1. Process & Architecture

Organizing Principles

&)und Physical Design: \

»Regular, Fine-Grained Physical
Packaging.

» Uniform Depth of Physical
Aggregation.

QLogical/Physical Synergy. .

1. Process & Architecture

Organizing Principles

@und Physical Design: \

»Regular, Fine-Grained Physical
Packaging.

- /

1. Process & Architecture

Logical versus Physical Design

What distinguishes Logical from Physical Design?

physical

149

1. Process & Architecture

Logical versus Physical Design

What distinguishes Logical from Physical Design?

physical

Logical: Classes and Functions

150

1. Process & Architecture

Logical versus Physical Design

What distinguishes Logical from Physical Design?

physical

Logical: Classes and Functions
Physical: Files and Libraries

151

1. Process & Architecture

Logical versus Physical Design

Logical content aggregated into a
Physical hierarchy of components

152

1. Process & Architecture

Component: Uniform Physical Structure

A Component Is Physical

// component.t.cpp
#include <component.h>
/..

int main(...)

{
/... // component.h // component.cpp

#include <component.h

/... /...

}
//-- END OF FILE --

component. t.cpp

//-- END OF FILE - //-- END OF FILE -

component
153

1. Process & Architecture

Component: Uniform Physical Structure

Implementation

// component.t.cpp
#include <component.h>

/] ...

int main(...)

{
/... // component.h component . cpp
/...

}
//-- END OF FILE --

component. t.cpp

//-- END OF FILE - //-- END OF FILE -

component
154

1. Process & Architecture

Component: Uniform Physical Structure

Header

// component.t.cpp
#include <component.h>

/] ...

int main(...)

{

/] .. // component.cpp

#include <component.h

/]

}
//-- END OF FILE --

component. t.cpp

//-- END OF FILE - //-- END OF FILE -

component
155

1. Process & Architecture

Component: Uniform Physical Structure

Test Driver

// component.t.cpp
#include <component.h>

/] ...

int main(...)
{
/... // component.h // component.cpp
#include <component.h

/... /...

}
//-- END OF FILE --

component. t.cpp

//-- END OF FILE - //-- END OF FILE -

component
156

1. Process & Architecture

Component: Uniform Physical Structure

The Fundamental Unit of Design

// component.t.cpp
#include <component.h>
/..

int main(...)

{
/... // component.h // component.cpp

#include <component.h

/... /...

}
//-- END OF FILE --

component. t.cpp

//-- END OF FILE - //-- END OF FILE -

component
157

1. Process & Architecture

Component: Not Justa .h /.cpp Pair

my: :Widget

my widget

158

1. Process & Architecture

Component: NotJusta .h /.cpp Pair

| The . cpp file includes its . h file as the first
substantive line of code.

159

1. Process & Architecture

Component: NotJusta .h /.cpp Pair

1. <] The .cpp file includes its . h file as the first

substantive line of code.

1. Process & Architecture

Component: Not Justa .h /.cpp Pair

-

<> All logical constructs (effectively) having external
physical linkage defined in a . cpp file are declared in
the corresponding . h file.

161

1. Process & Architecture

Component: Not Justa .h /.cpp Pair

-

-

<> All constructs having external physical linkage
declared in a . h file (if defined at all) are defined

within the component.

162

1. Process & Architecture

Component: Not Justa .h /.cpp Pair

-

-

<> A component’s functionality is accessed via a
#include of its header, and never via a forward
(extern) declaration.

163

1. Process & Architecture

Logical Relationships

(PointList) (Polygon)
éointList_Lir@

(Point) (Shape)

O——— Uses-in-the-Interface O------- Uses in name only
@ ——— Uses-in-the-Implementation —|S-A 164

1. Process & Architecture

Logical Relationships

(PointList\ { Polygon)
T O

01ntLlst L1n

\\

(Po:.nt} --------- - Shape)

O——— Uses-in-the-Interface O------- Uses in name only
@ ——— Uses-in-the-Implementation —|S-A 165

1. Process & Architecture

Implied Dependency

(PointList\ { Polygon)
T O

01ntLlst L1n

\\

(Po:l.nt} --------- - Shape)

—> Depends-On

O——— Uses-in-the-Interface O------- Uses in name only
@ ——— Uses-in-the-Implementation —|S-A 166

1. Process & Architecture

Implied Dependency

(PointList\ ' { Polygon)
O

€ointList_Lir9

Q

_> Depends-On

O——— Uses-in-the-Interface O------- Uses in name only
@®———— Uses-in-the-Implementation — |- A 167

1. Process & Architecture

Level Numbers

(PointList\ ' { Polygon)
O

€ointList_Lir9

Q

_> Depends-On

O——— Uses-in-the-Interface O------- Uses in name only
@ ——— Uses-in-the-Implementation —|S-A 168

1. Process & Architecture

Level Numbers

(PointList\

T

€ointList_Lir9

Q

2 ‘
{ Polygon)
O

O—— Uses-in-the-Interface
Uses-in-the-Implementation

.7

—> Depends-On

O------- Uses in name only
— Is-A 169

1. Process & Architecture

Levelization

Levelize (v.); Levelizable (a.); Levelization (n.)

170

1. Process & Architecture

Levelization

Usage:

171

1. Process & Architecture

Levelization

Levelize (v.)
Usage:

172

1. Process & Architecture

Levelization

Levelize (v.)
Usage:

* We need to levelize that design —i.e., we need to make
its physical dependency graph acyclic.

173

1. Process & Architecture

Levelization

Levelizable (a.)
Usage:

174

1. Process & Architecture

Levelization

Levelizable (a.)
Usage:

* Are you sure that design is levelizable —i.e., do we know
how to make its physical dependencies acyclic?

175

1. Process & Architecture

Levelization

Levelization (n.)
Usage:

176

1. Process & Architecture

Levelization

Levelization (n.)
Usage:

 What /evelization techniques would you use —i.e., what
techniques would you use to levelize your design?

177

1. Process & Architecture

Levelization

Note that Lakos’96 described 9 different ways to untangle
cyclic physical dependencies: Escalation, Demotion,
Opaque Pointers, Dumb Data, Redundancy, Callbacks,
Manager Class, Factoring, and Escalating Encapsulation’:

1. Process & Architecture

Levelization Techniques (Su

Escalation — Moving mutually dependent functionality hjg

Dumb Data - Usin% Data that g in the context of a
separate, higher-level oQig

Redundancy — Dejj ount of code or data to avoid

Ty testable sub-behavior out of the implementation of complex
ESsive physical coupling.

Escalating X
o}

alat fition — Moving the Ipoint at which implementation details are hidden from
clients

er level in the physical hierarchy.

179

1. Process & Architecture

Levelization Techniques (Summary)

Escalation — Moving mutually dependent functionality higher in the physical hierarchy.
Demotion — Moving common functionality lower in the physical hierarchy.
Opaque Pointers — Having an object use another in name only.

Dumb Data - Usin% Data that indicates a dependency on a peer object, but only in the context of a
separate, higher-level object.

Redumli_ancy — Deliberately avoiding reuse by repeating a small amount of code or data to avoid
coupling.

Callbacks — Client-supplied functions that enable lower-level subsystems to perform specific tasks
in a more global context.

Manager Class — Establishing a class that owns and coordinates lower-level objects.

Factoring — Moving independently testable sub-behavior out of the implementation of complex
component involved in excessive physical coupling.

Escalating Encapsulation — Moving the Ipo_int at which implementation details are hidden from
clients to a higher level in the physical hierarchy.

180

1. Process & Architecture

Essential Physical Design Rules

181

1. Process & Architecture

Essential Physical Design Rules

There are two:

182

1. Process & Architecture

Essential Physical Design Rules

There are two:

1.No Cyclic Physical
Dependencies!

1. Process & Architecture

Essential Physical Design Rules

There are two:

2.No Long-Distance
Friendships!

1. Process & Architecture

Criteria for Collocating “Public” Classes

185

1. Process & Architecture

Criteria for Collocating “Public” Classes

There are four:

186

1. Process & Architecture

Criteria for Collocating “Public” Classes

There are four:

1. Friendship.

1. Process & Architecture

Criteria for Collocating “Public” Classes

There are four:

2. Cyclic Dependency.

1. Process & Architecture

Criteria for Collocating “Public” Classes

There are four:

3. Single Solution.

1. Process & Architecture

Criteria for Collocating “Public” Classes

Not reusable Q
independently.

OOOOO O
S
Independently

reusable. \\\\\~__’,’//4<::>

Single Solution Hierarchy of Solutions

190

1. Process & Architecture

Criteria for Collocating “Public” Classes

There are four:

4. “Flea on an Elephant.”

1. Process & Architecture

Criteria for Collocating “Public” Classes

®

“Flea on an Elephant” (Elephant on a Flea)

192

1. Process & Architecture

Organizing Principles

&)und Physical Design: \

»Regular, Fine-Grained Physical
Packaging.

» Uniform Depth of Physical
Aggregation.

QLogical/Physical Synergy. .

1. Process & Architecture

Organizing Principles

@und Physical Design:

» Uniform Depth of Physical
Aggregation.

_

~

194

1. Process & Architecture

iform Depth of Physical Aggregation

Un

maln

1, 2,3,4, &5 deep

1, 2,3, & 4 deep

1,2,&3

1 1&2

195

1. Process & Architecture

Uniform Depth of Physical Aggregation

& o |° ° ° e [& =
= g & g oo ©
-S> =2 - o| o
L ‘ >) i
1] () ol
Q'S e l T © @%?’@ o
[el[e][e]]
=7 | = o
| [E]E]| =)} [=]
[=)[[o)=)] =)
(=]} [=)]
=)} T [el[e][e]]
- [gEse =
|el[[es)] (=]}

gl

o S STeTe)
o ol

=]

o | fE|e
| ‘= Hizlég;%] H m o a o [E5
(S]

ooI0]

Kicwl

=]

IOONO|
| o

[e] (=] [@] o [lf=l=) (=]
[e][e]
ol) Sy 2 ~ e @
Bl @ g a
@I
o))
o ol

ol (o]
=g =
[ele)e) o o ['E_EDE;,“

1, 2,3,4, &5 deep

196

1. Process & Architecture

Uniform Depth of Physical Aggregation

(=1
o | o =
o oo O
gl o
o ol
ol)| =
(<] (=)o) =)
[eIeYe]
[=]
=)
°
[=]

(7|88 = | ©
_ (=)}
= [BEE°

gl

o S STeTe)
o ol

. e - R
Imll ﬂizég;%] = _ Eo

(@]
(=]
roam
(=]
ol k| =
[e)[e)(e]]

[el[e][e] [lf=l=) =]
-
A % 9 (=[] =

o

(=] [e)[e](=]]|le)]}

g % e

s

2,3,4, &5 deep

197

1. Process & Architecture

Uniform Depth of Physical Aggregation

(@]
© [eo)[e][e)]

Component Package Package Group
198

1. Process & Architecture

Uniform Depth of Physical Aggregation

Component Package Package Group

1. Process & Architecture

Uniform Depth of Physical Aggregation

main

Component Package Package Group Package Group Hierarchy

200

1. Process & Architecture

Uniform Depth of Physical Aggregation

main

N

Component Package Package Group Package Group Hierarchy

201

1. Process & Architecture

Uniform Depth of Physical Aggregation

main

Component Package Package Group Package Group Hierarchy

202

1. Process & Architecture

Components

Five levels of physical dependency:

Level 5:)

Level 4: C ||

Level 3: COllCallCT

Level 2. CollCallcCallco

Level I 1O |[Oo][O][3][=

203

1. Process & Architecture

Components

Only one level of physical aggregation:

|evel 5:
Level 4.
Level 3:
Level 2:
Level 1:

-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-
-

204

1. Process & Architecture

Packages

Two levels of physical aggregation:

“Dependency by
Decree”
(Metadata)

“A Hierarchy of Component Hierarchies”

205

1. Process & Architecture

Packages

Two levels of physical aggregation:

“Dependency by
Decree”
(Metadata)

Metadata governs, even absent of any components!

206

1. Process & Architecture

Packages

Two levels of physical aggregation:

Allowed
Dependencies

Metadata governs allowed dependencies.

207

1. Process & Architecture

Packages

Properties of an aggregate:

208

1. Process & Architecture

Packages

Properties of an aggregate:

Manifest
[=] (Metadata)

209

1. Process & Architecture

Packages

Properties of an aggregate:

e

llowed Dependencies
(Metadata)

210

1. Process & Architecture

Packages

Aggregate dependencies:

Aggregate Level 3:

Internally,
dependencies

among components
are inferred:

Aggregate Level 2:

Aggregate Level 1:

Allowed direct
f external
dependencies
are stated
explicitly

(with simple
metadata).

211

1. Process & Architecture

Package Groups

nird Level

“Dependency by

Decree” \

Important

212

1. Process & Architecture

What About a Fourth-Level Aggregate?

213

1. Process & Architecture

What About a Fourth-Level Aggregate?

We find two or three levels of
aggregation per library sufficient.

214

1. Process & Architecture

What About a Fourth-Level Aggregate?

We find two or three levels of
aggregation per library sufficient.

215

1. Process & Architecture

Organizing Principles

&)und Physical Design: \

»Regular, Fine-Grained Physical
Packaging.

» Uniform Depth of Physical
Aggregation.

QLogical/Physical Synergy. .

1. Process & Architecture

Organizing Principles

@und Physical Design:

QLogicaI/PhysicaI Synergy.

~

217

1. Process & Architecture

Logical/Physical Synergy

There are two distinct aspects:
1. Logical/Physical Coherence

N/

** Each logical subsystem is tightly encapsulated by
a corresponding physical aggregate.

2. Logical/Physical Name Cohesion

N/

** The precise physical location of the definition of
a logical construct can be determined directly
from its point of use (i.e., its qualified name).

218

1. Process & Architecture

Logical/Physical Synergy

There are two distinct aspects:
1. Logical/Physical Coherence

N/

** Each logical subsystem is tightly encapsulated by
a corresponding physical aggregate.

219

1. Process & Architecture

Logical/Physical Incoherence

A Component Defines Only What It Declares.

C Client D

< Calendar >

o

C Date D

/1 1\

Library

220

1. Process & Architecture

Logical/Physical Incoherence

A Component Defines Only What It Declares.

(Client> (Calendar >

A ARR

ostreamé& operator<<(
ostreamé& stream,
const Date& date);

Library 221

1. Process & Architecture

Logical/Physical Incoherence

A Component Defines Only What It Declares.

(Client> (Calendar >

A ARR

ostreamé& operator<<(
ostream& stream,
const Date& date);
// Not implemented

Library 222

1. Process & Architecture

Logical/Physical Incoherence

A Component Defines Only What It Declares.

(Client> (Calendar >

ostreamé& operator<<(
ostreamé& stream,

const Date& date) {
// ...
.ﬁ}
Tw>] /| |\

ostreamé& operator<<(
ostream& stream,
const Date& date);
// Not implemented

Library 223

1. Process & Architecture

Logical/Physical Incoherence

A Component Defines Only What It Declares.

v oo >

ostreamé& operator<<(
ostreamé& stream,

const Date& date) {
// ...
.ﬁ}
Tw>] /| |\

ostreamé& operator<<(
ostream& stream,
const Date& date);
// Not implemented

Library 224

1. Process & Architecture

Logical/Physical Incoherence

A Component Defines Only What It Declares.

S [o>

ostreamé& operator<<(
ostreamé& stream,

const Date& date) {
// ...
.ﬁ}
Tw>] /| |\

ostreamé& operator<<(
ostream& stream,
const Date& date);
// Not implemented

Library 225

1. Process & Architecture

Logical/Physical Incoherence

A Component Defines Only What It Declares.

SEO o [o>

ostreamé& operator<<(
ostreamé& stream,

const Date& date) {
/] ...
.ﬁ}
Tw>] /| |\

ostreamé& operator<<(
ostream& stream,
const Date& date);
// Not implemented

Library 226

1. Process & Architecture

Logical/Physical Incoherence

A Component Defines Only What It Declares.

 Client D} _

cout << date; ~

C Date D

ostreamé& operator<<(
ostream& stream,
const Date& date);
// Not implemented

Library 227

1. Process & Architecture

Logical/Physical Incoherence

A Component Defines Only What It Declares.

v oo >

Date > / P K

ostreamé& operator<<(
ostream& stream,
const Date& date);
// IMPLEMENTED! !!

Library 228

1. Process & Architecture

Logical/Physical Coherence

(buyside: :ClassD) (sellside: :Class@
buys:Lde ClassC I se1151de ClassC
><

(buys:.de ClassB sells:Lde ClassBD

buyside : :ClassA sellside: :ClassA

229

1. Process & Architecture

Logical/Physical Coherence

buyside: :ClassD sellside: :ClassD

>4

(buyside::ClassC) \ide::Class@>

(buyside::ClassB) sellside::Classé)

(buyside::ClassA) (%ellside::Classé)

230

1. Process & Architecture

Logical/Physical Coherence

buyside: :ClassD sellside: :ClassD

(buyside::ClassC) \ide::Class@>

(buyside::ClassB) sellside::Classé)

(buyside::ClassA) (%ellside::Classé)

231

1. Process & Architecture

Logical/Physical Coherence

pack
YN

>
(busie:-ciasen) RO

232

1. Process & Architecture

Logical/Physical Coherence

233

1. Process & Architecture

Logical/Physical Incoherence

buyside: :ClassD sellside: :ClassD

(buyside::ClassC) <§ellside::Class@>

buyside: :ClassB sellside: :ClassB

(buyside::ClassA) (%ellside::Classé)

234

1. Process & Architecture

Logical/Physical Incoherence

buyside: :ClassD sellside: :ClassD

(buyside::ClassC) <§ellside::Class@>

buyside: :ClassB sellside: :ClassB

(buyside::ClassA) (%ellside::Classé)

235

1. Process & Architecture

buyside: :ClassD sellside: :ClassD

(buyside::ClassC) <§ellside::Class@>

(buyside::ClassB) (éellside::Classé)

(buyside::ClassA) (%ellside::Classé)

1

236

1. Process & Architecture

buyside: :ClassD sellside: :ClassD

(buyside::ClassC) <§ellside::Class@>

(buyside::ClassB) sellside: :ClassB

(buyside::ClassA) (%ellside::Classé)

1

237

1. Process & Architecture

(buyside::ClassD (éellside::Class

(buyside::ClassC) (éellside::Class

(buyside::ClassB) (éellside::Class

(buyside::ClassA)

(%ellside::Class

~ I

4

1. Process & Architecture

Logical/Physical Incohekepce

)

buyside: :ClassD sellside: :ClassD

(buyside::ClassC) <§ellside::Class@>

(buyside::ClassB) (éellside::Classé)

(buyside::ClassA) (%ellside::Classé)

1

239

1. Process & Architecture

Logical/Physical Incohekepce

buyside: :ClassD sellside: :ClassD

)

(buyside::ClassC) <§ellside::Class@>

buyside: :ClassB (éellside::Classé)

(buyside::ClassA) (%ellside::Classé)

1

240

1. Process & Architecture

Logical/Physical Incohekepce

)

buyside: :ClassD sellside: :ClassD

(buyside::ClassC) <§ellside::Class@>

(buyside::ClassB) (éellside::Classé)

(buyside::ClassA) (%ellside::Classé)

— I

‘

241

1. Process & Architecture

NCONS

(buyside : :ClassD (sellside: :Class@

(buyside : :ClassC) (s.ellside: :Class@

(buyside : :ClassB) (sellside: :ClassBD

(buyside : :ClassA) (sellside: :Classl-g

1. Process & Architecture

buyside: :ClassD sellside: :ClassD

buyside: :ClassC sellside: :ClassC

buyside: :ClassB sellside: :ClassB

buyside: :ClassA sellside: :ClassA

~ I

1. Process & Architecture

(buyside::ClassD

(buyside::ClassC

sellside::Class@)

(buyside::ClassA) (%ellside::Classé)

“— —”

1. Process & Architecture

1. Process & Architecture

Logical/Physical Coherence

(buyer: :ClassW (buyer: :ClassX

(buyer: :ClassY (buyer: :ClassZ

seller: :ClassW) seller: :ClassX)

246

1. Process & Architecture

Logical/Physical Coherence

(G i)
-

seller: ClassW) seller: ClassX)

247

1. Process & Architecture

Logical/Physical Coherence

(buyer: :ClassW (buyer: :ClassX

(buyer: :ClassY (buyer: :ClassZ

ClassW) Isel.ler): ClassX)

seller:

248

1. Process & Architecture

Logical/Physical Coherence

(buyer:

ClassW) (buyer: :ClassX)

(seller: :ClassW) (seller: :ClassX)

249

1. Process & Architecture

Logical/Physical Coherence

53 >
> 5

Getier-(@ass) D

> >

250

1. Process & Architecture
Logical/Physical Coherence
This is the goall

(buyer: :ClassW (buyer: :ClassX

(buyer: :ClassY (buyer: :ClassZ

251

1. Process & Architecture

Logical/Physical Synergy

There are two distinct aspects:

2. Logical/Physical Name Cohesion

N/

** The precise physical location of the definition of
a logical construct can be determined directly
from its point of use (i.e., its qualified name).

252

1. Process & Architecture

Logical/Physical Name Cohesion

= Key Concept €=

! 253

1. Process & Architecture

Packages

Classical Definition

* A package is an acyclic collection of components organized
as a logically and physically cohesive unit.

254

1. Process & Architecture

Packages

High-Level Interpreter Architecture

‘ interpreter \

‘ parser ‘ ‘ evaluator \ [formatter \
‘ runtime database \

255

1. Process & Architecture

Architecturally Significant Names

Non-Cohesive Logica| Package Name: bts
and Physica| Names Component Name: cost

Class Name: BondPrice

#include <cost.h>

cost.h cost.cpp

o BAD IDEA!

256

1. Process & Architecture

Architecturally Significant Names

Non-Cohesive Logical Package Name:(bts)
and Physica| Names Component Name: cost

Class Name: BondPrice

#include <cost.h>

cost.h cost.cpp

<D BAD IDEA!

257

1. Process & Architecture

Architecturally Significant Names

Non-Cohesive Logica| Package Name: bts
and Physical Names Component Name: (<ost)

Class Name: BondPrice

#include >

CE

o BAD IDEA!

258

1. Process & Architecture

Architecturally Significant Names

Non-Cohesive Logica| Package Name: bts

' C Name:
and Physical Names omponent Name: cost
Class Name: BondPrch

#include <cost.h>
‘ BondPrice ’

cost.h cost.cpp

()
o BAD IDEA!

259

1. Process & Architecture

Architecturally Significant Names

Definition
An entity is Architecturally Significant if its name (or
symbol) is intentionally visible outside the UOR that

defines it.

260

1. Process & Architecture

Architecturally Significant Names

Definition
An entity is Architecturally Significant if its name (or
symbol) is intentionally visible outside the UOR that

defines it.

Design Rule
The name of each
— Unit Of Release (UOR)
— (library) component
must be unique throughout the enterprise.

261

1. Process & Architecture

Physical Package Prefixes

Component Name Not Matching Package Name:
cost

#include <cost.h>

cost.h cost.cpp

bts
262

1. Process & Architecture

Physical Package Prefixes

Component Name Not Matching Package Name:

263

1. Process & Architecture

Physical Package Prefixes

Design Rule
Each component name begins with the name of the
package in which it resides, followed by an underscore

().

264

1. Process & Architecture

Physical Package Prefixes

Component Prefix Doesn’t Match Package Name:
abc_cost

#include <abc_cost.h>

abc _cost.h abc _cost.cpp

bts
265

1. Process & Architecture

Physical Package Prefixes

Component Prefix Doesn’t Match Package Name:

@bc)cost

ost.h

266

1. Process & Architecture

Physical Package Prefixes

Component Prefix Matches Package Name:

(ts Yxost

ost.h

267

1. Process & Architecture

Physical Package Prefixes

Component Prefix Matches Package Name:

bts _cost

#include <bts_cost.h>

bts _cost.h bts_cost.cpp

bts

268

1. Process & Architecture

Logical Package Namespaces

Package Namespace Should Match Package Name
bts

#include <bts_cost.h>

bts _cost.h bts_cost.cpp

bts
269

1. Process & Architecture

Logical Package Namespaces

Package Namespace Matches Package Name
bts

#include <bts_cost.h>

bts _cost.h bts_cost.cpp

bts
270

1. Process & Architecture

Logical Package Namespaces

Package Namespace Matches Package Name

#include <bts_cost.h>

bts _cost.h bts_cost.cpp

271

1. Process & Architecture

(Logical) Enterprise-Wide Namespace

< Package Namespace Matches Package Name
/

MyLongCompanyName: :

bts_cost.h

bts

#include <bts_cost.h>

bts_cost.cpp

272

1. Process & Architecture

Logical Package Namespaces

Package Namespace Matches Package Name
bts

#include <bts_cost.h>

bts _cost.h bts_cost.cpp

bts
273

1. Process & Architecture

Logical/Physical Name Cohesion

Design Goal
The use of each logical entity should alone be sufficient
to know the component in which it is defined.

274

1. Process & Architecture

Logical/Physical Name Cohesion

Design Goal
The use of each logical entity should alone be sufficient
to know the component in which it is defined.

Design Rule

The (lowercased) name of every logical construct (other
than free operators) declared at package-namespace
scope must have, as a prefix, the name of the component

that implements it.

275

1. Process & Architecture

Logical/Physical Name Cohesion

Class name should match Component name
BondPrice €= cost

#include <bts_cost.h>

bts _cost.h bts_cost.cpp

bts

276

1. Process & Architecture

Logical/Physical Name Cohesion

Class name should match Component name
BondPrice €= cost

#include <bt< cost.h>)
‘ BondPrice ’

bts

277

1. Process & Architecture

Logical/Physical Name Cohesion

Class name does match Component name

BondPrice €= bondprice

#include <bt@pr®
‘ BondPrice ’
bt bondprice.)} bt PP

bts

278

1. Process & Architecture

Logical/Physical Name Cohesion

Class name does match Component name

BondPrice €= bondprice

#include <bts bondprice.h>

bts_bondprice.h bts_bondprice.cpp

bts

279

1. Process & Architecture

Logical/Physical Name Cohesion

Some more details:
JdNamespaces used for enterprise and package.
JdOnly classes* at package namespace scope.

No free functions: C-style functions are
implemented as static members of a struct.

1Operators are defined only in components that
also define at least one of their parameter types.

dUltra short package names mean: No using!

*Also structs, class templates, operators, and certain aspect functions (e.g., swap).
280

1. Process & Architecture

Logical/Physical Name Cohesion

Some more details:
JdNamespaces used for enterprise and package.
JdOnly classes* at package namespace scope.

No free functions: C-style functions are
implemented as static members of a struct.

1Operators are defined only in components that
also define at least one of their parameter types.

dUltra short package names mean

*Also structs, class templates, operators, and certain aspect functions (e.g., swap).
281

1. Process & Architecture

Logical/Physical Name Cohesion

Package naming is more than just a convention:

282

1. Process & Architecture

Logical/Physical Name Cohesion

Package naming is more than just a convention:

283

1. Process & Architecture

Logical/Physical Name Cohesion

Package naming is more than just a convention:

/[\
subim compl subim comp2
subc compl subc comp2 subc comp3

284

1. Process & Architecture

Logical/Physical Name Cohesion

Package naming is more than just a convention:

subim compl subim comp2

subc compl subc comp2 subc comp3

285

1. Process & Architecture

Logical/Physical Name Cohesion

Package naming is more than just a convention:

subim compl subim comp2

subc compl subc comp2 subc comp3

286

1. Process & Architecture

Logical/Physical Name Cohesion

287

1. Process & Architecture

Logical/Physical Name Cohesion

Package naming is more than just a convention:

subt compl subt comp2 subt comp3

288

1. Process & Architecture

Logical/Physical Name Cohesion

Package Group

289

1. Process & Architecture

Logical/Physical Name Cohesion

Package Group

290

1. Process & Architecture

Logical/Physical Name Cohesion

Package Group

sub
291

1. Process & Architecture

Logical/Physical Name Cohesion

Package Group

sub @ Exactly Three Characters

292

1. Process & Architecture

Logical/Physical Name Cohesion

bool flag = bdlt::Date::isValidYMD(1959, 3, 8);

293

1. Process & Architecture

Logical/Physical Name Cohesion

bool flag = bdlt::Date::isValidYMD(1959, 3, 8);

Package Group: bdl

Package: bdlt

Component: bdlt date

Class: bdlt: :Date

Function: bdlt::Date::1sValid¥YMD

294

1. Process & Architecture

Logical/Physical Name Cohesion

bool flag = bdlt::Date::isValidYMD(1959, 3, 8);

Package Group: bdl

Package: bdlt

Component: bdlt date

Class: bdlt: :Date

Function: bdlt::Date::1sValid¥YMD

295

1. Process & Architecture

Logical/Physical Name Cohesion

bool flag = bdlt::Date::isValidYMD(1959, 3, 8);

Package Group: bdl

Package: bdlt
Component: bdlt date
Class: bdlt: :Date

Function: bdlt::Date::1sValid¥YMD

296

1. Process & Architecture

Logical/Physical Name Cohesion

bool flag = bdlt::Date::isValidYMD(1959, 3, 8);

Package Group: bdl

Package: bdlt
Component: bdlt date
Class: bdlt: :Date

Function: bdlt::Date::1sValid¥YMD

297

1. Process & Architecture

Logical/Physical Name Cohesion

bool flag = bdlt::Date::isValidYMD(1959, 3, 8);

Package Group: bdl

Package: bdlt
Component: bdlt date
Class: bdlt: :Date

Function: bdlt: :Date

: :1sValidYMD

298

1. Process & Architecture

Logical/Physical Name Cohesion

bool flag = bdlt::Date::isValidYMD(1959, 3, 8);

bd] Package Groups

/| \
bdlt Packages

bdlt date.h Components
bdlt date.cpp
bdlt date.t.cpp

299

1. Process & Architecture

Logical/Physical Name Cohesion

bool flag = bdlt::Date::isValidYMD(1959, 3, 8);

libraries

/ |\

bd] Package Groups
/ |\

bdlt Packages

bdlt date.h Components
bdlt date.cpp
bdlt date.t.cpp

300

1. Process & Architecture

Logical/Physical Name Cohesion

bool flag = bdlt::Date::isValidYMD(1959, 3, 8);

libraries

/ |\
bd] Package Groups

/| \

__bdit_

bdlt date.h Components
bdlt date.cpp
bdlt date.t.cpp

301

1. Process & Architecture

Logical/Physical Name Cohesion

bool flag = bdlt::Date::isValidYMD(1959, 3, 8);

libraries

/ |\

) bldl \ Package Groups
bdlt Packages

bdlt date.h Components

bdlt date.cpp
bdlt date.t.cpp

302

1. Process & Architecture

Logical/Physical Name Cohesion

bool flag = bdlt::Date::isValidYMD(1959, 3, 8);

libraries

/ |\

) bldl \ Package Groups
bdlt Packages

bdlt date.h Components

bdlt date.cpp
bdlt date.t.cpp

303

1. Process & Architecture

Unit Of Release

root

applications libraries

m_appl m_app2, m_app3 .. libl lib2 b3

\

UOR

304

1. Process & Architecture

Unit Of Release

Package or Package Group

root

applications libraries

m_appl m_app2, m_app3 .. libl lib2 b3

\

UOR

1. Process & Architecture

Development vs. Deployment

Source Code Deployment
One-to-Many
libraries root
>
‘ ‘ ‘ ‘ abc
abc / sun hp ibm
include \
*.h
lib
libabc.a
libabc.so
libabc_dbg.a

(Really: unix-SunOS-sparc-5.10-cc-5.11) libabc_dbg.so
306

1. Process & Architecture

Development vs. Deployment

Source Code Deployment
One-to-Many
libraries root
>
‘ ‘ ‘ ‘ abc
abc include sun hp ibm
*.h \
lib
libabc.a
libabc.so
libabc_dbg.a

(Really: unix-SunOS-sparc-5.10-cc-5.11) libabc_dbg.so
307

1. Process & Architecture

Development vs. Deployment

Source Code Deployment
One-to-Many
libraries root

>

include

*h
ibm

] A
suyp
lib

libabc.a
libabc.so
libabc_dbg.a

(Really: unix-SunOS-sparc-5.10-cc-5.11) libabc_dbg.so
308

1. Process & Architecture

Designing with Dependency in Mind
Good Physical Design...

1. Process & Architecture

Designing with Dependency in Mind

Good Physical Design...
v'Is not an afterthought.

1. Process & Architecture

Designing with Dependency in Mind
Good Physical Design...

v'Is an integral part of logical design.

1. Process & Architecture

Designing with Dependency in Mind
Good Physical Design...

v'Is something we first consider long
before we start to write code.

312

1. Process & Architecture

Designing with Dependency in Mind
Good Physical Design...

v'Is something we must consider when
decomposing the problem itself!

3.

4.,

Outline

Goals
What we are trying to do, for whom, and how.

Process & Architecture

Organizing Software as Components, Packages, & Package Groups.

Design & Implementation

Using Class Categories, Value Semantics, & Vocabulary Types.

Verification & Testing

Component-Level Test Drivers, Peer Review, & Defensive Checks.

Bloomberg Development Environment

Rendered as Fine-Grained Hierarchically Reusable Components.
314

1.

3.

4.

Outline

Goals
What we are trying to do, for whom, and how.

Process & Architecture

Organizing Software as Components, Packages, & Package Groups.

Design & Implementation

Using Class Categories, Value Semantics, & Vocabulary Types.

Verification & Testing

Component-Level Test Drivers, Peer Review, & Defensive Checks.

Bloomberg Development Environment

Rendered as Fine-Grained Hierarchically Reusable Components.
315

Integral to our design process are:
a) Common Class Categories

b) Unique Vocabulary Types

c) Design By Contract

d) Appropriately Narrow Contracts
e) An Overriding Customer Focus

2. Design & Implementation

Essential Strategies and Techniques

mtegral to our design process are:\
a) Common Class Categories

N /

317

2. Design & Implementation

The Value of a “Value”

Getting Started:
* Not all useful C++ classes are value types.

318

2. Design & Implementation

The Value of a “Value”

Getting Started:
* Not all useful C++ classes are value types.
e Still, value types form an important category.

319

2. Design & Implementation

The Value of a “Value”

Getting Started:
* Not all useful C++ classes are value types.

e Still, value types form an important category.

e Let’s begin with understanding properties of
value types.

320

2. Design & Implementation

The Value of a “Value”

Getting Started:
* Not all useful C++ classes are value types.
e Still, value types form an important category.

e Let’s begin with understanding properties of
value types.

 Then generalize to build a small type-category
hierarchy.

321

2. Design & Implementation

So, what do we mean by “value”?

class Date {
short d year;
char d month;
char d day;

public:

/]

int year() ;
int month () ;
int day() ;

by

322

2. Design & Implementation

So, what do we mean by “value”?

class Date {
short d year;
char d month;
char d day;

public:

/]

int year() ;
int month () ;
int day() ;

by

323

2. Design & Implementation

So, what do we mean by “value”?

class Date {
short d year;
char d month;
char d day;

public:

/]

int year() ;
int month () ;
int day() ;

by

@

324

2. Design & Implementation

So, what do we mean by “value”?

class Date {
short d year;
char d month;
char d day;

public:

// ..
int year () cons

int month () cor

int day() const;

by

st ;

st ;

325

2. Design & Implementation

So, what do we mean by “value”?

class Date {
short d year;

char d month;
char d day;
public:

/]

int year() ;
int month () ;
int day() ;

by

class Date {
int d serial;

public:

// ..

int year() ;
int month () ;
int day () ;

I g

326

2. Design & Implementation

So, what do we mean by “value”?

class Date {

hort d yeg+”
cha month;
ar d_ :

public:

int year() ;
int month () ;
int day() ;

class Date {

int erial;

int year() ;
int month () ;
int day () ;

I g

327

2. Design & Implementation

So, what do we mean by “value”?

Salient Attributes

int year();
int month () ;

int day () ;

328

2. Design & Implementation

So, what do we mean by “value”?

Salient Attributes

The documented set of (observable)
named attributes of a type T that

must respectively “have” (refer to)

the same value in order for two
instances of T to “have” (refer to) the

same value.

329

2. Design & Implementation

So, what do we mean by “value”?

class Time {
char d hour;
char d minute;
char d second;
short d millisec;
public:
// ..
int hour();
int minute() ;
int second() ;
int millisecond() ;

};

class Time {
int d mSeconds;

public:
// ..
int hour () ;
int minute () ;
int second() ;

int millisecond() ;

¥

330

2. Design & Implementation

So, what do we mean by “value”?

class Time {
Internal Representation

class Time {
Internal Representation

int hour() ;
int minute () ;
int second() ;
int millisecond() ;

int hour () ;
int minute () ;
int second() ;
int millisecond() ;

331

2. Design & Implementation

So, what do we mean by “value”?

Value:

332

2. Design & Implementation

So, what do we mean by “value”?

Value:

* An “interpretation” of object state —

333

2. Design & Implementation

So, what do we mean by “value”?

Value:

* An “interpretation” of object state —
i.e., Salient Attributes, not the object
state itself.

334

2. Design & Implementation

So, what do we mean by “value”?

Value:

* An “interpretation” of object state —
i.e., Salient Attributes, not the object
state itself.

* No non-object state is relevant.

335

2. Design & Implementation

What are “Salient Attributes”?

336

2. Design & Implementation

What are “Salient Attributes”?

class wvector {
T *d array p;

size type d capacity;

size type d size;
/] ...
public:

vector () ;
vector (const vector<T>& oriqg);

//
} s

337

2. Design & Implementation

What are “Salient Attributes”?

class wvector {
T *d array p;
size type d capacity;
size type d size;
// ...

public:

vector () ;
vector (const vector<T>& oriqg);

}r

338

2. Design & Implementation

What are “Salient Attributes”?

Consider std: :vector<int>:

What are its salient attributes?

339

2. Design & Implementation

What are “Salient Attributes”?

Consider std: :vector<int>:

What are its salient attributes?

1. The number of elements: size ().

340

2. Design & Implementation

What are “Salient Attributes”?

Consider std: :vector<int>:

What are its salient attributes?

1. The number of elements: size ().

2. The values of the respective elements.

341

2. Design & Implementation

What are “Salient Attributes”?

Consider std: :vector<int>:

What are its salient attributes?

1. The number of elements: size ().

2. The values of the respective elements.
3. What about capacity()?

342

2. Design & Implementation

What are “Salient Attributes”?

Consider std: :vector<int>:

What are its salient attributes?

1. The number of elements: size ().

2. The values of the respective elements.
3. What aboutecapaeity ()?

How is the client supposed to know for sure?

343

2. Design & Implementation

What are “Salient Attributes”?

Consider std: :vector<int>:

What are its salient attributes?

1. The number of elements: size ().
2. The values of the respective elements.
“3~What-about-capaeity ()=
How is the client supposed to know for sure?
They must be documented (somewhere).

344

2. Design & Implementation

Value-Semantic Properties

Note that two distinct objects a and b of
type T that have the same value might not
exhibit “the same” observable behavior.

345

2. Design & Implementation

Value-Semantic Properties

Note that two distinct objects a and b of
type T that have the same value might not
exhibit “the same” observable behavior.

std: :vector<int> a;

a.reserve (655306);

std::vector<int> b(a);// is capacity copied?
assert(a == b)

a.resize (65536) ; // no reallocation!

b.resize (65530) ; // memory allocation?
346

2. Design & Implementation

Value-Semantic Properties

Note that two distinct objects a and b of
type T that have the same value might not
exhibit “the same” observable behavior.

std: :vector<int> a;

a.reserve (65536);

i .

<i/éi§::vector<int> b(a);// is capacity cggie&?:>

assert(a == b)
a.resize (65536) ; // no reallocation!

b.resize (65530) ; // memory allocation?
347

2. Design & Implementation

Value-Semantic Properties

Note that two distinct objects a and b of
type T that have the same value might not
exhibit “the same” observable behavior.

std: :vector<int> a;

a. reserve(65536)°

<:ﬁStd vector<1nt> b(a);// is capacity cgﬁie&?:>

assert(a == b)

a. re81z§(6§536) // no reallocation'
< b re81ze(65536) // memory allocatlon°:j>

I - 348

2. Design & Implementation

Value-Semantic Properties

Note that two distinct objects a and b of
type T that have the same value might not
exhibit “the same” observable behavior.

HOWEVER

349

2. Design & Implementation

Value-Semantic Properties

Note that two distinct objects a and b of
type T that have the same value might not
exhibit “the same” observable behavior.

HOWEVER

1. If a and b initially have the same value, and

350

2. Design & Implementation

Value-Semantic Properties

Note that two distinct objects a and b of
type T that have the same value might not
exhibit “the same” observable behavior.

HOWEVER

1. If a and b initially have the same value, and

2. the same operation is applied to each object, then

351

2. Design & Implementation

Value-Semantic Properties

Note that two distinct objects a and b of
type T that have the same value might not
exhibit “the same” observable behavior.

HOWEVER

1. If a and b initially have the same value, and

2. the same operation is applied to each object, then

3. (absent any exceptions or undefined behavior)

352

2. Design & Implementation

Value-Semantic Properties

Note that two distinct objects a and b of
type T that have the same value might not
exhibit “the same” observable behavior.

HOWEVER

1. If a and b initially have the same value, and

2. the same operation is applied to each object, then

3. (absent any exceptions or undefined behavior)

4. both objects will again have the same value'

353

2. Design & Implementation

Value-Semantic Properties

1. If a and b initially have the same value, and

2. the same operation is applied to each object, then

3. (absent any exceptions or undefined behavior)

4. both objects will again have the same value!

2. Design & Implementation

Value-Semantic Properties

SUBTLE ESSENTIAL PROPERTY OF VALUE

1. If a and b initially have the same value, and

2. the same operation is applied to each object, then

3. (absent any exceptions or undefined behavior)

4. both objects will again have the same value'

2. Design & Implementation

Value-Semantic Properties

Deciding what is (not) salient

IS surprisingly important.
SUBTLE ESSENTIAL PROPERTY OF VALUE

1. If a and b initially have the same value, and

2. the same operation is applied to each object, then

3. (absent any exceptions or undefined behavior)

4. both objects will again have the same value'

2. Design & Implementation

Value-Semantic Properties
There is alot more to this story!

Deciding what is (not) salient

IS surprisingly important.
SUBTLE ESSENTIAL PROPERTY OF VALUE

1. If a and b initially have the same value, and

2. the same operation is applied to each object, then

3. (absent any exceptions or undefined behavior)

4. both objects will again have the same value'

2. Design & Implementation

Does state always imply a “value”?

2. Design & Implementation

Does state always imply a “value”?

Flashli .
fQ(10 Object

359

2. Design & Implementation

Does state always imply a “value”?

2. Design & Implementation

Does state always imply a “value”?

What is its state?

361

2. Design & Implementation

Does state always imply a “value”?

What is its state? OFF

362

2. Design & Implementation

Does state always imply a “value”?

Flashli .
tﬁ(10 Object

What is its state?

363

2. Design & Implementation

Does state always imply a “value”?

Flashli .
tﬁ(10 Object

What is its state? ON

364

2. Design & Implementation

Does state always imply a “value”?

Flash; .
f\‘(19h Object

What is its state? ON
What is its value?

365

2. Design & Implementation

Does state always imply a “value”?

Flash; .
f\‘(19h Object

What is its state? ON
What is its value? <

366

2. Design & Implementation

Does state always imply a “value”?

Flash; .
f\‘(19h Object

What is its state? ON
What is its value? £.5. Q0O °?

367

2. Design & Implementation

Does state always imply a “value”?

Flashlight Object

What is its state? ON
What is its value? $5 OO s

Cheap at half

the prlce|

368

2. Design & Implementation

Does state always imply a “value”?

What is its state? ON | Any notion of “value”
What is its value? < here would be artificial

369

2. Design & Implementation

Does state always imply a “value”?

Not every stateful object has an obvious value.

370

2. Design & Implementation

Does state always imply a “value”?

Not every stateful object has an obvious value.

 TCP/IP Socket

Thread Pool
Condition Variable
Mutex Lock
Reader/Writer Lock
Scoped Guard

371

Not every stateful object has an obvious value.

2. Design & Implementation

Does state always imply a “value”?

TCP/IP Socket
Thread Pool
Condition Variable
Mutex Lock
Reader/Writer Lock
Scoped Guard

 Base64 En(De)coder

Expression Evaluator

Language Parser
Event Logger
Object Persistor
Widget Factory

372

2. Design & Implementation
Does state always imply a “value”?

We refer to stateful
objects that do not
‘represent a value
as “Mechanisms”.

2. Design & Implementation

Categorizing Object Types

374

2. Design & Implementation

Categorizing Object Types

The first question: “Does it have state?”

375

2. Design & Implementation

Categorizing Object Types

The first question: “Does it have state?”

Gtatele& Object ; ; Stateful Object>

376

2. Design & Implementation

Categorizing Object Types

The first question: “Does it have state?”

Gtatele& Object Stateful Object>

IsConvertible<U,D

377

2. Design & Implementation

Categorizing Object Types

The first question: “Does it have state?”

struct DateUtil {

// This struct provides a namespace

// for a suite of non-primitive functions
// operating on Date objects.

@ static Date lastDateInMonth (const Date& value);
// Return the last date in the same month

// as the specified date 'value'. Note
// that the particular day of the month
// of 'value' is ignored.

Gtatele& Object

378

2. Design & Implementation

Categorizing Object Types

The first question: “Does it have state?”
struct DateUtil {

// This struct

// for a suite
// operating on

@ static Date las:
// Return t

// as the sy

// that the
// of 'value

< Stateless Object >

/X

}

379

2. Design & Implementation

Categorizing Object Types

The second question: “Does it have value?”

Gtatelei Object ; ; Stateful Object>

380

2. Design & Implementation

Categorizing Object Types

The second question: “Does it have value?”

@echanis% ?Iue Tpr

Gtatele& Object ; ; Stateful Object>

381

2. Design & Implementation

Top-Level Categorizations
> tart here

A es
no Is object y 7/ Takes allocator?

instantiable?
|

Type only 2

no A yes

Has “value”?

| |

Value-

I— Mechanism Semantic Type ¢
2 |
v 2
\ 4

N

382

2. Design & Implementation

g Picture

The Bi

Type only

meta-
function

Is object-

instantiable? 4

yes o

Takes allocator?

bsls::AlignmentUtil

bslmf: : IsFundamental

baetzo: :Loader

v

Mechanism

|
2

Has “value™?

Value-
Semantic Type

|
2

v

Externalizable?

externalizable,
no allocator

]
4

reference
semantic
type

l—>

guard/
proctor

o)

stateless
functor

b 2

=
bdem: :ElemRef

[E3)

bslma: :DeallocatorGuard

*

container:
associative?

X ordered?

X unique?
X indexed?

general
VST

| bslma: :DestructorProctor

53]

bteso: :InetStreamSocketFactory

64

[
bslma: :NewDeleteAllocator

=
bsl::less

64

packed
container

bdea: :BitArray

Referable
elements?

x|

bdet: :Date

v

enumeration

IS

baetzo: :LocalTimeValidi

sl
ty

unconstrained

simply
constrained
BE|

complex
constrained

baet: :LocalDatetime

baetzo: :LocalTimePeriod

[Ev|

Lbaetzo::LocalTimeDescriptor
yes

bteso: :LingerOptions

[IE3

64

standard
container

bslx

]

bassvc: :ControlMessageResponse

[alx]

externalization
available from

383

2. Design & Implementation

The Big Picture

ject- es
1S el Y P/ Takes allocator?

instantiable?
|

no

Type only

meta-
function

2

Has “value™?

bsls::AlignmentUtil

bslmf: : IsFundamental baetzo: :Loader

Value-

Semantic Type

I
2

v

Mechanism

reference
semantic
type

l—>

guard/
proctor

o)

stateless

—2 functor

v

Externalizable?

externalizable,
no allocator

v

]

bdem: : ElemRef container:

associative?

general
VST

X ordered?
X unique?

x|

| bslma: :DestructorProctor

4
:
[|

4

& X indexed?
baetzo: :LocalTimeValidity

bslma: :DeallocatorGuard bdet: :Date

£}
bteso: :InetStreamSocketFactory

64

unconstrained

baet: :LocalDatetime

simply complex T
constrained constrained P
BE| B

baetzo: :LocalTimePeriod

[
bslma: :NewDeleteAllocator

[Ev|

Lbaetzo::LocalTimeDescriptor
yes

[IE3

Referable

=
bsl::less

bteso: :LingerOptions

elements?

64

[alx]

bassvc: :ControlMessageResponse

64
externalization
available from

standard
container
bslx

= 384

packed
container

bdea: :BitArray

2. Design & Implementation

The Big Picture

no [ject- es
'nsst:nbtjiz‘tﬁe? z P/ Takes allocator?
I

Type only

meta-
function

2

Has “value™?

protocol @

bsls::AlignmentUtil bslmf: : IsFundamental baetzo: :Loader
Value-
Semantic Type
I
2
v externalizable,
Externalizable? no allocator
]
Mechanism @@ . 4
reference . . general A
type associative?
X ordered?
X unique?
S MR bdet t =t baet 1Ti 1idit:
quard/ bslma: :DeallocatorGuard et: :Date aetzo: :LocalTimeValidity

proctor

| bslma: :DestructorProctor

A bteso: : InetStreamSocketFactory (eSS EiEG) Slmp!y compl_ex pure
64 constrained constrained
baet: :LocalDatetimeT baetzo: :LocalTimePeriod
— bslma: :NewDeleteAllocato:—‘

\;baetzo : :LocalTimeDescriptor
yes

Referable

elements? bteso: :LingerOptions
bsl::less
64 64
bassvc:: ControlMessageResponseT
packed standard
container container

bdea: :BitArray

stateless

—2 functor

externalization
available from
bslx

385

Integral to our design process are:
a) Common Class Categories

b) Unique Vocabulary Types

c) Design By Contract

d) Appropriately Narrow Contracts
e) An Overriding Customer Focus

2. Design & Implementation

Essential Strategies and Techniques

mtegral to our design process are:\
a) Common Class Categories

b) Unique Vocabulary Types

c) Design By Contract

d) Appropriately Narrow Contracts
@ An Overriding Customer Focus/

2. Design & Implementation

Vocabulary Types

A key feature of reuse is interoperability.

388

2. Design & Implementation

Vocabulary Types

A key feature of reuse is interoperability.

* We achieve interoperability by the
ubiquitous use of:

Vocabulary Types

389

2. Design & Implementation

Vocabulary Types
(An Example)

390

2. Design & Implementation

Vocabulary Types
(An Example)

f (my: :Date)

391

2. Design & Implementation

Vocabulary Types
(An Example)

f (my: :Date)

=

392

2. Design & Implementation

Vocabulary Types
(An Example)

f (my : :Date) g)

=

393

2. Design & Implementation

Vocabulary Types
(An Example)

their: :DateUtil

f (my : :Date) g)

(::EE%Z:DateUtil your::Date@EEE::D

394

2. Design & Implementation

Vocabulary Types
(An Example)

h(?°7?)

their: :DateUtil

f (my : :Date) g)

(::EE%Z:DateUtil your::Date@EEE::D

395

2. Design & Implementation

Vocabulary Types
(An Example)

h(?°7)

their: :DateUtil

f (my : :Date) g)

(::Eiiz:DateUtil your::DateﬁEEE::D

= —— @

Interoperability Problem!

396

2. Design & Implementation

Vocabulary Types
(An Example)

h(?°7)

their: :DateUtil

f (my : :Date) g)

(::Eiiz:DateUtil your::DateﬁEEE::D

= —— @

What should we do?

397

2. Design & Implementation

Vocabulary Types

(An Example)

h(?°7)

their: :DateUtil

f (my: :Date)

(::Eiiz:DateUtil

g ()

your::DateﬁEEE::D

What should we do?

398

2. Design & Implementation

Vocabulary Types

(An Example)

h (the: :Date)

their: :DateUtil

f (the: :Date)

(::Eiiz:DateUtil

g (the: :Date)

your::DateﬁEEE::D

What should we do?

399

2. Design & Implementation

Vocabulary Types

(An Example)

h (the: :Date)

their::DateUtil

f (the: :Date)

@: DateUtil

g (the: :Date)

your::DateﬁEEE::D

400

2. Design & Implementation

Vocabulary Types

On the other hand...

Distinct algebraic structures

deserve distinct C++ types.

2. Design & Implementation

Vocabulary Types

Consider operator++onan int versus a Date:

402

2. Design & Implementation

Vocabulary Types
Consider operator++onan int versus a Date:

int x(20080331);

403

2. Design & Implementation

Vocabulary Types
Consider operator++onan int versus a Date:

int x(20080331) ;
Date y (2008, 03, 31);

404

2. Design & Implementation

Vocabulary Types
Consider operator++onan int versus a Date:

int x(20080331) ;
Date y (2008, 03, 31);

++x

405

2. Design & Implementation

Vocabulary Types
Consider operator++onan int versus a Date:
int x(20080331);
Date vy (2008, 03, 31);

. __— | Basic operations for
++x: 20080332 type int lead to

invalid “date” values.

406

2. Design & Implementation

Vocabulary Types
Consider operator++onan int versus a Date:

int x(20080331) ;
Date y (2008, 03, 31);

++x: 20080332
++vy:

407

2. Design & Implementation

Vocabulary Types
Consider operator++onan int versus a Date:

int x(20080331) ;

Date vy (2008, 03, 31);
Operations for

++x: 20080332 / type Date

preserve

++y: (2008, 04, 01) invariants.

408

2. Design & Implementation

Vocabulary Types
Consider operator++onan int versus a Date:

int x(20080331) ;
Date y (2008, 03, 31);

++x: 20080332
++y: (2008, 04, 01)

Hence, date values deserve their own C++ type!

409

2. Design & Implementation

Vocabulary Types

The “type name” and “variable name” of an
object serve two distinct roles:

1. The type name defines the algebraic
structure.

2. The variable name indicates intent/purpose
In context.

int age;

string fililename;

410

2. Design & Implementation

Vocabulary Types

The “type name” and “variable name” of an
object serve two distinct roles:

1. The type name defines the algebraic
structure.

2. The variable name indicates intent/purpose
In context.

int age;

string filename;

411

2. Design & Implementation

Vocabulary Types

The “type name” and “variable name” of an
object serve two distinct roles:

1. The type name defines the algebraic
structure.

2. The variable name indicates intent/purpose
in context.

int age;

string filename;

412

2. Design & Implementation

Vocabulary Types

An integer or string value used in a particular
context should not be a separate type:

integer

Age

Shoe Size

Account Number

Year

Day of Month

Number of Significant Digits

string

Text

Word
Username
Filename
Password

Regular Expression

413

2. Design & Implementation

Vocabulary Types

An integer or string value used in a particular
context should not be a separate type:

integer

Age

Shoe Size

Account Number

Year

Day of Month

Number of Significant Digits

string

Text

Word

Username
Filename
Password

Regular Expression

414

2. Design & Implementation

Vocabulary Types

An integer or string value used in a particular
context should not be a separate type:

integer

Age

Shoe Size

Account Number

Year

Day of Month

Number of Significant Digits

string

Text

Word

Username
Filename
Password

Regular Expression

415

2. Design & Implementat ion
Template Policies

TEMPLATES CAN
PRESENT A
VOCABULARY
PROBLEM

2. Design & Implementation

Template Policies

Template parameters can be partitioned into
three basic categories:

417

2. Design & Implementation

Template Policies

Template parameters can be partitioned into
three basic categories:

e Essential Parameters

— Parameters that must be specified in all cases.

418

2. Design & Implementation

Template Policies

Template parameters can be partitioned into
three basic categories:

e Essential Parameters

— Parameters that must be specified in all cases.

* |Interface Policies

— Optional parameters that do affect logical behavior.

419

2. Design & Implementation

Template Policies

Template parameters can be partitioned into
three basic categories:

e Essential Parameters

— Parameters that must be specified in all cases.

* Interface Policies

— Optional parameters that do affect logical behavior.

* Implementation Policies

— Optional parameters that do not affect logical behavior.

420

2. Design & Implementation

Template Policies

Essential Parameters

* Are necessary for basic operation.

e Typically do not have reasonable defaults.

421

2. Design & Implementation

Template Policies

Essential Parameters

* Are necessary for basic operation.

e Typically do not have reasonable defaults.

Example:
template <class T> class vector;

422

2. Design & Implementation

Template Policies

Essential Parameters

* Are necessary for basic operation.

onable defaults.

Essential
Parameter

e Typically dg¢

Example:
template <class T> class vector;

423

2. Design & Implementation

Template Policies

Essential Parameters

* Are necessary for basic operation.

e Typically do not have reasonable defaults.

Example:
template <class T> class vector;

template <class Iter>

volid sort (Iter begin, Iter end);

424

2. Design & Implementation

Template Policies

Essential Parameters

* Are necessary for basic operation.

e Typically do not have reasonable defaults.

Essential
Parameter

volid sort (Iter begin, Iter end);

Example:
template <class T> c

template <class Iter

425

2. Design & Implementation

Template Policies

Interface Policies

* Affect intended “logical” behavior.

e Typically do have reasonable defaults.

426

2. Design & Implementation

Template Policies

Interface Policies

* Affect intended “logical” behavior.

e Typically do have reasonable defaults.

Example:

template <class T, class C = less<T>>

class OrderedSet;

427

2. Design & Implementation

Template Policies

Interface Policies
* Affect intended “logical” behavior.

\ble defaults.

e Typically dg

Essential
Parameter

Example:

template <class T, class C = less<T>>

class OrderedSet;

428

2. Design & Implementation

Template Policies

Interface Policies

* Affect intended “logical” behavior.
ble de

e Typically dg

Essential
Parameter

Example:

template <class T, class C = less<T>>

class OrderedSet;

429

2. Design & Implementation

Template Policies

Implementation Policies
DO NOT affect intended “logical” behavior.

e Typically do have reasonable defaults.

430

2. Design & Implementation

Template Policies

Implementation Policies
DO NOT affect intended “logical” behavior.

e Typically do have reasonable defaults.

Example:

template <class T,
class C = hash<T>,
int LOAD FACTOR = 1>

class UnorderedSet;

431

2. Design & Implementation

Template Policies

Implementation Policies

e DO NF =<t intended “logical” behavior.
Essential

e T) reasonable defaults.
Parameter

template <class T,
class C = hash<T>,
int LOAD FACTOR = 1>

class UnorderedSet;

432

2. Design & Implementation

Template Policies

Implementation Policies

DO M- : .

Essential Implementation
Parameter Policy

”

vehavior.

template <class T
class C = hash<T>,
int LOAD FACTOR = 1>

class UnorderedSet;

433

2. Design & Implementation

Template Policies

Implementation Policies

Essential Implementation
Parameter Policy

Implementation

template <class T Policy

class C = hash<T
int LOAD FACTOR"= 1>

class UnorderedSet;

434

2. Design & Implementation

Template Policies

Implementation Policies
DO NOT affect intended “logical” behavior.

e Typically do have reasonable defaults.

Example:

template <class T,
class L = DefaultLock>

class Queue;

435

2. Design & Implementation

Template Policies

Implementation Policies

e DO NF =<t intended “logical” behavior.

Essential
Parameter

' reasonable defaults.

template <class T,
class L = DefaultLock>

class Queue;

436

2. Design & Implementation

Template Policies

Implementation Policies

e DO NF =<t intended “logical” behavior.
Essential

e T b reasonable defz
Parameter

Implementation
Policy
template <class T,

class 1. = DefaultLock>

class Queue;

437

Template Parameters
Affect Object Type.

2. Design & Implementation

Template Policies

Essential Parameters:

vector<int> a;
vector<int> b;
a = b;

439

2. Design & Implementation

Template Policies

Essential Parameters:

vector<int> a;
vector<double> b;

a =_b;

Compiler
Error

440

2. Design & Implementation

Template Policies

Interface Policies:

OrderedSet<int> a;
OrderedSet<int> b;
1f (a == b) {

[/ .

441

2. Design & Implementation

Template Policies

Interface Policies:

OrderedSet<int> a;
OrderedSet<int, MyLess> Db;

1f (a == b) {
=

2. Design & Implementation

Template Policies

Implementation Policies:

volid f (Queue<double> *queue);

void g ()
{
Queue<double> g;

f(&q)

443

2. Design & Implementation

Template Policies

Implementation Policies:

volid f (Queue<double> *queue) ;

volid g ()
{
Queue<double, MyLock> qg;

f(&q);

} Compiler
Error

2. Design & Implementation

Template Policies

Implementation Polj
template<class T>O O O

void £ (T *queue);

The Entire
Implementation
Must Now
Reside In the

void g () Header File

{
Queue<double, MyLock> qg;

f(&q) s

} Compiles
Fine

2. Design & Implementation

Runtime Implementation Policies

<::§£eue<int>
)

447

2. Design & Implementation

Runtime Implementation Policies

448

2. Design & Implementation

Runtime Implementation Policies

class Lock {
// Pure abstract (protocol) class.
public:

virtual ~Lock () ;

virtual void lock () = 0;

virtual void unlock () = 0;

}r

449

2. Design & Implementation

Runtime Implementation Policies

class Lock {

// Pure abstract (protocol) class.

public:
virtual ~Lock(); COmm()n

Class
virtual void lock(Category

virtual voild unloc

}r

450

2. Design & Implementation

Runtime Implementation Policies

<::§Eeue<int>
)

451

2. Design & Implementation

Runtime Implementation Policies

template<class T> class Queue {

// .. Concrete value-semantic container type.
Lock *d lock p;
public:

Queue (Lock *lock = 0);

Queue (const Queue<T>& other, Lock *lock = 0);

[/ ..

volid pushBack (const T& value);

/..
b

452

2. Design & Implementation

Runtime Implementation Policies

<::§£eue<int>
)

453

2. Design & Implementation

Runtime Implementation Policies

class MyLock : public Lock {
// .. Concrete mechanism.
private:
MyLock (const MyLocké&) ;
MyLocké& operator=(const MyLocké&) ;
public:
MyLock () ;
virtual ~MyLock();
virtual void lock{();

virtual void unlock () ;

Yy

454

2. Design & Implementation

Runtime Implementation Policies

class MyLock : public Lock {

// .. Concrete mechanism.

MyLock (const MyLocké&) = delete;

MyLocké& operator=(const MyLock&) = delete;
public:

MyLock () ;

virtual ~MyLock();
virtual wvoid lock () ;

virtual void unlock () ;

Yy

455

2. Design & Implementation

Runtime Implementation Policies

<:::§(Queue<int> *q{:::>/‘
<::§£eue<int>

456

2. Design & Implementation

Runtime Implementation Policies

void f (Queue<double> *q);

void g ()

{
MyLock lock;

Queue<double> queue (&lock) ;
f (&queue) ;

457

2. Design & Implementation

Runtime Implementation Policies

void f (Queue<double> *q);

void g ()

{
MyLock 1lock;

Queue<double> queue (&lock) ;
f (&queue) ;

458

2. Design & Implementation

Runtime Implementation Policies

void f (Queue<double> *q);

void g ()

{
MyLock lock;

Queue<double> queue (&lock) ;
f (&queue) ;

459

2. Design & Implementation

Runtime Implementation Policies

vold f (Queue<double> *q);

void g ()

{
MyLock lock;

Queue<double> queue (&lock);
f (&queue) ;

460

2. Design & Implementation

Runtime Implementation Policies

vold f (Queue<double> *q);

void g ()

{
MyLock lock;

Queue<double> gqueue (&lock) ;
f (&queue) ;

461

2. Design & Implementation

Runtime Implementation Policies

vold f (Queue<dou

Question:
What is the lifetime
of the lock relative
to the queue?

void g ()

MyLock lock;
Queue<double> queue (&lock);
f (&gqueue) ;

462

2. Design & Implementation

Memory Allocators

What is a memory allocator?

463

2. Design & Implementation

Memory Allocators

What is a memory allocator?
* |tis a mechanism used to supply memory.

464

2. Design & Implementation

Memory Allocators

What is a memory allocator?
* |tis a mechanism used to supply memory.

* |t does not have value semantics.

465

2. Design & Implementation

Memory Allocators

nat is a memory allocator?

t does not have value semantics.

t is a mechanism used to supply memory.

t is an Orthogonal Implementation Policy.

466

2. Design & Implementation

Memory Allocators

nat is a memory allocator?

t does not have value semantics.

t can (should) be a Runtime Policy.

t is a mechanism used to supply memory.

t is an Orthogonal Implementation Policy.

467

2. Design & Implementation

Memory Allocators

at is a memory allocator?
* |tis nism used to supply memory.
* |t does not have value semantics.

* |tis an Orthogonal Implementation Poli

* |t can (should) be a Runtime Policy.

468

2. Design & Implementation

Polymorphic Memory Allocators

at is a memory allocator?
* |tis nism used to supply memory.
* |t does not have value semantics.

* |tis an Orthogonal Implementation Poli

* |t can (should) be a Runtime Policy.

469

2. Design & Implementation

Polymorphic Memory Allocators

What is a memory allocator?

It should look like a
“Lock™ or any other
abstract mechanism.

2. Design & Implementation

Polymorphic Memory All

What is a memory alloc

tors

chanism.

471

2. Design & Implementation

Polymorphic Memory Allocators

An allocator is a mechanism.

double f (double *a, size t n)

{

double result = init(a, n);

bdlma: :BufferedSequentialAllocator a;
bsl::vector<double> tmp (&a);

/] ..

return result;

472

2. Design & Implementation

Polymorphic Memory Allocators

An allocator is a mechanism.

double f (double *a, size t n)

{

double result = init(a, n);

bdlma: :BufferedSequentialAllocator a;
bsl::vector<double> tmp (&a):;

/] ..

return result;

473

2. Design & Implementation

Polymorphic Memory Allocators

An allocator is a mechanism.

double f (double *a, size t n)

{

double result = init(a, n);

bdlma: :BufferedSequentialAllocator a;
bsl: :vector<double> tmp (&a) ;

Y See the

bslma allocator
} component.

return result;

474

(Halpern-13: Polymorphic Allocators, N3525)

Integral to our design process are:
a) Common Class Categories

b) Unique Vocabulary Types

c) Design By Contract

d) Appropriately Narrow Contracts
e) An Overriding Customer Focus

2. Design & Implementation

Essential Strategies and Techniques

mtegral to our design process are:\

c) Design By Contract

N /

2. Design & Implementation

Interfaces and Contracts

What do we mean by Interface versus Contract for

* A Function?
* A Class?
* AComponent?

477

2. Design & Implementation

Interfaces and Contracts
Function

std::ostream& print(std::ostreamé& stream,
Int level = 0,
Int spacesPerLevel = 4) const;

478

2. Design & Implementation

Interfaces and Contracts
Function

\ 4 \ 4
std::ostream& print(std::ostreamé& stream,
B int level =
B int spacesPerLevel =
Types Used
In the Interface

4) const;

479

2. Design & Implementation

Interfaces and Contracts
Function

// Format this object to the specified output 'stream' at the (absolute
// value of) the optionally specified indentation 'level’, and return a
Il reference to 'stream'. If 'level' is specified, optionally specify

I/ 'spacesPerLevel’, the number of spaces per indentation level for
// this and all of its nested objects. If 'level' is negative,

I/ suppress indentation of the first line. If 'spacesPerLevel is

I/l negative, format the entire output on one line, suppressing all but
// the initial indentation (as governed by 'level’). If 'stream’ is

/[not valid on entry, this operation has no effect.

480

2. Design & Implementation

Interfaces and Contracts

Class

class Date {

...

public:
Date(int year, int month, int day);

Date(const Date& original);

/...
}’ 481

2. Design & Implementation

Interfaces and Contracts

Class

class Date {

...

public:
Date(int year, int month, int day);

Date(const Date& original);

...

—_—

Public
Interface

482

2. Design & Implementation

Interfaces and Contracts

Class

class Date {

...

public:
Date(int year, int month, int day);

Date(const Date& original);

...

}’ 483

2. Design & Implementation

Interfaces and Contracts

Class

// This class implements a value-semantic type representing
// a valid date between the dates 0001/01/01 and
// 9999/12/31 inclusive.

484

2. Design & Implementation

Interfaces and Contracts

Class

// This class implements a value-semantic type representing
// a valid date between the dates 0001/01/01 and
// 9999/12/31 inclusive.

I/l Create a valid date from the specified 'year', 'month’', and
/['day'. The behavior is undefined unless 'year'/'month'/'day'
I/ represents a valid date in the range [0001/01/01 .. 9999/12/31].

I/l Create a date having the value of the specified 'original' date.

485

2. Design & Implementation

Interfaces and Contracts
cIassDate{ COmponent

publlc
..

3

bool operator==(const Date& Ihs, const Date& rhs);
bool operator!=(const Date& Ihs, const Date& rhs);

std::ostreamé& operator<<(std::ostreamé& stream, const Date& date);

486

2. Design & Implementation

Interfaces and Contracts
cIassDate{ COmponent

publlc
..

5
» bool operator==(const Date& Ihs, const Date& rhs);

“Public’
Interface

» bool operator!=(const Date& lhs, const Date& rhs);

» std::ostreamé& operator<<(std::ostreamé& stream, const Date& date);

487

2. Design & Implementation

Interfaces and Contracts
cIassDate{ Component

publlc
/..

%

bool operator==(const Date& Ihs, const Date& rhs);
bool operator!=(const Date& |lhs, const Date& rhs);

std::ostream& operator<<(std:.ostreamé& stream, const Date& date);

488

2. Design & Implementation

Interfaces and Contracts
Component

// Return 'true' if the specified 'lhs' and 'rhs' dates have the same

// value, and 'false' otherwise. Two 'Date' objects have the same

// value if the corresponding values of their 'year', 'month’, and 'day’
/[attributes are the same.

/[Return 'true’ if the specified 'lhs' and 'rhs' dates do not have the

// same value, and 'false' otherwise. Two 'Date' objects do not have
// the same value if any of the corresponding values of their 'year',
// 'month’, or 'day’ attributes are not the same.

// Format the value of the specified 'date' object to the specified
/[l output 'stream’ as 'yyyy/mm/dd’, and return a reference to 'stream’.

2. Design & Implementation

Preconditions and Postconditions

490

2. Design & Implementation

Preconditions and Postconditions
Function

491

2. Design & Implementation

Preconditions and Postconditions
Function

double sqrt(double value);

// Return the square root of the specified
// 'value'. The behavior is undefined unless
// '0 <= value'.

492

2. Design & Implementation

Preconditions and Postconditions
Function

double sqrt(double value);

// Return the square root of the specified
// 'value'. The behavior is undefined unless
// '0 <= value'.

493

2. Design & Implementation

Preconditions and Postconditions
Function

double sqrt(double value);

// Return the square root of the specified
// 'value'. The behavior is undefined unless
// '0 <= value'.

Precondition

494

2. Design & Implementation

Preconditions and Postconditions
Function

The behavior is undefined unless
// '0 <= value'.

Precondition

~or a Stateless Function:
Restriction on syntactically legal inputs.

495

2. Design & Implementation

Preconditions and Postconditions

double sqrt(d
// Return t

Function

ouble value);
ne square root of the specified

// 'value'.

The behavior is undefined unless

//'0 <= value'.

496

2. Design & Implementation

Preconditions and Postconditions
Function

double sqrt(double value);

// Return the square root of the specified
// 'value'. The behavior is undefined unless

//'0 <= value'.

Postcondition

497

2. Design & Implementation

Preconditions and Postconditions
Function

double sqrt(double value);

// Return the square root of the specified
// 'value'. The behavior is undefined unless

//'0 <= value'.

Postcondition

For a Stateless Function:
What it “returns’.

498

2. Design & Implementation

Preconditions and Postconditions

Object Method

2. Design & Implementation

Preconditions and Postconditions

Object Method

» Preconditions: What must be true of both
(object) state and method inputs;
otherwise the behavior is undefined.

500

2. Design & Implementation

Preconditions and Postconditions

Object Method

» Postconditions: What must happen as a
function of (object) state and method
inputs if all preconditions are satisfied.

501

2. Design & Implementation

Preconditions and Postconditions

Object Methac

» Postconditions: What must happen as a
function of (object) state and method
inputs if all preconditions are satisfied.

502

Note that Essential Behavior refers to a
superset of Postconditions that includes
behavioral guarantees, such as
runtime complexity.

» Postconditions: What must happen as a
function of (object) state and method
inputs if all preconditions are sat*~fied.

Observation By
Kevlin Henny

503

2. Design & Implementation

Preconditions and Postconditions

Defined & Essential Behavior

4 N

Essential
Behavior

_ Undefined Behavior /

2. Design & Implementation

Preconditions and Postconditions

Defined & Essential Behavior

\

Defined _
but not Essential

Essential Behavior

_ Undefined Behavior /

2. Design & Implementation

Preconditions and Postconditions

Defined & Essential Behavior

Defined

Essential Unspecified and

but not Implementation-

Essential Behavior dependent

Undefined Behavior

2. Design & Implementation

Preconditions and Postconditions

Defined & Essential Behavior

std::ostream& print(std:.ostreamé& stream,
Int level = 0,
Int spacesPerLevel = 4) const;

// Format this object to the specified output 'stream’ at the (absolute
/I value of) the optionally specified indentation ‘level', and return a
Il reference to 'stream’. If level' is specified, optionally specify

/I 'spacesPerLevel', the number of spaces per indentation level for
/I this and all of its nested objects. If level is negative,

/I suppress indentation of the first line. If 'spacesPerLevel' is

// negative, format the entire output on one line, suppressing all but
/I the initial indentation (as governed by 'level). If 'stream’ is
// not valid on entry, this operation has no effect.

507

2. Design & Implementation

Preconditions and Postconditions

Defined & Essential Behavior

// Format this object to the specified output 'stream’ at the (absolute
/I value of) the optionally specified indentation ‘level', and return a
// reference to 'stream'.

508

2. Design & Implementation

Preconditions and Postconditions

Defined & Essential Behavior

If 'level' is specified, optionally specify
/I 'spacesPerLevel', the number of spaces per indentation level for
/I this and all of its nested objects.

509

2. Design & Implementation

Preconditions and Postconditions

Defined & Essential Behavior

std:.ostreamé& print(std::ostream& stream,
Int level = 0,
Int spacesPerLevel = 4) const;

// Format this object to the specified output 'stream' at the (absolute
/I value of) the optionally specified indentation 'level', and return a
/I reference to 'stream’. If level' Iis specified, optionally specify

/I 'spacesPerLevel', the number of spaces per indentation level for
[this and all ot is nested objecis. If'level is negative,

/I suppress indentation of the firstline. " cpaceskerlovel s

// negative, format the entire output on one line, suppressing all but
// the Initial iIndentation (as governed by 'level’). If 'stream’is
// not valid on entry, this operation has no effect.

510

2. Design & Implementation

Preconditions and Postconditions

Defined & Essential Behavior

If 'spacesPerLevel' is
// negative, format the entire output on one line, suppressing all but
// the initial indentation (as governed by ‘level).

511

2. Design & Implementation

Preconditions and Postconditions

Defined & Essential Behavior

std:.ostreamé& print(std::ostream& stream,
Int level = 0,
Int spacesPerLevel = 4) const;

// Format this object to the specified output 'stream' at the (absolute
/I value of) the optionally specified indentation 'level', and return a
/I reference to 'stream’. If level' Iis specified, optionally specify

/I 'spacesPerLevel', the number of spaces per indentation level for
// this and all of its nested objects. If 'level is negative,

/I suppress indentation of the first line. If 'spacesPerlLevel' is

// negative, format the entire output on one line, suppressing all but
// the initial indentation (as governed by 'level’). If ‘stream’is
// not valid on entry, this operation has no effect.

512

2. Design & Implementap

Preconditions and Pg- Any
) Undefined
Deﬂned & Essent Behavior?

std::ostream& print(std:.ostreamé& stream,
Int level ,
Int spacesPerLevel = 4) const;

// Format this object to the specified output 'stream’ at the (absolute
/I value of) the optionally specified indentation ‘level', and return a
Il reference to 'stream’. If level' is specified, optionally specify

/I 'spacesPerLevel', the number of spaces per indentation level for
/I this and all of its nested objects. If level is negative,

/I suppress indentation of the first line. If 'spacesPerLevel' is

// negative, format the entire output on one line, suppressing all but
/I the initial indentation (as governed by 'level). If 'stream’ is
// not valid on entry, this operation has no effect.

513

2. Design & Implementap

Preconditions and Pp+ Any
) Non-Essential
Deflned & ESSE Nt Behavior?

std::ostream& print(std:.ostreamé& stream,
Int level ,
Int spacesPerLevel = 4) const;

// Format this object to the specified output 'stream’ at the (absolute
/I value of) the optionally specified indentation ‘level', and return a
Il reference to 'stream’. If level' is specified, optionally specify

/I 'spacesPerLevel', the number of spaces per indentation level for
/I this and all of its nested objects. If level is negative,

/I suppress indentation of the first line. If 'spacesPerLevel' is

// negative, format the entire output on one line, suppressing all but
/I the initial indentation (as governed by 'level). If 'stream’ is
// not valid on entry, this operation has no effect.

514

2. Design & Implementation

Preconditions and Postconditions

Defined & Essential Behavior

Date(int year, int month, int day);
Il Create a valid date from the specified 'year', 'month’, and
//'day'. The behavior is undefined unless 'year'/'month'/'day'
I/ represents a valid date in the range [0001/01/01 .. 9999/12/31].

515

2. Design & Implementation

Preconditions and Postconditions

Defined & Essential Be

Undefined
Behavior?

Date(int year, int month, int day);
Il Create a valid date from the specified 'year', 'month’, and
//'day'. The behavior is undefined unless 'year'/'month'/'day'
I/ represents a valid date in the range [0001/01/01 .. 9999/12/31].

516

2. Design & Implementation

Preconditions and Postconditions

Defined & Essential Be

Undefined
Behavior?

Date(int year, int month, int day);
Il Create a valid date from the specified 'year', 'month’, and
//'day'. The behavior is undefined unless 'year'/'month'/'day'
I/ represents a valid date in the range [0001/01/01 .. 9999/12/31].

517

2. Design & Implementation

Preconditions and Postconditions

Defined & Essential Behavior

Date(const Date& original);
I/l Create a date having the value of the specified 'original' date.

518

2. Design & Implementation

Preconditions and Postconditions

Defined & Essential Behavior

Any
Undefined
Behavior?

Date(const Date& original);
I/l Create a date having the value of the specified 'original' date.

519

2. Design & Implementation

Preconditions and Postconditions

(Object) Invariants

class Date {
// This class implements a value-semantic type representing
/[a valid date between the dates 0001/01/01 and
// 9999/12/31 inclusive.

l...

public:
Date(int year, int month, int day);
I/ Create a valid date from the specified 'year', 'month’, and
/['day'. The behavior is undefined unless 'year'/'month'/'day’
// represents a valid date in the range [0001/01/01 .. 9999/12/31].

Date(const Date& original);

I/l Create a date having the value of the specified 'original’ date

1 ...

520

2. Design & Implementation

Preconditions and Postconditions

(Object) Invariants

class Date {
I/l This class implements a value-semantic type representing
/[a valid date between the dates 0001/01/01 and
[/ 9999/12/31 inclusive.

...

public:
Date(int year, int month, int day);
// Create a valid date from the specified 'year’, 'month’, and
// 'day'. The behavior is undefined unless 'year'/'month'/'day"
// represents a valid date in the range [0001/01/01 .. 9999/12/31].

Date(const Date& original);

// Create a date having the value of the specified 'original’ date.

) ...

521

2. Design & Implementation

Preconditions and Postconditions
(Object) Invariants

class Date {
I/l This class implements a value-semantic type representing
/[a valid date between the dates 0001/01/01 and
// 9999/12/31 inclusive.

Question: Must the COde- itself
preserve ‘nvariants even if oné

or more Preconditions. of a)
method's contract is violated™

522

2. Design & Implementation

Preconditions and Postconditions

(Object) Invariants

class Date {
I/l This class implements a value-semantic type representing
/[a valid date between the dates 0001/01/01 and
// 9999/12/31 inclusive.

Date(int year, int month, int day);
Il Create a valid date from the specified 'year', 'month’, and
// 'day'. The behavior is undefined unless 'year'/'month'/'day"
Il represents a valid date in the range [0001/01/01 .. 9999/12/31].

523

2. Design & Implementation

Preconditions and Postconditions

(Object) Invariants

class Date {
I/l This class implements a value-semantic type representing
/[a valid date between the dates 0001/01/01 and
// 9999/12/31 inclusive.

Answer: No!
Date(int year, int month, int day);

I/l Create a valid date from the specified 'year', 'month’, and
// 'day'. The behavior is undefined unless 'year'/'month'/'day"
Il represents a valid date in the range [0001/01/01 .. 9999/12/31].

524

2. Design & Implementation

What happeﬁgﬂpstconditions

When behavior ariants
'S Undefingq v ="

IS u :
<Cefined! | [Answer: No!

Date(int year, int month, int day);
// Create a valid date from the specified 'year', 'month’, and
/['day'. The behavior is undefined unless 'year'/'month'/'day'
// represents a valid date in the range [0001/01/01 .. 9999/12/31].

525

2. Design & Implementation

Design by Contract

(DbC)
“If you give me valid input*,
| will behave as advertised:
otherwise, all bets are off!”

*including state

2. Design & Implementation

Design by Contract
Documentation

There are five aspects:
1. What it does.

2. What it returns.

3. Essential Behavior.
/
5

Undefined Behavior.

Note that...

527

2. Design & Implementation

Design by Contract
Documentation

There are five aspects:
What it does.
What it returns.
Essential Behavior.

U WNPR

Note that...

Undefined Behavior.

528

2. Design & Implementation

Design by Contract
Documentation

There are five aspects:
What it does.
What it returns.
Essential Behavior.

i

Note that...

Undefined Behavior.

529

2. Design & Implementation

Design by Contract
Documentation

There are five aspects:
1. What it does.

2. What it returns.
Essential Behavior.

W

Note that...

Undefined Behavior.

530

2. Design & Implementation

Design by Contract
Documentation

There are five aspects:
What it does.
What it returns.
Essential Behavior.

TR LDE

Note that...

Undefined Behavior.

531

2. Design & Implementation

Design by Contract
Documentation

There are five aspects:

1. What it does.

2. What it returns.

3. Essential Behavior.
4. Undefined Behavior.
5. Note that...

532

2. Design & Implementation

Design by Contract
Verification

533

2. Design & Implementation

Design by Contract
Verification

> Preconditions:

534

2. Design & Implementation

Design by Contract
Verification

» Preconditions:
v'RTFM (Read the Manual).

2. Design & Implementation

Design by Contract
Verification

» Preconditions:
v'RTFM (Read the Manual).
v’ Assert (only in ‘debug’ or ‘safe’ mode).

2. Design & Implementation

Design by Contract
Verification

» Preconditions:
v'RTFM (Read the Manual).
v’ Assert (only in ‘debug’ or ‘safe’ mode).

For more about

Assertions and “Safe Mode”
see the bsls assert component.

537

2. Design & Implementation

Design by Contract
Verification

> Postconditions:

538

2. Design & Implementation

Design by Contract
Verification

» Postconditions:
v'"Component-level test drivers.

539

2. Design & Implementation

Design by Contract
Verification

> Invariants:

540

2. Design & Implementation

Design by Contract
Verification

> Invariants:
v’ Assert invariants in the destructor.

541

Integral to our design process are:
a) Common Class Categories

b) Unique Vocabulary Types

c) Design By Contract

d) Appropriately Narrow Contracts
e) An Overriding Customer Focus

2. Design & Implementation

Essential Strategies and Techniques

mtegral to our design process are:\

d) Appropriately Narrow Contracts

N /

2. Design & Implementation

Defensive Programming

544

2. Design & Implementation

Defensive Programming
(DP)
* What is it?

2. Design & Implementation

Defensive Programming
(DP)
* What is it?
Redundant Code that provides
runtime checks to detect and

report (but not “handle” or
“hide”) defects in software.

2. Design & Implementation

Defensive Programming

(DP)

°|s it Good or Bad?

2. Design & Implementation

Defensive Programming

(DP)

°|s it Good or Bad?

Both: It adds overhead, but
can help identify defects early
in the development process.

2. Design & Implementation

Defensive Programming

(DP)

* Which is Better: DP or DbC?

2. Design & Implementation

Defensive Programming

(DP)

* Which is Better: DP or DbC?

Do you ride the bus to school
or do you take your lunch?

2. Design & Implementation

Defensive Programming

What are we defending against?

551

2. Design & Implementation

Defensive Programming

What are we defending against?

»Bugs in software
that we use in our
implementation?

2. Design & Implementation
Defensive Programming

What are we defending against?

»Bugs in software that we
use in our implementation?

»Bugs we introduce
InNto our own
implementation?

2. Design & Implementation

Defensive Programming
What are we defending against?

»Bugs in software that we
use in our implementation?

»Bugs we introduce into our
own implementation?

» Misuse by our clients.

2. Design & Implementation

Defensive Programming
What are we defending against?

»Bugs in software that we
use in our implementation?

»Bugs we introduce into our
own implementation?

» Misuse by our clients?

2. Design & Implementation

Defensive Programming
What are we defending against?

»Bugs in software that we
use in our implementation?

» Misuse by our clients?

2. Design & Implementation

Defensive Programming

What are we defending against?

» Misuse by our clients?

2. Design & Implementation

Defensive Programming

What are we defending against?

MISUSE BY

QUR CLIENTS

2. Design & Implementation

Narrow versus Wide Contracts

Narrow Contracts Admit Undefined Behavior:

559

2. Design & Implementation

Narrow versus Wide Contracts

Narrow Contracts Admit Undefined Behavior:

What should happen with the following call?

std::si1ze t x = std::strlen(0);

560

2. Design & Implementation

Narrow versus Wide Contracts

Narrow Contracts Admit Undefined Behavior:

What should happen with the following call?

std::si1ze t x = std::strlen(0);

How about it must return 0?

561

2. Design & Implementation

Narrow versus Wide Contracts

Narrow Contracts Admit Undefined Behavior:

size t strlen(const char *s)

{
1f (!s) return O; :
/) b wide
}

How about it must return 0?

2. Design & Implementation

Narrow versus Wide Contracts

Narrow Contracts Admit Undefined Behavior:

size t strlen(const char *s)

{
if (!s) return O;]-Wide

/]
} Likely to mask a defect
How about it must return 07

2. Design & Implementation

Narrow versus Wide Contracts
Narrow Contracts Admit Undefme GIOI’
size t Strlen r *S

@m@ % w}%

mask a defect
H ut it must return 0?

2. Design & Implementation

Narrow versus Wide Contracts

Narrow Contracts Admit Undefined Behavior:

What should happen with the following call?

std::si1ze t x = std::strlen(0);

565

2. Design & Implementation

Narrow versus Wide Contracts

Narrow Contracts Admit Undefined Behavior:

What should happen with the following call?

std::size t x = std::strlen(0);

566

2. Design & Implementation

Narrow versus Wide Contracts

Narrow Contracts Admit Undefined Behavior:

size t strlen(const char *s)

{

assert (s

) ;
a]- Narrow

567

2. Design & Implementation

Narrow versus Wide Contracts

Narrow Contracts Admit Undefined Behavior:

size t strlen(const char *s)

{

Wy]- Narrow

568

2. Design & Implementation

Narrow versus Wide Contracts

Narrow Contracts Admit Undefined Behavior:
size t strlen(const @ﬁ&;s
{ @ @@
@}@@% o
pEs*

]- Narrow

569

2. Design & Implementation

Narrow versus Wide Contracts

Narrow Contracts Admit Undefined Behavior:

Should

Date: :setDate(1nt, 1nt, int);

Return a status?

570

2. Design & Implementation

Narrow versus Wide Contracts

Narrow Contracts Admit Undefined Beh

Should

Date: setP&Q 6\" nt) ;

Return a status?

571

2. Design & Implementation

Narrow versus Wide Contracts

Narrow Contracts Admit Undefined Behavior:

| “know” this date is valid (It’s my birthday)!

date.setDate (3, 8, 59);

Therefore, why should | bother to check status?

572

2. Design & Implementation

Narrow versus Wide Contracts

Narrow Contracts Admit Undefined Behavior:

| “know” this date is valid (It’s my birthday)!

date.setDate (3, 8, 59);
Therefore, why should | bother to check status?

date.setDate (1959, 3, 8);

573

2. Design & Implementation

Narrow versus Wide Contracts

Narrow Contracts Admit Undefined Behavior:

g

o
’

| “know” this date is valid (It's my b

@ (7
other to check status?
(

Therefore, WWQ
etDate 1959, 3, 8);

574

date.setDate

2. Design & Implementation

Narrow versus Wide Contracts

Narrow Contracts Admit Undefined Behavior:

»Returning status implies a
wide interface contract.

2. Design & Implementation

Narrow versus Wide Contracts

Narrow Contracts Admit Undefined Behavior:

» Wide contracts prevent
defending against such
errors in any build mode.

2. Design & Implementation

Narrow versus Wide Contracts

Narrow Contracts Admit Undefined Behavior:

vold Date::setDate(int v,
int m,
int d)

d year = y;
d month
d day

| .
23

577

2. Design & Implementation

Narrow versus Wide Contracts

Narrow Contracts Admit Undefined Behavior:
vold Date::setDate(int v,

int m,
int d)
{
assert(lsvalld(y m,d));
d year = vy;
d month = m;

d day d;

578

2. Design & Implementation

Narrow versus Wide Contracts

Narrow Contracts Admit Undefined Behavior:
vold Date::setDate(int v,

int m,
int d)
{
assert(lsvalld(y m,d));
d year = vy;
d month = m; _
d day ~- d; Narrow Contract:
) — Checked Only In
“Debug Mode”

2. Design & Implementation

Narrow versus Wide Contracts

Narrow Contracts Admit Undefined Behavior:
int Date::setDatelIfValid(int v,

int m,
{ int d)
if (!isvValid(y, m, d)) {
} return !'0;
d year = vy;
d month = m;
d day = d;

return O;

} 580

2. Design & Implementation

Narrow versus Wide Contracts

Narrow Contracts Admit Undefined Behavior:
int Date::setDatelIfValid(int v,

1f (!i1sValil
return

}

d year
d month
d day
return 0;

Vs
m;
d;

H

1nt m,
int d)

m, d)) {

Wide Contract:
Checked In
Every Build Mode

581

2. Design & Implementation

Narrow versus Wide Contracts

Narrow Contracts Admit Undefined Behavior:

* What should happen when the behavior is
undefined?
TYPE& vector<TYPE>::operator[] (1int 1dx);

582

2. Design & Implementation

Narrow versus Wide Contracts

Narrow Contracts Admit Undefined Behavior:

* What should happen when the behavior is
undefined?
TYPE& vector<TYPE>::operator[] (1int 1dx);

* Should what happens be part of the
contract?

TYPE& vector<TYPE>::at(int 1dx);

583

2. Design & Implementation

Narrow versus Wide Contracts

Narrow Contracts Admit Undefined Behavior:

* What should happen when the behavior is
undefined? |t depends on the build mode.
TYPE& vector<TYPE>::operator[] (1int 1dx);

* Should what happens be part of the
contract?

TYPE& vector<TYPE>::at(int 1dx);

584

2. Design & Implementation

Narrow versus Wide Contracts

Narrow Contracts Admit Undefined Behavior:

* What should happen when the behavior is
undefined? |t depends on the build mode.
TYPE& vector<TYPE>::operator[] (1int 1dx);

* Should what happens be part of the
contract? Ifitis, then it’s defined behavior!

TYPE& vector<TYPE>::at(int 1dx);

585

2. Design & Implementation

Narrow versus Wide Contracts

Narrow Contracts Admit Undefined Behavior:

* What should happen when the behavior is
undefined? |t depends on the build mode.
TYPE& vector<TYPE>::operator[] (1int 1dx);

586

2. Design & Implementation

Narrow versus Wide Contracts

Narrow Contracts Admit Undefined Behavior:

* What should happen when the behavior is
undefined? |t depends on the build mode.
TYPE& vector<TYPE>::operator[] (1int 1dx);

at happens be part Bad
fitis, thenit’s defl

\O & vector<TYPE>: dea'

587

2. Design & Implementation

Narrow versus Wide Contracts

Narrow Contracts Admit Undefined Behavior:

588

2. Design & Implementation

Narrow versus Wide Contracts

Narrow Contracts Admit Undefined Behavior:

Or, as we will soon see, ...
Something Much Better!

589

2. Design & Implementation

Contracts and Exceptions

Preconditions always Imply Postconditions:

590

2. Design & Implementation

Contracts and Exceptions

Preconditions always Imply Postconditions:

» If a function cannot satisfy its contract (given valid

preconditions) it must not return normally.

591

2. Design & Implementation

Contracts and Exceptions

Preconditions always Imply Postconditions:

» If a function cannot satisfy its contract (given valid

preconditions) it must not return normally.

» abort () should be considered a viable alternative to

throw in virtually all cases (if exceptions are disabled).

592

2. Design & Implementation

Contracts and Exceptions

Preconditions always Imply Postconditions:

» If a function cannot satisfy its contract (given valid

preconditions) it must not return normally.

» abort () should be considered a viable alternative to

throw in virtually all cases (if exceptions are disabled).

» Good library components are exception agnostic (via RAIl).

593

2. Design & Implementation

Appropriately Narrow Contracts

Narrow contracts admit undefined behavior.

594

2. Design & Implementation

Appropriately Narrow Contracts

Narrow contracts admit undefined behavior.
 Appropriately narrow contracts are GOOD:

595

2. Design & Implementation

Appropriately Narrow Contracts

Narrow contracts admit undefined behavior.
 Appropriately narrow contracts are GOOD:

— Reduce costs associated with development/testing.

596

2. Design & Implementation

Appropriately Narrow Contracts

Narrow contracts admit undefined behavior.
* Appropriately narrow contracts are GOOD:

— Reduce costs associated with development/testing.
— Improve performance and reduces object-code size.

597

2. Design & Implementation

Appropriately Narrow Contracts

Narrow contracts admit undefined behavior.
* Appropriately narrow contracts are GOOD:

— Reduce costs associated with development/testing.
— Improve performance and reduces object-code size.
— Allow useful behavior to be added as needed.

598

2. Design & Implementation

Appropriately Narrow Contracts

Narrow contracts admit undefined behavior.
* Appropriately narrow contracts are GOOD:

— Reduce costs associated with development/testing.
— Improve performance and reduces object-code size.
— Allow useful behavior to be added as needed.

— Enable practical/effective Defensive Programming.

599

2. Design & Implementation

Appropriately Narrow Contracts

Narrow contracts admit undefined behavior.
 Appropriately narrow contracts are GOOD:

— Reduce costs associated with development/testing.
— Improve performance and reduces object-code size.
— Allow useful behavior to be added as needed.

— Enable practical/effective Defensive Programming.

* Defensive programming means:

Fault Intolerance!

600

Integral to our design process are:
a) Common Class Categories

b) Unique Vocabulary Types

c) Design By Contract

d) Appropriately Narrow Contracts
e) An Overriding Customer Focus

2. Design & Implementation

Essential Strategies and Techniques

mtegral to our design process are:\

@ An Overriding Customer Focus/

2. Design & Implementation

An Overriding Customer Focus

(1) Capture Practical Usage Example(s):

603

2. Design & Implementation

An Overriding Customer Focus

(1) Capture Practical Usage Example(s):

* First thing we think about when
designing a component...

604

2. Design & Implementation

An Overriding Customer Focus

(1) Capture Practical Usage Example(s):

* First thing we think about when
designing a component...

..its raison d’étre.

605

2. Design & Implementation

An Overriding Customer Focus

(1) Capture Practical Usage Example(s):

* First thing we think about when
designing a component...

..its raison d’étre.

* Bona fide, yet appropriately elided
real-world examples.

606

2. Design & Implementation

An Overriding Customer Focus

(1) Capture Practical Usage Example(s):

* First thing we think about when
designing a component...

..its raison d’étre.

* Bona fide, yet appropriately elided
real-world examples.

* Last thing we validate in our
component-level test drivers.

607

2. Design & Implementation

An Overriding Customer Focus

(1) Capture Practical Usage Example(s):

2. Design & Implementation

xample

Usage E

///Usage

/) ===

// This section illustrates intended use of this component.

//

///Example 1: Converting Between UTC and Local Times
T

// When using the "Zoneinfo" database, we want to represent and access the

// local time information contained in the "Zoneinfo" binary data files. Once

// we have obtained this information, we can use it to convert times from one
// time zone to another. The following code illustrates how to perform such
// conversions using 'baltzo::LocalTimeDescriptor'.

// First, we define a 'baltzo::LocalTimeDescriptor' object that characterizes
// the local time in effect for New York Daylight-Saving Time in 2010:

// enum { NEW_YORK DST OFFSET = -4 * 60 * 60 }; // -4 hours in seconds

// baltzo::LocalTimeDescriptor newYorkDst (NEW_YORK_DST_OFFSET, true, "EDT");

// assert (NEW_YORK_DST_OFFSET == newYorkDst.utcOffsetInSeconds());
// assert (true == newYorkDst.dstInEffectFlag());
// assert ("EDT" == newYorkDst.description());

// Then, we create a 'bdlt::Datetime' representing the time
// "Jul 20, 2010 11:00" in New York:

// bdlt::Datetime newYorkDatetime (2010, 7, 20, 11, 0, 0);

// Wext, we convert 'newYorkDatetime' to its corresponding UTC value using the
// 'newYorkDst' descriptor (created above); note that, when converting from a
// local time to a UTC time, the *signed* offset from UTC is *subtracted* from
// the local time:

bdlt::Datetime utcDatetime = newYorkDatetime;
utcDatetime.addSeconds (-newYorkDst.utcOffsetInSeconds ());

Then, we verify that the result corresponds to the expected UTC time,

"Jul 20, 2010 15:00":
assert (bdlt::Datetime (2010, 7, 20, 15, 0, 0) == utcDatetime);
Next, we define a 'baltzo::LocalTimeDescriptor' object that describes the
local time in effect for Rome in the summer of 2010:
enum { ROME_DST OFFSET = 2 * 60 * 60 }; // 2 hours in seconds
baltzo::LocalTimeDescriptor romeDst (ROME_DST_ OFFSET, true, "CEST");
assert (ROME_DST_OFFSET == romeDst.utcOffsetInSeconds());
assert (true == romeDst.dstInEffectFlag());
assert ("CEST" == romeDst.description());

Now, we convert 'utcDatetime' to its corresponding local-time value in Rome

using the 'romeDst' descriptor (created above):
bdlt::Datetime romeDatetime = utcDatetime;
romeDatetime.addSeconds (romeDst.utcOffsetInSeconds ());

Notice that, when converting from UTC time to local time, the signed
offset from UTC is *added* to UTC time rather than subtracted.

Finally, we verify that the result corresponds to the expected local time,
"Jul 20, 2010 17:00":

assert (bdlt::Datetime (2010, 7, 20, 17, 0, 0) == romeDatetime);

2. Design & Implementation

An Overriding Customer Focus

(2) Canonical Organization:

610

2. Design & Implementation

An Overriding Customer Focus

(2) Canonical Organization:

* The categories into which information is
partitioned.

611

2. Design & Implementation

An Overriding Customer Focus

(2) Canonical Organization:

* The categories into which information is
partitioned.

e The order in which information is
presented.

612

2. Design & Implementation

An Overriding Customer Focus

(2) Canonical Organization:

* The categories into which information is
partitioned.

e The order in which information is
presented.

* The vocabulary and phrasing ...

613

2. Design & Implementation

An Overriding Customer Focus

(2) Canonical Organization:

* The categories into which information is
partitioned.

e The order in which information is
presented.

* The vocabulary and phrasing ...
..especially contracts.

614

2. Design & Implementation

An Overriding Customer Focus

(2) Canonical Organization:

2. Design & Implementation

An Overriding Customer Focus

(3) Consistent, Useful Rendering:

616

2. Design & Implementation

An Overriding Customer Focus

(3) Consistent, Useful Rendering:

 Make it look like one person wrote all the
code:

617

2. Design & Implementation

An Overriding Customer Focus

(3) Consistent, Useful Rendering:

 Make it look like one person wrote all the
code:

v' Unambiguous standard function names...

618

2. Design & Implementation

An Overriding Customer Focus

(3) Consistent, Useful Rendering:

 Make it look like one person wrote all the
code:

v' Unambiguous standard function names:
clear v. removeAll
empty V. i1sEmpty

619

2. Design & Implementation

An Overriding Customer Focus

(3) Consistent, Useful Rendering:

 Make it look like one person wrote all the
code:

v' Unambiguous standard function names:
clear v. removeAll
empty V. isEmpty

v' Consistent Argument Order...

620

2. Design & Implementation

An Overriding Customer Focus

(3) Consistent, Useful Rendering:

 Make it look like one person wrote all the
code:

v' Unambiguous standard function names:
clear v. removeAll
empty V. isEmpty
v' Consistent Argument Order: Outputs, Inputs,
Parameters.

621

2. Design & Implementation

An Overriding Customer Focus

(3) Consistent, Useful Rendering:

 Make it look like one person wrote all the

code:

v' Unambiguous standard function names:
clear v. removeAll
empty V. isEmpty
v' Consistent Argument Order: Outputs, Inputs,
Parameters.
v’ Appropriate use of pointers/references to indicate
intent...

622

2. Design & Implementation

An Overriding Customer Focus

(3) Consistent, Useful Rendering:

 Make it look like one person wrote all the

code:

v' Unambiguous standard function names:
clear v. removeAll
empty V. isEmpty
v' Consistent Argument Order: Outputs, Inputs,
Parameters.

v’ Appropriate use of pointers/references to indicate
intent directly from the client source code.

623

2. Design & Implementation

An Overriding Customer Focus

(3) Consistent, Useful Rendering:

