implementation

Template Policies

436

Implementation Policies
• DO NOT affect intended “logical” behavior.

• Typically do have reasonable defaults.

Example:

template <class T,

 class L = DefaultLock>

class Queue;

Essential
Parameter

Implementation
Policy

2. Design & Implementation

Template Policies

437

Problem!

Template Parameters
Affect Object Type.

2. Design & Implementation

Template Policies

438

Essential Parameters:

 vector<int> a;

 vector<int> b;

 a = b;

2. Design & Implementation

Template Policies

439

Essential Parameters:

 vector<int> a;

 vector<double> b;

 a = b;

Compiler
Error

2. Design & Implementation

Template Policies

440

Interface Policies:

OrderedSet<int> a;

OrderedSet<int> b;

if (a == b) {

 // …

2. Design & Implementation

Template Policies

441

Interface Policies:

OrderedSet<int> a;

OrderedSet<int, MyLess> b;

if (a == b) {

 // … Compiler
Error

2. Design & Implementation

Template Policies

442

Implementation Policies:

void f(Queue<double> *queue);

void g()

{

 Queue<double> q;

 f(&q);

}

2. Design & Implementation

Template Policies

443

Implementation Policies:

void f(Queue<double> *queue);

void g()

{

 Queue<double, MyLock> q;

 f(&q);

}
Compiler

Error

2. Design & Implementation

Template Policies

444

Implementation Policies:

template<class T>

void f(T *queue);

void g()

{

 Queue<double, MyLock> q;

 f(&q);

}
Compiles

Fine

The Entire
Implementation

Must Now
Reside In the
Header File

2. Design & Implementation

Template Policies

445

Solution!

 Runtime
Implementation

Policies

2. Design & Implementation

Template Policies

446

Lock

MyLock

Queue<int>

2. Design & Implementation

Runtime Implementation Policies

447

Lock

2. Design & Implementation

Runtime Implementation Policies

448

class Lock {

 // Pure abstract (protocol) class.

 public:

 virtual ~Lock();

 virtual void lock() = 0;

 virtual void unlock() = 0;

};

2. Design & Implementation

Runtime Implementation Policies

449

class Lock {

 // Pure abstract (protocol) class.

 public:

 virtual ~Lock();

 virtual void lock() = 0;

 virtual void unlock() = 0;

};

2. Design & Implementation

Runtime Implementation Policies

450

Lock

Queue<int>

2. Design & Implementation

Runtime Implementation Policies

451

template<class T> class Queue {

 // … Concrete value-semantic container type.

 Lock *d_lock_p;

 public:

 Queue(Lock *lock = 0);

 Queue(const Queue<T>& other, Lock *lock = 0);

 // …

 void pushBack(const T& value);

 // …

};

2. Design & Implementation

Runtime Implementation Policies

452

Lock

MyLock

Queue<int>

2. Design & Implementation

Runtime Implementation Policies

453

class MyLock : public Lock {

 // … Concrete mechanism.

 private:

 MyLock(const MyLock&);

 MyLock& operator=(const MyLock&);

 public:

 MyLock();

 virtual ~MyLock();

 virtual void lock();

 virtual void unlock();

};

2. Design & Implementation

Runtime Implementation Policies

454

class MyLock : public Lock {

 // … Concrete mechanism.

 MyLock(const MyLock&) = delete;

 MyLock& operator=(const MyLock&) = delete;

 public:

 MyLock();

 virtual ~MyLock();

 virtual void lock();

 virtual void unlock();

};

2. Design & Implementation

Runtime Implementation Policies

455

Or, in
C++11

Lock

MyLock

Queue<int>

f(Queue<int> *q) g()

2. Design & Implementation

Runtime Implementation Policies

456

void f(Queue<double> *q);

void g()

{

 MyLock lock;

 Queue<double> queue(&lock);

 f(&queue);

}

2. Design & Implementation

Runtime Implementation Policies

457

void f(Queue<double> *q);

void g()

{

 MyLock lock;

 Queue<double> queue(&lock);

 f(&queue);

}

2. Design & Implementation

Runtime Implementation Policies

458

void f(Queue<double> *q);

void g()

{

 MyLock lock;

 Queue<double> queue(&lock);

 f(&queue);

}

2. Design & Implementation

Runtime Implementation Policies

459

void f(Queue<double> *q);

void g()

{

 MyLock lock;

 Queue<double> queue(&lock);

 f(&queue);

}

2. Design & Implementation

Runtime Implementation Policies

460

void f(Queue<double> *q);

void g()

{

 MyLock lock;

 Queue<double> queue(&lock);

 f(&queue);

}

2. Design & Implementation

Runtime Implementation Policies

461

void f(Queue<double> *q);

void g()

{

 MyLock lock;

 Queue<double> queue(&lock);

 f(&queue);

}

2. Design & Implementation

Runtime Implementation Policies

Question:
What is the lifetime
of the lock relative

to the queue?

462

What is a memory allocator?

2. Design & Implementation

Memory Allocators

463

What is a memory allocator?

• It is a mechanism used to supply memory.

2. Design & Implementation

Memory Allocators

464

What is a memory allocator?

• It is a mechanism used to supply memory.

• It does not have value semantics.

2. Design & Implementation

Memory Allocators

465

What is a memory allocator?

• It is a mechanism used to supply memory.

• It does not have value semantics.

• It is an Orthogonal Implementation Policy.

2. Design & Implementation

Memory Allocators

466

What is a memory allocator?

• It is a mechanism used to supply memory.

• It does not have value semantics.

• It is an Orthogonal Implementation Policy.

• It can (should) be a Runtime Policy.

2. Design & Implementation

Memory Allocators

467

What is a memory allocator?

• It is a mechanism used to supply memory.

• It does not have value semantics.

• It is an Orthogonal Implementation Policy.

• It can (should) be a Runtime Policy.

2. Design & Implementation

Memory Allocators

468

What is a memory allocator?

• It is a mechanism used to supply memory.

• It does not have value semantics.

• It is an Orthogonal Implementation Policy.

• It can (should) be a Runtime Policy.

2. Design & Implementation

Polymorphic Memory Allocators

469

What is a memory allocator?

It should look like a
“Lock” or any other
abstract mechanism.

2. Design & Implementation

Polymorphic Memory Allocators

470

What is a memory allocator?

It should look like a
“Lock” or any other
abstract mechanism.

2. Design & Implementation

Polymorphic Memory Allocators

471

An allocator is a mechanism.
 double f(double *a, size_t n)

 {

 double result = init(a, n);
 bdlma::BufferedSequentialAllocator a;

 bsl::vector<double> tmp(&a);

 // …

 return result;

 }

2. Design & Implementation

Polymorphic Memory Allocators

472

An allocator is a mechanism.
 double f(double *a, size_t n)

 {

 double result = init(a, n);
 bdlma::BufferedSequentialAllocator a;

 bsl::vector<double> tmp(&a);

 // …

 return result;

 }

2. Design & Implementation

Polymorphic Memory Allocators

473

An allocator is a mechanism.
 double f(double *a, size_t n)

 {

 double result = init(a, n);
 bdlma::BufferedSequentialAllocator a;

 bsl::vector<double> tmp(&a);

 // …

 return result;

 }

2. Design & Implementation

Polymorphic Memory Allocators

See the
bslma_allocator

component.

(Halpern-13: Polymorphic Allocators, N3525)

474

2. Design & Implementation

Essential Strategies and Techniques

Integral to our design process are:

a) Common Class Categories

b) Unique Vocabulary Types

c) Design By Contract

d) Appropriately Narrow Contracts

e) An Overriding Customer Focus

475

2. Design & Implementation

Essential Strategies and Techniques

Integral to our design process are:

a) Common Class Categories

b) Unique Vocabulary Types

c) Design By Contract

d) Appropriately Narrow Contracts

e) An Overriding Customer Focus

476

477

What do we mean by Interface versus Contract for

• A Function?
• A Class?
• A Component?

2. Design & Implementation

Interfaces and Contracts

478

 Function
 std::ostream& print(std::ostream& stream,

 int level = 0,

 int spacesPerLevel = 4) const;

2. Design & Implementation

Interfaces and Contracts

479

 Function
 std::ostream& print(std::ostream& stream,

 int level = 0,

 int spacesPerLevel = 4) const;

Types Used

In the Interface

2. Design & Implementation

Interfaces and Contracts

480

 Function
 std::ostream& print(std::ostream& stream,

 int level = 0,

 int spacesPerLevel = 4) const;
 // Format this object to the specified output 'stream' at the (absolute

 // value of) the optionally specified indentation 'level', and return a

 // reference to 'stream'. If 'level' is specified, optionally specify

 // 'spacesPerLevel', the number of spaces per indentation level for

 // this and all of its nested objects. If 'level' is negative,

 // suppress indentation of the first line. If 'spacesPerLevel' is

 // negative, format the entire output on one line, suppressing all but

 // the initial indentation (as governed by 'level'). If 'stream' is

 // not valid on entry, this operation has no effect.

2. Design & Implementation

Interfaces and Contracts

481

 Class
class Date {
 // This class implements a value-semantic type representing
 // a valid date in history between the dates 0001/01/01 and
 // 9999/12/31 inclusive.

 //…

 public:

 Date(int year, int month, int day);
 // Create a valid date from the specified ‘year’, ‘month’, and
 // ‘day’. The behavior is undefined unless ‘year’/’month’/’day’
 // represents a valid date in the range [0001/01/01 .. 9999/12/31]

 Date(const Date& original);
 // Create a date having the value of the specified ‘original’ date.

 // …

};

2. Design & Implementation

Interfaces and Contracts

482

 Class
class Date {
 // This class implements a value-semantic type representing
 // a valid date in history between the dates 0001/01/01 and
 // 9999/12/31 inclusive.

 //…

 public:

 Date(int year, int month, int day);
 // Create a valid date from the specified ‘year’, ‘month’, and
 // ‘day’. The behavior is undefined unless ‘year’/’month’/’day’
 // represents a valid date in the range [0001/01/01 .. 9999/12/31]

 Date(const Date& original);
 // Create a date having the value of the specified ‘original’ date.

 // …

};

Public

Interface

2. Design & Implementation

Interfaces and Contracts

483

 Class
class Date {
 // This class implements a value-semantic type representing
 // a valid date in history between the dates 0001/01/01 and
 // 9999/12/31 inclusive.

 //…

 public:

 Date(int year, int month, int day);
 // Create a valid date from the specified ‘year’, ‘month’, and
 // ‘day’. The behavior is undefined unless ‘year’/’month’/’day’
 // represents a valid date in the range [0001/01/01 .. 9999/12/31].

 Date(const Date& original);
 // Create a date having the value of the specified ‘original’ date.

 // …

};

2. Design & Implementation

Interfaces and Contracts

484

 Class
class Date {
 // This class implements a value-semantic type representing
 // a valid date between the dates 0001/01/01 and
 // 9999/12/31 inclusive.

 //…

 public:

 Date(int year, int month, int day);
 // Create a valid date from the specified ‘year’, ‘month’, and
 // ‘day’. The behavior is undefined unless ‘year’/’month’/’day’
 // represents a valid date in the range [0001/01/01 .. 9999/12/31].

 Date(const Date& original);
 // Create a date having the value of the specified ‘original’ date.

 // …

};

2. Design & Implementation

Interfaces and Contracts

485

 Class
class Date {
 // This class implements a value-semantic type representing
 // a valid date between the dates 0001/01/01 and
 // 9999/12/31 inclusive.

 //…

 public:

 Date(int year, int month, int day);
 // Create a valid date from the specified 'year', 'month', and
 // 'day'. The behavior is undefined unless 'year'/'month'/'day'
 // represents a valid date in the range [0001/01/01 .. 9999/12/31].

 Date(const Date& original);
 // Create a date having the value of the specified 'original' date.

 // …

};

2. Design & Implementation

Interfaces and Contracts

486

 Component

class Date {
 // …
 public:
 // …
};

bool operator==(const Date& lhs, const Date& rhs);
 // Return ‘true’ if the specified ‘lhs’ and ‘rhs’ dates have the same
 // value, ‘and’ false otherwise. Two ‘Date’ objects have the same
 // value if their respective ‘year’, ‘month’, and ‘day’ attributes
 // have the same value.

bool operator!=(const Date& lhs, const Date& rhs);
 // Return ‘true’ if the specified ‘lhs’ and ‘rhs’ dates no not have the
 // same value and false otherwise. Two ‘Date’ objects do not have
 // the same value if any of their respective ‘year’, ‘month’, and ‘day’
 // attributes do not have the same value.

std::ostream& operator<<(std::ostream& stream, const Date& date);
 // Format the value of the specified ‘date’ object to the specified
 // output ‘stream’ as ‘yyyy/mm/dd’.

2. Design & Implementation

Interfaces and Contracts

487

 Component

class Date {
 // …
 public:
 // …
};

bool operator==(const Date& lhs, const Date& rhs);
 // Return ‘true’ if the specified ‘lhs’ and ‘rhs’ dates have the same
 // value, ‘and’ false otherwise. Two ‘Date’ objects have the same
 // value if their respective ‘year’, ‘month’, and ‘day’ attributes
 // have the same value.

bool operator!=(const Date& lhs, const Date& rhs);
 // Return ‘true’ if the specified ‘lhs’ and ‘rhs’ dates no not have the
 // same value and false otherwise. Two ‘Date’ objects do not have
 // the same value if any of their respective ‘year’, ‘month’, and ‘day’
 // attributes do not have the same value.

std::ostream& operator<<(std::ostream& stream, const Date& date);
 // Format the value of the specified ‘date’ object to the specified
 // output ‘stream’ as ‘yyyy/mm/dd’.

“Public”

Interface

2. Design & Implementation

Interfaces and Contracts

488

 Component

class Date {
 // …
 public:
 // …
};

bool operator==(const Date& lhs, const Date& rhs);
 // Return ‘true’ if the specified ‘lhs’ and ‘rhs’ dates have the same
 // value, ‘and’ false otherwise. Two ‘Date’ objects have the same
 // value if their respective ‘year’, ‘month’, and ‘day’ attributes
 // have the same value.

bool operator!=(const Date& lhs, const Date& rhs);
 // Return ‘true’ if the specified ‘lhs’ and ‘rhs’ dates no not have the
 // same value and false otherwise. Two ‘Date’ objects do not have
 // the same value if any of their respective ‘year’, ‘month’, and ‘day’
 // attributes do not have the same value.

std::ostream& operator<<(std::ostream& stream, const Date& date);
 // Format the value of the specified ‘date’ object to the specified
 // output ‘stream’ as ‘yyyy/mm/dd’.

2. Design & Implementation

Interfaces and Contracts

489

 Component

class Date {
 // …
 public:
 // …
};

bool operator==(const Date& lhs, const Date& rhs);
 // Return 'true' if the specified 'lhs' and 'rhs' dates have the same
 // value, and 'false' otherwise. Two 'Date' objects have the same
 // value if the corresponding values of their 'year', 'month', and 'day‘
 // attributes are the same.

bool operator!=(const Date& lhs, const Date& rhs);
 // Return 'true' if the specified 'lhs' and 'rhs' dates do not have the
 // same value, and 'false' otherwise. Two 'Date' objects do not have
 // the same value if any of the corresponding values of their 'year',
 // 'month', or 'day‘ attributes are not the same.

std::ostream& operator<<(std::ostream& stream, const Date& date);
 // Format the value of the specified 'date' object to the specified
 // output 'stream' as 'yyyy/mm/dd', and return a reference to 'stream'.

2. Design & Implementation

Interfaces and Contracts

2. Design & Implementation

Preconditions and Postconditions

490

491

Function

2. Design & Implementation

Preconditions and Postconditions

492

Function

double sqrt(double value);
 // Return the square root of the specified

// 'value'. The behavior is undefined unless
// '0 <= value'.

2. Design & Implementation

Preconditions and Postconditions

493

Function

double sqrt(double value);
 // Return the square root of the specified

// 'value'. The behavior is undefined unless
// '0 <= value'.

2. Design & Implementation

Preconditions and Postconditions

494

Function

double sqrt(double value);
 // Return the square root of the specified

// 'value'. The behavior is undefined unless
// '0 <= value'.

Precondition

2. Design & Implementation

Preconditions and Postconditions

495

Function

double sqrt(double value);
 // Return the square root of the specified

// 'value'. The behavior is undefined unless
// '0 <= value'.

Precondition
For a Stateless Function:

Restriction on syntactically legal inputs.

2. Design & Implementation

Preconditions and Postconditions

496

Function

double sqrt(double value);
 // Return the square root of the specified

// 'value'. The behavior is undefined unless
// '0 <= value'.

2. Design & Implementation

Preconditions and Postconditions

497

Function

double sqrt(double value);
 // Return the square root of the specified

// 'value'. The behavior is undefined unless
// '0 <= value'.

Postcondition

2. Design & Implementation

Preconditions and Postconditions

498

Function

double sqrt(double value);
 // Return the square root of the specified

// 'value'. The behavior is undefined unless
// '0 <= value'.

Postcondition

For a Stateless Function:

What it “returns”.

2. Design & Implementation

Preconditions and Postconditions

499

Object Method

2. Design & Implementation

Preconditions and Postconditions

500

Object Method

Preconditions: What must be true of both
(object) state and method inputs;
otherwise the behavior is undefined.

2. Design & Implementation

Preconditions and Postconditions

501

Object Method

Preconditions: What must be true of both
(object) state and method inputs;
otherwise the behavior is undefined.

Postconditions: What must happen as a

function of (object) state and method
inputs if all preconditions are satisfied.

2. Design & Implementation

Preconditions and Postconditions

502

Object Method

Preconditions: What must be true of both
(object) state and method inputs;
otherwise the behavior is undefined.

Postconditions: What must happen as a

function of (object) state and method
inputs if all preconditions are satisfied.

2. Design & Implementation

Preconditions and Postconditions

2. Design & Implementation

Preconditions and Postconditions

503

Object Method

Preconditions: What must be true of both
(object) state and method inputs;
otherwise the behavior is undefined.

Postconditions: What must happen as a

function of (object) state and method
inputs if all preconditions are satisfied.

 Observation By

Kevlin Henny

Note that Essential Behavior refers to a
superset of Postconditions that includes

behavioral guarantees, such as
 runtime complexity.

504

Defined & Essential Behavior

Essential
Behavior

Undefined Behavior

2. Design & Implementation

Preconditions and Postconditions

505

Defined & Essential Behavior

Essential
Behavior

Undefined Behavior

Defined
but not

Essential

2. Design & Implementation

Preconditions and Postconditions

506

Defined & Essential Behavior

Essential
Behavior

Undefined Behavior

Defined
but not

Essential

Unspecified and
Implementation-

dependent

2. Design & Implementation

Preconditions and Postconditions

507

Defined & Essential Behavior

 std::ostream& print(std::ostream& stream,

 int level = 0,

 int spacesPerLevel = 4) const;

 // Format this object to the specified output 'stream' at the (absolute

 // value of) the optionally specified indentation 'level', and return a

 // reference to 'stream'. If 'level' is specified, optionally specify

 // 'spacesPerLevel', the number of spaces per indentation level for

 // this and all of its nested objects. If 'level' is negative,

 // suppress indentation of the first line. If 'spacesPerLevel' is

 // negative, format the entire output on one line, suppressing all but

 // the initial indentation (as governed by 'level'). If 'stream' is

 // not valid on entry, this operation has no effect.

2. Design & Implementation

Preconditions and Postconditions

508

Defined & Essential Behavior

 std::ostream& print(std::ostream& stream,

 int level = 0,

 int spacesPerLevel = 4) const;

 // Format this object to the specified output 'stream' at the (absolute

 // value of) the optionally specified indentation 'level', and return a

 // reference to 'stream'. If 'level' is specified, optionally specify

 // 'spacesPerLevel', the number of spaces per indentation level for

 // this and all of its nested objects. If 'level' is negative,

 // suppress indentation of the first line. If 'spacesPerLevel' is

 // negative, format the entire output on one line, suppressing all but

 // the initial indentation (as governed by 'level'). If 'stream' is

 // not valid on entry, this operation has no effect.

2. Design & Implementation

Preconditions and Postconditions

509

Defined & Essential Behavior

 std::ostream& print(std::ostream& stream,

 int level = 0,

 int spacesPerLevel = 4) const;

 // Format this object to the specified output 'stream' at the (absolute

 // value of) the optionally specified indentation 'level', and return a

 // reference to 'stream'. If 'level' is specified, optionally specify

 // 'spacesPerLevel', the number of spaces per indentation level for

 // this and all of its nested objects. If 'level' is negative,

 // suppress indentation of the first line. If 'spacesPerLevel' is

 // negative, format the entire output on one line, suppressing all but

 // the initial indentation (as governed by 'level'). If 'stream' is

 // not valid on entry, this operation has no effect.

2. Design & Implementation

Preconditions and Postconditions

510

Defined & Essential Behavior

 std::ostream& print(std::ostream& stream,

 int level = 0,

 int spacesPerLevel = 4) const;

 // Format this object to the specified output 'stream' at the (absolute

 // value of) the optionally specified indentation 'level', and return a

 // reference to 'stream'. If 'level' is specified, optionally specify

 // 'spacesPerLevel', the number of spaces per indentation level for

 // this and all of its nested objects. If 'level' is negative,

 // suppress indentation of the first line. If 'spacesPerLevel' is

 // negative, format the entire output on one line, suppressing all but

 // the initial indentation (as governed by 'level'). If 'stream' is

 // not valid on entry, this operation has no effect.

2. Design & Implementation

Preconditions and Postconditions

511

Defined & Essential Behavior

 std::ostream& print(std::ostream& stream,

 int level = 0,

 int spacesPerLevel = 4) const;

 // Format this object to the specified output 'stream' at the (absolute

 // value of) the optionally specified indentation 'level', and return a

 // reference to 'stream'. If 'level' is specified, optionally specify

 // 'spacesPerLevel', the number of spaces per indentation level for

 // this and all of its nested objects. If 'level' is negative,

 // suppress indentation of the first line. If 'spacesPerLevel' is

 // negative, format the entire output on one line, suppressing all but

 // the initial indentation (as governed by 'level'). If 'stream' is

 // not valid on entry, this operation has no effect.

2. Design & Implementation

Preconditions and Postconditions

512

Defined & Essential Behavior

 std::ostream& print(std::ostream& stream,

 int level = 0,

 int spacesPerLevel = 4) const;

 // Format this object to the specified output 'stream' at the (absolute

 // value of) the optionally specified indentation 'level', and return a

 // reference to 'stream'. If 'level' is specified, optionally specify

 // 'spacesPerLevel', the number of spaces per indentation level for

 // this and all of its nested objects. If 'level' is negative,

 // suppress indentation of the first line. If 'spacesPerLevel' is

 // negative, format the entire output on one line, suppressing all but

 // the initial indentation (as governed by 'level'). If 'stream' is

 // not valid on entry, this operation has no effect.

2. Design & Implementation

Preconditions and Postconditions

2. Design & Implementation

Preconditions and Postconditions

513

Defined & Essential Behavior

 std::ostream& print(std::ostream& stream,

 int level = 0,

 int spacesPerLevel = 4) const;

 // Format this object to the specified output 'stream' at the (absolute

 // value of) the optionally specified indentation 'level', and return a

 // reference to 'stream'. If 'level' is specified, optionally specify

 // 'spacesPerLevel', the number of spaces per indentation level for

 // this and all of its nested objects. If 'level' is negative,

 // suppress indentation of the first line. If 'spacesPerLevel' is

 // negative, format the entire output on one line, suppressing all but

 // the initial indentation (as governed by 'level'). If 'stream' is

 // not valid on entry, this operation has no effect.

Any
Undefined
Behavior?

2. Design & Implementation

Preconditions and Postconditions

514

Defined & Essential Behavior

 std::ostream& print(std::ostream& stream,

 int level = 0,

 int spacesPerLevel = 4) const;

 // Format this object to the specified output 'stream' at the (absolute

 // value of) the optionally specified indentation 'level', and return a

 // reference to 'stream'. If 'level' is specified, optionally specify

 // 'spacesPerLevel', the number of spaces per indentation level for

 // this and all of its nested objects. If 'level' is negative,

 // suppress indentation of the first line. If 'spacesPerLevel' is

 // negative, format the entire output on one line, suppressing all but

 // the initial indentation (as governed by 'level'). If 'stream' is

 // not valid on entry, this operation has no effect.

Any
Non-Essential

Behavior?

515

Defined & Essential Behavior

 class Date {
 // This class implements a value-semantic type representing
 // a valid date between the dates 0001/01/01 and
 // 9999/12/31 inclusive.

 //…

 public:

 Date(int year, int month, int day);
 // Create a valid date from the specified 'year', 'month', and
 // 'day'. The behavior is undefined unless 'year'/'month'/'day'
 // represents a valid date in the range [0001/01/01 .. 9999/12/31].

 Date(const Date& original);
 // Create a date having the value of the specified 'original' date.
 // …
};

2. Design & Implementation

Preconditions and Postconditions

516

Defined & Essential Behavior

 class Date {
 // This class implements a value-semantic type representing
 // a valid date between the dates 0001/01/01 and
 // 9999/12/31 inclusive.

 //…

 public:

 Date(int year, int month, int day);
 // Create a valid date from the specified 'year', 'month', and
 // 'day'. The behavior is undefined unless 'year'/'month'/'day'
 // represents a valid date in the range [0001/01/01 .. 9999/12/31].

 Date(const Date& original);
 // Create a date having the value of the specified 'original' date.
 // …
};

Any
Undefined
Behavior?

2. Design & Implementation

Preconditions and Postconditions

517

Defined & Essential Behavior

 class Date {
 // This class implements a value-semantic type representing
 // a valid date between the dates 0001/01/01 and
 // 9999/12/31 inclusive.

 //…

 public:

 Date(int year, int month, int day);
 // Create a valid date from the specified 'year', 'month', and
 // 'day'. The behavior is undefined unless 'year'/'month'/'day'
 // represents a valid date in the range [0001/01/01 .. 9999/12/31].

 Date(const Date& original);
 // Create a date having the value of the specified 'original' date.
 // …
};

Any
Undefined
Behavior?

2. Design & Implementation

Preconditions and Postconditions

518

Defined & Essential Behavior

 class Date {
 // This class implements a value-semantic type representing
 // a valid date between the dates 0001/01/01 and
 // 9999/12/31 inclusive.

 //…

 public:

 Date(int year, int month, int day);
 // Create a valid date from the specified 'year', 'month', and
 // 'day'. The behavior is undefined unless 'year'/'month'/'day'
 // represents a valid date in the range [0001/01/01 .. 9999/12/31].

 Date(const Date& original);
 // Create a date having the value of the specified 'original' date.
 // …
};

2. Design & Implementation

Preconditions and Postconditions

519

Defined & Essential Behavior

 class Date {
 // This class implements a value-semantic type representing
 // a valid date between the dates 0001/01/01 and
 // 9999/12/31 inclusive.

 //…

 public:

 Date(int year, int month, int day);
 // Create a valid date from the specified 'year', 'month', and
 // 'day'. The behavior is undefined unless 'year'/'month'/'day'
 // represents a valid date in the range [0001/01/01 .. 9999/12/31].

 Date(const Date& original);
 // Create a date having the value of the specified 'original' date.
 // …
};

Any
Undefined
Behavior?

2. Design & Implementation

Preconditions and Postconditions

520

(Object) Invariants

 class Date {
 // This class implements a value-semantic type representing
 // a valid date between the dates 0001/01/01 and
 // 9999/12/31 inclusive.

 //…

 public:

 Date(int year, int month, int day);
 // Create a valid date from the specified 'year', 'month', and
 // 'day'. The behavior is undefined unless 'year'/'month'/'day'
 // represents a valid date in the range [0001/01/01 .. 9999/12/31].

 Date(const Date& original);
 // Create a date having the value of the specified 'original' date.
 // …
};

2. Design & Implementation

Preconditions and Postconditions

521

(Object) Invariants

 class Date {
 // This class implements a value-semantic type representing
 // a valid date between the dates 0001/01/01 and
 // 9999/12/31 inclusive.

 //…

 public:

 Date(int year, int month, int day);
 // Create a valid date from the specified 'year', 'month', and
 // 'day'. The behavior is undefined unless 'year'/'month'/'day'
 // represents a valid date in the range [0001/01/01 .. 9999/12/31].

 Date(const Date& original);
 // Create a date having the value of the specified 'original' date.
 // …
};

2. Design & Implementation

Preconditions and Postconditions

522

(Object) Invariants

 class Date {
 // This class implements a value-semantic type representing
 // a valid date between the dates 0001/01/01 and
 // 9999/12/31 inclusive.

 //…

 public:

 Date(int year, int month, int day);
 // Create a valid date from the specified 'year', 'month', and
 // 'day'. The behavior is undefined unless 'year'/'month'/'day'
 // represents a valid date in the range [0001/01/01 .. 9999/12/31].

 Date(const Date& original);
 // Create a date having the value of the specified 'original' date.
 // …
};

2. Design & Implementation

Preconditions and Postconditions

523

(Object) Invariants

 class Date {
 // This class implements a value-semantic type representing
 // a valid date between the dates 0001/01/01 and
 // 9999/12/31 inclusive.

 //…

 public:

 Date(int year, int month, int day);
 // Create a valid date from the specified 'year', 'month', and
 // 'day'. The behavior is undefined unless 'year'/'month'/'day'
 // represents a valid date in the range [0001/01/01 .. 9999/12/31].

 Date(const Date& original);
 // Create a date having the value of the specified 'original' date.
 // …
};

2. Design & Implementation

Preconditions and Postconditions

524

(Object) Invariants

 class Date {
 // This class implements a value-semantic type representing
 // a valid date between the dates 0001/01/01 and
 // 9999/12/31 inclusive.

 //…

 public:

 Date(int year, int month, int day);
 // Create a valid date from the specified 'year', 'month', and
 // 'day'. The behavior is undefined unless 'year'/'month'/'day'
 // represents a valid date in the range [0001/01/01 .. 9999/12/31].

 Date(const Date& original);
 // Create a date having the value of the specified 'original' date.
 // …
};

2. Design & Implementation

Preconditions and Postconditions

2. Design & Implementation

Preconditions and Postconditions

525

(Object) Invariants

 class Date {
 // This class implements a value-semantic type representing
 // a valid date between the dates 0001/01/01 and
 // 9999/12/31 inclusive.

 //…

 public:

 Date(int year, int month, int day);
 // Create a valid date from the specified 'year', 'month', and
 // 'day'. The behavior is undefined unless 'year'/'month'/'day'
 // represents a valid date in the range [0001/01/01 .. 9999/12/31].

 Date(const Date& original);
 // Create a date having the value of the specified 'original' date.
 // …
};

526

(DbC)

“If you give me valid input*,
I will behave as advertised;
otherwise, all bets are off!”

*including state

2. Design & Implementation

Design by Contract

527

 There are five aspects:
1. What it does.
2. What it returns.
3. Essential Behavior.
4. Undefined Behavior.
5. Note that…

Documentation

2. Design & Implementation

Design by Contract

528

 There are five aspects:
1. What it does.
2. What it returns.
3. Essential Behavior.
4. Undefined Behavior.
5. Note that…

Documentation

2. Design & Implementation

Design by Contract

529

 There are five aspects:
1. What it does.
2. What it returns.
3. Essential Behavior.
4. Undefined Behavior.
5. Note that…

Documentation

2. Design & Implementation

Design by Contract

530

 There are five aspects:
1. What it does.
2. What it returns.
3. Essential Behavior.
4. Undefined Behavior.
5. Note that…

Documentation

2. Design & Implementation

Design by Contract

531

 There are five aspects:
1. What it does.
2. What it returns.
3. Essential Behavior.
4. Undefined Behavior.
5. Note that…

Documentation

2. Design & Implementation

Design by Contract

532

 There are five aspects:
1. What it does.
2. What it returns.
3. Essential Behavior.
4. Undefined Behavior.
5. Note that…

Documentation

2. Design & Implementation

Design by Contract

533

Invariants:
Assert invariants in the destructor.

Verification

2. Design & Implementation

Design by Contract

534

Preconditions:
Invariants:
Assert invariants in the destructor.

Verification

2. Design & Implementation

Design by Contract

535

Preconditions:
RTFM (Read the Manual).

Invariants:
Assert invariants in the destructor.

Verification

2. Design & Implementation

Design by Contract

536

Preconditions:
RTFM (Read the Manual).
Assert (only in ‘debug’ or ‘safe’ mode).

Invariants:
Assert invariants in the destructor.

Verification

2. Design & Implementation

Design by Contract

537

Preconditions:
RTFM (Read the Manual).
Assert (only in ‘debug’ or ‘safe’ mode).



Verification

For more about

Assertions and “Safe Mode”
see the bsls_assert component.

2. Design & Implementation

Design by Contract

538

Preconditions:
RTFM (Read the Manual).
Assert (only in ‘debug’ or ‘safe’ mode).

Postconditions:
Invariants:
Assert invariants in the destructor.

Verification

2. Design & Implementation

Design by Contract

539

Preconditions:
RTFM (Read the Manual).
Assert (only in ‘debug’ or ‘safe’ mode).

Postconditions:
Component-level test drivers.

Invariants:
Assert invariants in the destructor.

Verification

2. Design & Implementation

Design by Contract

540

Preconditions:
RTFM (Read the Manual).
Assert (only in ‘debug’ or ‘safe’ mode).

Postconditions:
Component-level test drivers.

Invariants:
Assert invariants in the destructor.

Verification

2. Design & Implementation

Design by Contract

541

Preconditions:
RTFM (Read the Manual).
Assert (only in ‘debug’ or ‘safe’ mode).

Postconditions:
Component-level test drivers.

Invariants:
Assert invariants in the destructor.

Verification

2. Design & Implementation

Design by Contract

2. Design & Implementation

Essential Strategies and Techniques

Integral to our design process are:

a) Common Class Categories

b) Unique Vocabulary Types

c) Design By Contract

d) Appropriately Narrow Contracts

e) An Overriding Customer Focus

542

Integral to our design process are:

a) Common Class Categories

b) Unique Vocabulary Types

c) Design By Contract

d) Appropriately Narrow Contracts

e) An Overriding Customer Focus

2. Design & Implementation

Essential Strategies and Techniques

543

544

2. Design & Implementation

Defensive Programming

545

 (DP)

• What is it?

2. Design & Implementation

Defensive Programming

546

 (DP)

• What is it?

Redundant Code that provides
runtime checks to detect and
report (but not “handle” or
“hide”) defects in software.

2. Design & Implementation

Defensive Programming

547

 (DP)

• What is it?

• Is it Good or Bad?

2. Design & Implementation

Defensive Programming

548

 (DP)

• What is it?

• Is it Good or Bad?

Both: It adds overhead, but
can help identify defects early
in the development process.

2. Design & Implementation

Defensive Programming

2. Design & Implementation

Defensive Programming

549

 (DP)

• What is it?

• Is it Good or Bad?

• Which is Better: DP or DbC?

2. Design & Implementation

Defensive Programming

550

 (DP)

• What is it?

• Is it Good or Bad?

• Which is Better: DP or DbC?

Do you ride the bus to school
or do you take your lunch?

2. Design & Implementation

Defensive Programming

551

What are we defending against?

2. Design & Implementation

Defensive Programming

552

What are we defending against?

Bugs in software
that we use in our
implementation?

2. Design & Implementation

Defensive Programming

553

What are we defending against?

Bugs in software that we
use in our implementation?

Bugs we introduce
into our own
implementation?

2. Design & Implementation

Defensive Programming

554

What are we defending against?

Bugs in software that we
use in our implementation?

Bugs we introduce into our
own implementation?

Misuse by our clients.

2. Design & Implementation

Defensive Programming

555

What are we defending against?

Bugs in software that we
use in our implementation?

Bugs we introduce into our
own implementation?

Misuse by our clients?

2. Design & Implementation

Defensive Programming

556

What are we defending against?

Bugs in software that we
use in our implementation?

Bugs we introduce into our
own implementation?

Misuse by our clients?

2. Design & Implementation

Defensive Programming

557

What are we defending against?

Bugs in software that we
use in our implementation?

Bugs we introduce into our
own implementation?

Misuse by our clients?

2. Design & Implementation

Defensive Programming

558

What are we defending against?

559

Narrow Contracts Admit Undefined Behavior:

2. Design & Implementation

Narrow versus Wide Contracts

560

Narrow Contracts Admit Undefined Behavior:

What should happen with the following call?

std::size_t x = std::strlen(0);

2. Design & Implementation

Narrow versus Wide Contracts

561

Narrow Contracts Admit Undefined Behavior:

What should happen with the following call?

std::size_t x = std::strlen(0);

How about it must return 0?

2. Design & Implementation

Narrow versus Wide Contracts

562

Narrow Contracts Admit Undefined Behavior:

size_t strlen(const char *s)

{

 if (!s) return 0;

 // …

}

How about it must return 0?

Wide

2. Design & Implementation

Narrow versus Wide Contracts

563

Narrow Contracts Admit Undefined Behavior:

size_t strlen(const char *s)

{

 if (!s) return 0;

 // …

}

How about it must return 0?

Wide

Likely to mask a defect

2. Design & Implementation

Narrow versus Wide Contracts

564

Narrow Contracts Admit Undefined Behavior:

size_t strlen(const char *s)

{

 if (!s) return 0;

 // …

}

How about it must return 0?

Wide

Likely to mask a defect

2. Design & Implementation

Narrow versus Wide Contracts

565

Narrow Contracts Admit Undefined Behavior:

What should happen with the following call?

std::size_t x = std::strlen(0);

2. Design & Implementation

Narrow versus Wide Contracts

566

Narrow Contracts Admit Undefined Behavior:

What should happen with the following call?

std::size_t x = std::strlen(0);

2. Design & Implementation

Narrow versus Wide Contracts

567

Narrow Contracts Admit Undefined Behavior:

size_t strlen(const char *s)

{

 assert(s);

 // …

}

Narrow

2. Design & Implementation

Narrow versus Wide Contracts

568

Narrow Contracts Admit Undefined Behavior:

size_t strlen(const char *s)

{

 // …

}

Narrow

2. Design & Implementation

Narrow versus Wide Contracts

569

Narrow Contracts Admit Undefined Behavior:

size_t strlen(const char *s)

{

 // …

}

Narrow

2. Design & Implementation

Narrow versus Wide Contracts

570

Narrow Contracts Admit Undefined Behavior:

Should

Date::setDate(int, int, int);

Return a status?

2. Design & Implementation

Narrow versus Wide Contracts

571

Narrow Contracts Admit Undefined Behavior:

Should

Date::setDate(int, int, int);

Return a status?

2. Design & Implementation

Narrow versus Wide Contracts

572

Narrow Contracts Admit Undefined Behavior:

I “know” this date is valid (It’s my birthday)!

date.setDate(3, 8, 59);

Therefore, why should I bother to check status?

date.setDate(1959, 3, 8);

2. Design & Implementation

Narrow versus Wide Contracts

573

Narrow Contracts Admit Undefined Behavior:

I “know” this date is valid (It’s my birthday)!

date.setDate(3, 8, 59);

Therefore, why should I bother to check status?

date.setDate(1959, 3, 8);

2. Design & Implementation

Narrow versus Wide Contracts

574

Narrow Contracts Admit Undefined Behavior:

I “know” this date is valid (It’s my birthday)!

date.setDate(3, 8, 59);

Therefore, why should I bother to check status?

date.setDate(1959, 3, 8);

2. Design & Implementation

Narrow versus Wide Contracts

575

Narrow Contracts Admit Undefined Behavior:

Returning status implies a
wide interface contract.

Wide contracts prevent
defending against such
errors in any build mode.

2. Design & Implementation

Narrow versus Wide Contracts

576

Narrow Contracts Admit Undefined Behavior:

Returning status implies a
wide interface contract.

Wide contracts prevent
defending against such
errors in any build mode.

2. Design & Implementation

Narrow versus Wide Contracts

577

Narrow Contracts Admit Undefined Behavior:

void Date::setDate(int y,
 int m,
 int d)
{

 d_year = y;
 d_month = m;
 d_day = d;
}

2. Design & Implementation

Narrow versus Wide Contracts

578

Narrow Contracts Admit Undefined Behavior:

void Date::setDate(int y,
 int m,
 int d)
{
 assert(isValid(y,m,d));
 d_year = y;
 d_month = m;
 d_day = d;
}

2. Design & Implementation

Narrow versus Wide Contracts

579

Narrow Contracts Admit Undefined Behavior:

void Date::setDate(int y,
 int m,
 int d)
{
 assert(isValid(y,m,d));
 d_year = y;
 d_month = m;
 d_day = d;
}

Narrow Contract:

Checked Only In

“Debug Mode”

2. Design & Implementation

Narrow versus Wide Contracts

580

Narrow Contracts Admit Undefined Behavior:

int Date::setDateIfValid(int y,
 int m,
 int d)
{
 if (!isValid(y, m, d)) {
 return !0;
 }
 d_year = y;
 d_month = m;
 d_day = d;
 return 0;
}

2. Design & Implementation

Narrow versus Wide Contracts

581

Narrow Contracts Admit Undefined Behavior:

int Date::setDateIfValid(int y,
 int m,
 int d)
{
 if (!isValid(y, m, d)) {
 return !0;
 }
 d_year = y;
 d_month = m;
 d_day = d;
 return 0;
}

Wide Contract:

 Checked in

Every Build Mode

2. Design & Implementation

Narrow versus Wide Contracts

582

Narrow Contracts Admit Undefined Behavior:

• What should happen when the behavior is

undefined?
TYPE& vector<TYPE>::operator[](int idx);

2. Design & Implementation

Narrow versus Wide Contracts

583

Narrow Contracts Admit Undefined Behavior:

• What should happen when the behavior is

undefined?
TYPE& vector<TYPE>::operator[](int idx);

• Should what happens be part of the
contract?

 TYPE& vector<TYPE>::at(int idx);

2. Design & Implementation

Narrow versus Wide Contracts

584

Narrow Contracts Admit Undefined Behavior:

• What should happen when the behavior is

undefined? It depends on the build mode.
TYPE& vector<TYPE>::operator[](int idx);

• Should what happens be part of the
contract?

 TYPE& vector<TYPE>::at(int idx);

2. Design & Implementation

Narrow versus Wide Contracts

585

Narrow Contracts Admit Undefined Behavior:

• What should happen when the behavior is

undefined? It depends on the build mode.
TYPE& vector<TYPE>::operator[](int idx);

• Should what happens be part of the
contract? If it is, then it’s defined behavior!

 TYPE& vector<TYPE>::at(int idx);

2. Design & Implementation

Narrow versus Wide Contracts

586

Narrow Contracts Admit Undefined Behavior:

• What should happen when the behavior is

undefined? It depends on the build mode.
TYPE& vector<TYPE>::operator[](int idx);

• Should what happens be part of the
contract? If it is, then it’s defined behavior!

 TYPE& vector<TYPE>::at(int idx);

2. Design & Implementation

Narrow versus Wide Contracts

587

Narrow Contracts Admit Undefined Behavior:

• What should happen when the behavior is

undefined? It depends on the build mode.
TYPE& vector<TYPE>::operator[](int idx);

• Should what happens be part of the
contract? If it is, then it’s defined behavior!

 TYPE& vector<TYPE>::at(int idx);

2. Design & Implementation

Narrow versus Wide Contracts

588

Narrow Contracts Admit Undefined Behavior:

• What should happen when the behavior is

undefined? It depends on the build mode.
TYPE& vector<TYPE>::operator[](int idx);

• Should what happens be part of the
contract? If it is, then it’s defined behavior!

 TYPE& vector<TYPE>::at(int idx);

CRASH!

2. Design & Implementation

Narrow versus Wide Contracts

589

Narrow Contracts Admit Undefined Behavior:

• What should happen when the behavior is

undefined? It depends on the build mode.
TYPE& vector<TYPE>::operator[](int idx);

• Should what happens be part of the
contract? If it is, then it’s defined behavior!

 TYPE& vector<TYPE>::at(int idx);

Or, as we will soon see, …
Something Much Better!

2. Design & Implementation

Narrow versus Wide Contracts

590

Preconditions always Imply Postconditions:

2. Design & Implementation

Contracts and Exceptions

591

Preconditions always Imply Postconditions:

 If a function cannot satisfy its contract (given valid

preconditions) it must not return normally.

2. Design & Implementation

Contracts and Exceptions

592

Preconditions always Imply Postconditions:

 If a function cannot satisfy its contract (given valid

preconditions) it must not return normally.

abort() should be considered a viable alternative to

throw in virtually all cases (if exceptions are disabled).

2. Design & Implementation

Contracts and Exceptions

593

Preconditions always Imply Postconditions:

 If a function cannot satisfy its contract (given valid

preconditions) it must not return normally.

abort() should be considered a viable alternative to

throw in virtually all cases (if exceptions are disabled).

Good library components are exception agnostic (via RAII).

2. Design & Implementation

Contracts and Exceptions

Narrow contracts admit undefined behavior.

594

2. Design & Implementation

Appropriately Narrow Contracts

Narrow contracts admit undefined behavior.

• Appropriately narrow contracts are GOOD:

595

2. Design & Implementation

Appropriately Narrow Contracts

Narrow contracts admit undefined behavior.

• Appropriately narrow contracts are GOOD:

– Reduce costs associated with development/testing.

596

2. Design & Implementation

Appropriately Narrow Contracts

Narrow contracts admit undefined behavior.

• Appropriately narrow contracts are GOOD:

– Reduce costs associated with development/testing.

– Improve performance and reduces object-code size.

597

2. Design & Implementation

Appropriately Narrow Contracts

Narrow contracts admit undefined behavior.

• Appropriately narrow contracts are GOOD:

– Reduce costs associated with development/testing.

– Improve performance and reduces object-code size.

– Allow useful behavior to be added as needed.

598

2. Design & Implementation

Appropriately Narrow Contracts

Narrow contracts admit undefined behavior.

• Appropriately narrow contracts are GOOD:

– Reduce costs associated with development/testing.

– Improve performance and reduces object-code size.

– Allow useful behavior to be added as needed.

– Enable practical/effective Defensive Programming.

599

2. Design & Implementation

Appropriately Narrow Contracts

Narrow contracts admit undefined behavior.

• Appropriately narrow contracts are GOOD:

– Reduce costs associated with development/testing.

– Improve performance and reduces object-code size.

– Allow useful behavior to be added as needed.

– Enable practical/effective Defensive Programming.

• Defensive programming means:

Fault Intolerance!
 600

2. Design & Implementation

Appropriately Narrow Contracts

Integral to our design process are:

a) Common Class Categories

b) Unique Vocabulary Types

c) Design By Contract

d) Appropriately Narrow Contracts

e) An Overriding Customer Focus

2. Design & Implementation

Essential Strategies and Techniques

601

Integral to our design process are:

a) Common Class Categories

b) Unique Vocabulary Types

c) Design By Contract

d) Appropriately Narrow Contracts

e) An Overriding Customer Focus

602

2. Design & Implementation

Essential Strategies and Techniques

2. Design & Implementation

An Overriding Customer Focus

(1) Capture Practical Usage Example(s):

603

2. Design & Implementation

An Overriding Customer Focus

(1) Capture Practical Usage Example(s):
• First thing we think about when

designing a component...

604

2. Design & Implementation

An Overriding Customer Focus

(1) Capture Practical Usage Example(s):
• First thing we think about when

designing a component...

X …its raison d’être.

605

2. Design & Implementation

An Overriding Customer Focus

(1) Capture Practical Usage Example(s):
• First thing we think about when

designing a component...

X …its raison d’être.

• Bona fide, yet appropriately elided
real-world examples.

606

2. Design & Implementation

An Overriding Customer Focus

(1) Capture Practical Usage Example(s):
• First thing we think about when

designing a component...

X …its raison d’être.

• Bona fide, yet appropriately elided
real-world examples.

• Last thing we validate in our
component-level test drivers.

607

2. Design & Implementation

An Overriding Customer Focus

(1) Capture Practical Usage Example(s):
• First thing we think about when

designing a component...

X …its raison d’être.

• Bona fide, yet appropriately elided
real-world examples.

• Last thing we validate in our
component-level test drivers.

608

2. Design & Implementation

Usage Example
///Usage

///-----

// This section illustrates intended use of this component.

//

///Example 1: Converting Between UTC and Local Times

///-

// When using the "Zoneinfo" database, we want to represent and access the

// local time information contained in the "Zoneinfo" binary data files. Once

// we have obtained this information, we can use it to convert times from one

// time zone to another. The following code illustrates how to perform such

// conversions using 'baltzo::LocalTimeDescriptor'.

//

// First, we define a 'baltzo::LocalTimeDescriptor' object that characterizes

// the local time in effect for New York Daylight-Saving Time in 2010:

//..

// enum { NEW_YORK_DST_OFFSET = -4 * 60 * 60 }; // -4 hours in seconds

//

// baltzo::LocalTimeDescriptor newYorkDst(NEW_YORK_DST_OFFSET, true, "EDT");

//

// assert(NEW_YORK_DST_OFFSET == newYorkDst.utcOffsetInSeconds());

// assert(true == newYorkDst.dstInEffectFlag());

// assert("EDT" == newYorkDst.description());

//..

// Then, we create a 'bdlt::Datetime' representing the time

// "Jul 20, 2010 11:00" in New York:

//..

// bdlt::Datetime newYorkDatetime(2010, 7, 20, 11, 0, 0);

//..

// Next, we convert 'newYorkDatetime' to its corresponding UTC value using the

// 'newYorkDst' descriptor (created above); note that, when converting from a

// local time to a UTC time, the *signed* offset from UTC is *subtracted* from

// the local time:

//..

// bdlt::Datetime utcDatetime = newYorkDatetime;

// utcDatetime.addSeconds(-newYorkDst.utcOffsetInSeconds());

//..

// Then, we verify that the result corresponds to the expected UTC time,

// "Jul 20, 2010 15:00":

//..

// assert(bdlt::Datetime(2010, 7, 20, 15, 0, 0) == utcDatetime);

//..

// Next, we define a 'baltzo::LocalTimeDescriptor' object that describes the

// local time in effect for Rome in the summer of 2010:

//..

// enum { ROME_DST_OFFSET = 2 * 60 * 60 }; // 2 hours in seconds

//

// baltzo::LocalTimeDescriptor romeDst(ROME_DST_OFFSET, true, "CEST");

//

// assert(ROME_DST_OFFSET == romeDst.utcOffsetInSeconds());

// assert(true == romeDst.dstInEffectFlag());

// assert("CEST" == romeDst.description());

//..

// Now, we convert 'utcDatetime' to its corresponding local-time value in Rome

// using the 'romeDst' descriptor (created above):

//..

// bdlt::Datetime romeDatetime = utcDatetime;

// romeDatetime.addSeconds(romeDst.utcOffsetInSeconds());

//..

// Notice that, when converting from UTC time to local time, the signed

// offset from UTC is *added* to UTC time rather than subtracted.

//

// Finally, we verify that the result corresponds to the expected local time,

// "Jul 20, 2010 17:00":

//..

// assert(bdlt::Datetime(2010, 7, 20, 17, 0, 0) == romeDatetime);

//..

2. Design & Implementation

An Overriding Customer Focus

(2) Canonical Organization:

610

2. Design & Implementation

An Overriding Customer Focus

(2) Canonical Organization:
• The categories into which information is

partitioned.

611

2. Design & Implementation

An Overriding Customer Focus

(2) Canonical Organization:
• The categories into which information is

partitioned.

• The order in which information is
presented.

612

2. Design & Implementation

An Overriding Customer Focus

(2) Canonical Organization:
• The categories into which information is

partitioned.

• The order in which information is
presented.

• The vocabulary and phrasing …

613

2. Design & Implementation

An Overriding Customer Focus

(2) Canonical Organization:
• The categories into which information is

partitioned.

• The order in which information is
presented.

• The vocabulary and phrasing …

xxxx …especially contracts.

614

2. Design & Implementation

An Overriding Customer Focus

(2) Canonical Organization:
• The categories into which information is

partitioned.

• The order in which information is
presented.

• The vocabulary and phrasing …

xxxx …especially contracts.

615

2. Design & Implementation

An Overriding Customer Focus

(3) Consistent, Useful Rendering:

616

2. Design & Implementation

An Overriding Customer Focus

(3) Consistent, Useful Rendering:
• Make it look like one person wrote all the

code:

617

2. Design & Implementation

An Overriding Customer Focus

(3) Consistent, Useful Rendering:
• Make it look like one person wrote all the

code:
 Unambiguous standard function names…

618

2. Design & Implementation

An Overriding Customer Focus

(3) Consistent, Useful Rendering:
• Make it look like one person wrote all the

code:
 Unambiguous standard function names:

 clear v. removeAll

 empty v. isEmpty

619

2. Design & Implementation

An Overriding Customer Focus

(3) Consistent, Useful Rendering:
• Make it look like one person wrote all the

code:
 Unambiguous standard function names:

 clear v. removeAll

 empty v. isEmpty

 Consistent Argument Order…

 620

2. Design & Implementation

An Overriding Customer Focus

(3) Consistent, Useful Rendering:
• Make it look like one person wrote all the

code:
 Unambiguous standard function names:

 clear v. removeAll

 empty v. isEmpty

 Consistent Argument Order: Outputs, Inputs,
Parameters.

621

2. Design & Implementation

An Overriding Customer Focus

(3) Consistent, Useful Rendering:
• Make it look like one person wrote all the

code:
 Unambiguous standard function names:

 clear v. removeAll

 empty v. isEmpty

 Consistent Argument Order: Outputs, Inputs,
Parameters.

 Appropriate use of pointers/references to indicate
intent…

622

2. Design & Implementation

An Overriding Customer Focus

(3) Consistent, Useful Rendering:
• Make it look like one person wrote all the

code:
 Unambiguous standard function names:

 clear v. removeAll

 empty v. isEmpty

 Consistent Argument Order: Outputs, Inputs,
Parameters.

 Appropriate use of pointers/references to indicate

intent directly from the client source code.

623

2. Design & Implementation

An Overriding Customer Focus

(3) Consistent, Useful Rendering:
• Make it look like one person wrote all the

code:
 Unambiguous standard function names:

 clear v. removeAll

 empty v. isEmpty

 Consistent Argument Order: Outputs, Inputs,
Parameters.

 Appropriate use of pointers/references to indicate

intent directly from the client source code.

624

