
Applied Hierarchical Reuse
Capitalizing on Bloomberg’s

Foundation Libraries

John Lakos

Wednesday, May 15, 2013

1

Copyright Notice

© 2013 Bloomberg L.P. Permission is granted to copy, distribute, and display
this material, and to make derivative works and commercial use of it. The
information in this material is provided "AS IS", without warranty of any
kind. Neither Bloomberg nor any employee guarantees the correctness or
completeness of such information. Bloomberg, its employees, and its
affiliated entities and persons shall not be liable, directly or indirectly, in any
way, for any inaccuracies, errors or omissions in such information. Nothing
herein should be interpreted as stating the opinions, policies,
recommendations, or positions of Bloomberg.

2

Abstract
Designing one library is hard; designing an open-ended collection of interoperable libraries is harder.

Partitioning functionality across multiple libraries presents its own unique set of challenges:

Functionality must be easy to discover, redundancy must be eliminated, and interface and contract

relationships across components and libraries should be easy to explore without advanced IDE

capabilities. Further, dependencies among libraries must be carefully managed – the libraries must

function as a coherent whole, defining and using a curated suite of vocabulary types, but clients

should pay in compile time, link time, and executable size only for the functionality they need.

Creating a unified suite of interoperable libraries also has many challenges in common with creating

individual ones. The software should be easy to understand, easy to use, highly performant,

portable, and reliable. Moreover, all of these libraries should adhere to a uniform physical structure,

be devoid of gratuitous variation in rendering, and use consistent terminology throughout. By

achieving such a high level of consistency, performance, and reliability across all of the libraries at

once, the local consistency within each individual library becomes truly exceptional. Additionally,

even single-library projects that leverage such principles will derive substantial benefit.

There are many software methodologies appropriate for small- and medium-sized projects, but most

simply do not scale to larger development efforts. In this talk we will explore problems associated

with very large scale development, and the cohesive techniques we have found to address those

problems culminating in a proven component-based methodology, refined through practical

experience at Bloomberg. The real-world application of this methodology – including three levels of

aggregation, acyclic dependencies, nominal cohesion, fine-grained factoring, class categories, narrow

contracts, and thorough component-level testing – will be demonstrated using the recently released

open-source distribution of Bloomberg’s foundation libraries.

 3

What’s The Problem?

4

What’s The Problem?

5

Large-Scale C++ Software Design:

• Involves many subtle logical and physical aspects.

What’s The Problem?

6

Large-Scale C++ Software Design:

• Involves many subtle logical and physical aspects.

• Requires an ability to isolate and modularize
logical functionality within discrete, fine-grained
physical components.

What’s The Problem?

7

Large-Scale C++ Software Design:

• Involves many subtle logical and physical aspects.

• Requires an ability to isolate and modularize
logical functionality within discrete, fine-grained
physical components.

• Requires the designer to delineate logical behavior
precisely, while managing the physical
dependencies on other subordinate components.

What’s The Problem?

8

Large-Scale C++ Software Design:

• Involves many subtle logical and physical aspects.

• Requires an ability to isolate and modularize
logical functionality within discrete, fine-grained
physical components.

• Requires the designer to delineate logical behavior
precisely, while managing the physical
dependencies on other subordinate components.

• Demands a host of additional considerations in order
to maximize wide-spread hierarchical reuse.

Purpose of this Talk

9

There's lots to talk about:

Purpose of this Talk

10

There's lots to talk about:

Understand specific problems associated
with very large-scale development.

Purpose of this Talk

11

There's lots to talk about:

Understand specific problems associated
with very large-scale development.

Present cohesive techniques we have
found to address these problems.

Purpose of this Talk

12

There's lots to talk about:

Understand specific problems associated
with very large-scale development.

Present cohesive techniques we have
found to address these problems.

Demonstrate our methodology using
Bloomberg's foundation libraries.

Outline

0. Goals
 What we are trying to do, for whom, and how.

1. Process & Architecture
Organizing Software as Components, Packages, & Package Groups.

2. Design & Implementation
Using Class Categories, Value Semantics, & Vocabulary Types.

3. Verification & Testing
Component-Level Test Drivers, Peer Review, & Defensive Checks.

4. Bloomberg Development Environment (BDE)
Rendered as Fine-Grained Hierarchically Reusable Components.

13

Outline

0. Goals
 What we are trying to do, for whom, and how.

1. Process & Architecture
Organizing Software as Components, Packages, & Package Groups.

2. Design & Implementation
Using Class Categories, Value Semantics, & Vocabulary Types.

3. Verification & Testing
Component-Level Test Drivers, Peer Review, & Defensive Checks.

4. Bloomberg Development Environment (BDE)
Rendered as Fine-Grained Hierarchically Reusable Components.

14

0. Goals

What Are We Trying To Do?

What are the goals?
o Solve interesting problems.

o Employ new language features early.

o Strive for header-only implementations (i.e.,
no .cpp files).

o Write code that stress-tests compilers.

o Ensure that no C++ language construct goes
unused.

15

0. Goals

What Are We Trying To Do?

What are the goals?
o Solve interesting problems.

o Employ new language features early.

o Strive for header-only implementations (i.e.,
no .cpp files).

o Write code that stress-tests compilers.

o Ensure that no C++ language construct goes
unused.

16

0. Goals

What Are We Trying To Do?

Who are the intended clients?
o Enthusiasts hoping to learn about the latest

C++ language features.
o Experts capable of reverse engineering

advanced C++ implementations.
o Individuals who don't want to learn how to

build libraries separately.
o Highly specialized programmers (e.g., those

writing embedded systems).
o Folks willing to wait hours (or days) for their

programs to compile.

17

0. Goals

What Are We Trying To Do?

Who are the intended clients?
o Enthusiasts hoping to learn about the latest

C++ language features.
o Experts capable of reverse engineering

advanced C++ implementations.
o Individuals who don't want to learn how to

build libraries separately.
o Highly specialized programmers (e.g., those

writing embedded systems).
o Folks willing to wait hours (or days) for their

programs to compile.

18

0. Goals

Our Intended Clients

Professional commercial software
engineers and application developers:

19

0. Goals

Our Intended Clients

Professional commercial software
engineers and application developers:

20

0. Goals

Our Intended Clients

Professional commercial software
engineers and application developers:

o Solving real-world industrial-strength problems.

21

0. Goals

Our Intended Clients

Professional commercial software
engineers and application developers:

o Solving real-world industrial-strength problems.
o Working on a series of projects of arbitrary size.

22

0. Goals

Our Intended Clients

Professional commercial software
engineers and application developers:

o Solving real-world industrial-strength problems.
o Working on a series of projects of arbitrary size.
o Using a variety of well-known, popular

platforms.

23

0. Goals

Our Intended Clients

Professional commercial software
engineers and application developers:

o Solving real-world industrial-strength problems.
o Working on a series of projects of arbitrary size.
o Using a variety of well-known, popular

platforms.
o Committed to aggressive schedules.

24

0. Goals

Our Intended Clients

Professional commercial software
engineers and application developers:

o Solving real-world industrial-strength problems.
o Working on a series of projects of arbitrary size.
o Using a variety of well-known, popular

platforms.
o Committed to aggressive schedules.
o Held to high standards of quality/reliability.

25

0. Goals

Our Intended Clients

Professional commercial software
engineers and application developers:

o Solving real-world industrial-strength problems.
o Working on a series of projects of arbitrary size.
o Using a variety of well-known, popular

platforms.
o Committed to aggressive schedules.
o Held to high standards of quality/reliability.
o Constrained by limited resources.

26

0. Goals

Our Intended Clients

Professional commercial software
engineers and application developers:

o Solving real-world industrial-strength problems.
o Working on a series of projects of arbitrary size.
o Using a variety of well-known, popular

platforms.
o Committed to aggressive schedules.
o Held to high standards of quality/reliability.
o Constrained by limited resources.
o Driven to succeed.

27

0. Goals

Our Primary Goal

Actively make our intended clients
successful, productive, and efficient:

28

0. Goals

Our Primary Goal

Actively make our intended clients
successful, productive, and efficient:

29

0. Goals

Our Primary Goal

Actively make our intended clients
successful, productive, and efficient:

o Demonstrate exemplary methodology that scales to
projects of all sizes.

30

0. Goals

Our Primary Goal

Actively make our intended clients
successful, productive, and efficient:

o Demonstrate exemplary methodology that scales to
projects of all sizes.

o Provide a framework for developing real-world
software effectively.

31

0. Goals

Our Primary Goal

Actively make our intended clients
successful, productive, and efficient:

o Demonstrate exemplary methodology that scales to
projects of all sizes.

o Provide a framework for developing real-world
software effectively.

o Address specific problems that are relevant to our clients.

32

0. Goals

Our Primary Goal

Actively make our intended clients
successful, productive, and efficient:

o Demonstrate exemplary methodology that scales to
projects of all sizes.

o Provide a framework for developing real-world
software effectively.

o Address specific problems that are relevant to our clients.
o Maintain stable solutions used by many versions of

many products.

33

0. Goals

Our Primary Goal

Actively make our intended clients
successful, productive, and efficient:

o Demonstrate exemplary methodology that scales to
projects of all sizes.

o Provide a framework for developing real-world
software effectively.

o Address specific problems that are relevant to our clients.
o Maintain stable solutions used by many versions of

many products.
o Teach our clients a proven way of writing scalable software.

34

0. Goals

Our Primary Goal

Actively make our intended clients
successful, productive, and efficient:

o Demonstrate exemplary methodology that scales to
projects of all sizes.

o Provide a framework for developing real-world
software effectively.

o Address specific problems that are relevant to our clients.
o Maintain stable solutions used by many versions of

many products.
o Teach our clients a proven way of writing scalable software.
o Achieve wide-spread, fine-grained, hierarchical reuse.

35

0. Goals

Our Primary Goal

Actively make our intended clients
successful, productive, and efficient:

o Demonstrate exemplary methodology that scales to
projects of all sizes.

o Provide a framework for developing real-world
software effectively.

o Address specific problems that are relevant to our clients.
o Maintain stable solutions used by many versions of

many products.
o Teach our clients a proven way of writing scalable software.
o Achieve wide-spread, fine-grained, hierarchical reuse.

36

0. Goals

Achieving Reuse

37

0. Goals

Achieving Reuse

38

0. Goals

Achieving Reuse

Within just

one version of

a single App

App

39

0. Goals

Achieving Reuse

40

0. Goals

Achieving Reuse

41

0. Goals

Achieving Reuse

Within just

one version of

a single App

App

Across several

versions of a

single App

App App
App
App
App App

App

42

 semicircle

square

triangle
r
e
c
t
a
n
g

e
l

0. Goals

Achieving Reuse

43

 semicircle

square

triangle
r
e
c
t
a
n
g

e
l

0. Goals

Achieving Reuse

44

0. Goals

Achieving Reuse

Within just

one version of

a single App

App

Across several

versions of a

single App

Across several versions

of many distinct

applications and products

App App
App
App
App App

App

Applications

App App App
App App App
App App App
App App App
App App App
App App App
App App App

45

0. Goals

Achieving Reuse

Good applications are malleable…
 …but reusable software is stable!

No Masters

Reusable

Malleable

One

Master

46

0. Goals

Achieving Fine-Grained Reuse

Fundamental properties of modular
software:

47

0. Goals

Achieving Fine-Grained Reuse

Fundamental properties of modular
software:

Fine-Grained Physical Modularity

48

0. Goals

Achieving Fine-Grained Reuse

Fundamental properties of modular
software:

Fine-Grained Physical Modularity

Logical/Physical Coherence

49

0. Goals

Achieving Fine-Grained Reuse

Fundamental properties of modular
software:

Fine-Grained Physical Modularity

Logical/Physical Coherence

No Cyclic Physical Dependencies

50

0. Goals

Achieving Fine-Grained Reuse

Fundamental properties of modular
software:

Fine-Grained Physical Modularity

Logical/Physical Coherence

No Cyclic Physical Dependencies

No Private "Back Door" Access

51

0. Goals

Achieving Fine-Grained Reuse

Coarse-Grained Physical Modularity
 main

unit_a.h

unit_a.cpp

unit_b.h

unit_b.cpp

unit_c.h

unit_c.cpp

52

0. Goals

Achieving Fine-Grained Reuse

Fine-Grained Physical Modularity
 main

53

0. Goals

Achieving Fine-Grained Reuse

Logical/Physical Coherence

Logical

physical

54

0. Goals

Achieving Fine-Grained Reuse

No Logical/Physical Incoherence

// intset.h
#ifndef INCLUDED_INTSET
#define INCLUDED_INTSET
class IntSet {
 // ...
 public:
 // ...
 // ...
 // ...
};

#endif

// stack.h
#ifndef INCLUDED_STACK
#define INCLUDED_STACK
class Stack {
 // ...
 public:
 // ...
 void push(int i);
 int pop();
};

#endif

// intset.cpp
#include <intset.h>
#include <stack.h>
Stack::push(int i)
{
 // ...
}
// ...

// stack.cpp
#include <stack.h>
// ...
// ...
// ...
// ...

// ...

// main.cpp
#include <intset.h>
#include <stack.h>
int Stack::pop()
{
 // ...
}
// ...

intset.h stack.h

intset.cpp stack.cpp main.cpp 55

0. Goals

Achieving Fine-Grained Reuse

No Logical/Physical Incoherence

// intset.h
#ifndef INCLUDED_INTSET
#define INCLUDED_INTSET
class IntSet {
 // ...
 public:
 // ...
 // ...
 // ...
};

#endif

// stack.h
#ifndef INCLUDED_STACK
#define INCLUDED_STACK
class Stack {
 // ...
 public:
 // ...
 void push(int i);
 int pop();
};

#endif

// intset.cpp
#include <intset.h>
#include <stack.h>
Stack::push(int i)
{
 // ...
}
// ...

// stack.cpp
#include <stack.h>
// ...
// ...
// ...
// ...

// ...

// main.cpp
#include <intset.h>
#include <stack.h>
int Stack::pop()
{
 // ...
}
// ...

intset.h stack.h

intset.cpp stack.cpp main.cpp 56

0. Goals

Achieving Fine-Grained Reuse

No Logical/Physical Incoherence

// intset.h
#ifndef INCLUDED_INTSET
#define INCLUDED_INTSET
class IntSet {
 // ...
 public:
 // ...
 // ...
 // ...
};

#endif

// stack.h
#ifndef INCLUDED_STACK
#define INCLUDED_STACK
class Stack {
 // ...
 public:
 // ...
 void push(int i);
 int pop();
};

#endif

// intset.cpp
#include <intset.h>
#include <stack.h>
Stack::push(int i)
{
 // ...
}
// ...

// stack.cpp
#include <stack.h>
// ...
// ...
// ...
// ...

// ...

// main.cpp
#include <intset.h>
#include <stack.h>
int Stack::pop()
{
 // ...
}
// ...

intset.h stack.h

intset.cpp stack.cpp main.cpp

?
57

0. Goals

Achieving Fine-Grained Reuse

No Logical/Physical Incoherence

// intset.h
#ifndef INCLUDED_INTSET
#define INCLUDED_INTSET
class IntSet {
 // ...
 public:
 // ...
 // ...
 // ...
};

#endif

// stack.h
#ifndef INCLUDED_STACK
#define INCLUDED_STACK
class Stack {
 // ...
 public:
 // ...
 void push(int i);
 int pop();
};

#endif

// intset.cpp
#include <intset.h>
#include <stack.h>
Stack::push(int i)
{
 // ...
}
// ...

// stack.cpp
#include <stack.h>
// ...
// ...
// ...
// ...

// ...

// main.cpp
#include <intset.h>
#include <stack.h>
int Stack::pop()
{
 // ...
}
// ...

intset.h stack.h

intset.cpp stack.cpp main.cpp

?
58

0. Goals

Achieving Fine-Grained Reuse

No Logical/Physical Incoherence

// intset.h
#ifndef INCLUDED_INTSET
#define INCLUDED_INTSET
class IntSet {
 // ...
 public:
 // ...
 // ...
 // ...
};

#endif

// stack.h
#ifndef INCLUDED_STACK
#define INCLUDED_STACK
class Stack {
 // ...
 public:
 // ...
 void push(int i);
 int pop();
};

#endif

// intset.cpp
#include <intset.h>
#include <stack.h>
Stack::push(int i)
{
 // ...
}
// ...

// stack.cpp
#include <stack.h>
// ...
// ...
// ...
// ...

// ...

// main.cpp
#include <intset.h>
#include <stack.h>
int Stack::pop()
{
 // ...
}
// ...

intset.h stack.h

intset.cpp stack.cpp main.cpp

?
59

0. Goals

Achieving Fine-Grained Reuse

No Logical/Physical Incoherence

// intset.h
#ifndef INCLUDED_INTSET
#define INCLUDED_INTSET
class IntSet {
 // ...
 public:
 // ...
 // ...
 // ...
};

#endif

// stack.h
#ifndef INCLUDED_STACK
#define INCLUDED_STACK
class Stack {
 // ...
 public:
 // ...
 void push(int i);
 int pop();
};

#endif

// intset.cpp
#include <intset.h>
#include <stack.h>
Stack::push(int i)
{
 // ...
}
// ...

// stack.cpp
#include <stack.h>
// ...
// ...
// ...
// ...

// ...

// main.cpp
#include <intset.h>
#include <stack.h>
int Stack::pop()
{
 // ...
}
// ...

intset.h stack.h

intset.cpp stack.cpp main.cpp

?
60

0. Goals

Achieving Fine-Grained Reuse

No Logical/Physical Incoherence

// intset.h
#ifndef INCLUDED_INTSET
#define INCLUDED_INTSET
class IntSet {
 // ...
 public:
 // ...
 // ...
 // ...
};

#endif

// stack.h
#ifndef INCLUDED_STACK
#define INCLUDED_STACK
class Stack {
 // ...
 public:
 // ...
 void push(int i);
 int pop();
};

#endif

// intset.cpp
#include <intset.h>
#include <stack.h>
Stack::push(int i)
{
 // ...
}
// ...

// stack.cpp
#include <stack.h>
// ...
// ...
// ...
// ...

// ...

// main.cpp
#include <intset.h>
#include <stack.h>
int Stack::pop()
{
 // ...
}
// ...

intset.h stack.h

intset.cpp stack.cpp main.cpp

?
61

0. Goals

Achieving Fine-Grained Reuse

No Logical/Physical Incoherence

// intset.h
#ifndef INCLUDED_INTSET
#define INCLUDED_INTSET
class IntSet {
 // ...
 public:
 // ...
 // ...
 // ...
};

#endif

// stack.h
#ifndef INCLUDED_STACK
#define INCLUDED_STACK
class Stack {
 // ...
 public:
 // ...
 void push(int i);
 int pop();
};

#endif

// intset.cpp
#include <intset.h>
#include <stack.h>
Stack::push(int i)
{
 // ...
}
// ...

// stack.cpp
#include <stack.h>
// ...
// ...
// ...
// ...

// ...

// main.cpp
#include <intset.h>
#include <stack.h>
int Stack::pop()
{
 // ...
}
// ...

intset.h stack.h

intset.cpp stack.cpp main.cpp

?
62

0. Goals

Achieving Fine-Grained Reuse

No Cyclic Physical Dependencies

DependsOn

element

// element.h
// . . .

class Circuit;
class Wire;

// . . .

class Element {
 // . . .
 Circuit *getParent();
 int isConn(const Wire&);
};
// . . .

// element.cpp
#include <element.h>
#include <circuit.h>
#include <wire.h>
// . . .

circuit

// circuit.h
// . . .

class Wire;
class Element;

// . . .

class Circuit {
 // . . .
 Wire *addWire(const char*);
 Wire *addElem(const char*);
};
// . . .

// circuit.cpp
#include <circuit.h>
#include <wire.h>
#include <element.h>
// . . .

wire

// wire.h
// . . .

class Element;
class Circuit;

// . . .

class Wire {
 // . . .
 void conn(Element*, int term);
 void conn(Circuit*, int term);
};
// . . .

// wire.cpp
#include <wire.h>
#include <element.h>
#include <circuit.h>
// . . .

63

0. Goals

Achieving Fine-Grained Reuse

No Cyclic Physical Dependencies

DependsOn

element

// element.h
// . . .

class Circuit;
class Wire;

// . . .

class Element {
 // . . .
 Circuit *getParent();
 int isConn(const Wire&);
};
// . . .

// element.cpp
#include <element.h>
#include <circuit.h>
#include <wire.h>
// . . .

circuit

// circuit.h
// . . .

class Wire;
class Element;

// . . .

class Circuit {
 // . . .
 Wire *addWire(const char*);
 Wire *addElem(const char*);
};
// . . .

// circuit.cpp
#include <circuit.h>
#include <wire.h>
#include <element.h>
// . . .

wire

// wire.h
// . . .

class Element;
class Circuit;

// . . .

class Wire {
 // . . .
 void conn(Element*, int term);
 void conn(Circuit*, int term);
};
// . . .

// wire.cpp
#include <wire.h>
#include <element.h>
#include <circuit.h>
// . . .

64

0. Goals

Achieving Fine-Grained Reuse

No Private “Back Door” Access

Data Structure

Instance

3 5 7 List

Link Link Link

Cursor

0

Link

Cursor

List

2

1

Component-Class

Diagram

friend Access

list

cursor

65

0. Goals

Achieving Fine-Grained Reuse

No Private “Back Door” Access

Data Structure

Instance

3 5 7 List

Link Link Link

Cursor

0

Link

Cursor

List

2

1

Component-Class

Diagram

friend Access

list

cursor

66

0. Goals

Achieving Fine-Grained Reuse

No Private “Back Door” Access

Data Structure

Instance

3 5 7 List

Link Link Link

Cursor

0

Link

Cursor

List

1

Component-Class

Diagram

list
67

0. Goals

Achieving Fine-Grained Reuse

No Private “Back Door” Access

Data Structure

Instance

3 5 7 List

Link Link Link

Cursor

0

Link

Cursor

List

1

Component-Class

Diagram

list
68

0. Goals

Achieving Hierarchical Reuse

Conventional Reuse: Only the architecturally significant
pieces are accessible/exposed.

69

0. Goals

Achieving Hierarchical Reuse

Conventional Reuse: Only the architecturally significant
pieces are accessible/exposed.

MyLogger YourLogger

registry observatory

… …

MyClients

std::

YourClients

70

0. Goals

Achieving Hierarchical Reuse

Hierarchical Reuse: Even the (stable) intermediate
pieces are exposed for reuse.

registry observatory

bsl::

MyClients

MyLogger YourLogger

YourClients

71

0. Goals

Achieving Hierarchical Reuse

Hierarchical Reuse: Even the (stable) intermediate
pieces are exposed for reuse.

registry observatory

bsl::

MyClients

MyLogger YourLogger

YourClients

72

0. Goals

Achieving Hierarchical Reuse

Application Software:

Library Software:

Solutions

Sub-Solutions

Sub-Sub-Solutions

Vocabulary-Type Utilities

Vocabulary Types

Implementation Utilities

Low-Level Interfaces

Platform Adapters

App 1 App 2 App 3 App 4 App 5

73

0. Goals

Achieving Wide-Spread Reuse

 As library developers, we must

74

0. Goals

Achieving Wide-Spread Reuse

 As library developers, we must:

Draw complexity inward; push simplicity
outward.

75

0. Goals

Achieving Wide-Spread Reuse

 As library developers, we must:

Draw complexity inward; push simplicity
outward.

Provide correct, complete, yet concise
function contract documentation.

76

0. Goals

Achieving Wide-Spread Reuse

 As library developers, we must:

Draw complexity inward; push simplicity
outward.

Provide correct, complete, yet concise
function contract documentation.

Avoid gratuitous variation in rendering.

77

0. Goals

Achieving Wide-Spread Reuse

 As library developers, we must:

Draw complexity inward; push simplicity
outward.

Provide correct, complete, yet concise
function contract documentation.

Avoid gratuitous variation in rendering.

Achieve reliability at least as good as our
compilers.

78

0. Goals

Achieving Wide-Spread Reuse

To the maximum extent practicable…
 …every software component we write must be:

1. Easy to Understand

2. Easy to Use

3. High Performance

4. Portable

5. Reliable
79

0. Goals

Achieving Wide-Spread Reuse

1. Easy to Understand

• Canonical rendering.

• Clear and complete reference documentation.

• Relevant usage examples.

80

0. Goals

Achieving Wide-Spread Reuse

1. Easy to Understand

2. Easy to Use

• Effective usage model.

• Intuitive interface.

• Appropriate level of safety.

• Minimal physical dependencies.

81

0. Goals

Achieving Wide-Spread Reuse

1. Easy to Understand

2. Easy to Use

3. High Performance

• Execution (i.e., wall and CPU) run time.

• Process (i.e., in-core memory) size.

• Compile time (or the degree of compile-time
coupling).

• Link time (or the extent of link-time dependency).

• Executable (i.e., on-disk) code size.

 82

0. Goals

Achieving Wide-Spread Reuse

1. Easy to Understand

2. Easy to Use

3. High Performance

4. Portable

• Builds on all supported platforms.

• Runs on all supported platforms.

• Produces the same results on all supported
platforms.

• Achieves "reasonable" performance on all supported
platforms.

83

0. Goals

Achieving Wide-Spread Reuse

1. Easy to Understand

2. Easy to Use

3. High Performance

4. Portable

5. Reliable

84

0. Goals

Achieving Wide-Spread Reuse

1. Easy to Understand

2. Easy to Use

3. High Performance

4. Portable

5. Reliable

• No core dumps.

85

0. Goals

Achieving Wide-Spread Reuse

1. Easy to Understand

2. Easy to Use

3. High Performance

4. Portable

5. Reliable

• No core dumps.

• No memory leaks.

86

0. Goals

Achieving Wide-Spread Reuse

1. Easy to Understand

2. Easy to Use

3. High Performance

4. Portable

5. Reliable

• No core dumps.

• No memory leaks.

• No incorrect results.

87

0. Goals

Achieving Wide-Spread Reuse

1. Easy to Understand

2. Easy to Use

3. High Performance

4. Portable

5. Reliable

• No core dumps.

• No memory leaks.

• No incorrect results.

• No bugs!

 88

0. Goals

Achieving Wide-Spread Reuse

1. Easy to Understand

2. Easy to Use

3. High Performance

4. Portable

5. Reliable

• No core dumps.

• No memory leaks.

• No incorrect results.

• No bugs!

• No, we're not kidding.

89

0. Goals

Achieving Wide-Spread Reuse

Wait a minute…

Just how good does
software need to be?

90

0. Goals

Achieving Wide-Spread Reuse

Writing an application is somewhat
analogous to building a house:

91

0. Goals

Achieving Wide-Spread Reuse

Writing an application is somewhat
analogous to building a house:

• It must adequately perform its function.

92

0. Goals

Achieving Wide-Spread Reuse

93

0. Goals

Achieving Wide-Spread Reuse

Writing an application is somewhat
analogous to building a house:

• It must adequately perform its function.

• It must be safe under normal conditions.

94

0. Goals

Achieving Wide-Spread Reuse

95

0. Goals

Achieving Wide-Spread Reuse

Writing an application is somewhat
analogous to building a house:

• It must adequately perform its function.

• It must be safe under normal conditions.

• Beyond that, there are costs and
benefits that have to be weighed.

96

0. Goals

Achieving Wide-Spread Reuse

97

0. Goals

Achieving Wide-Spread Reuse

98

0. Goals

Achieving Wide-Spread Reuse

99

0. Goals

Achieving Wide-Spread Reuse

100

0. Goals

Achieving Wide-Spread Reuse

Writing a Reusable library is different.

101

0. Goals

Achieving Wide-Spread Reuse

Writing a Reusable library is different.

The goal of reusable software is to be
reused wherever “appropriate” and
human beings – not computers – will
make that determination.

 – Lakos1x

102

0. Goals

Achieving Wide-Spread Reuse

``We conjecture that the barriers to reuse are
 not on the producer's side, but on the
 consumer's side. If a software engineer, a
 potential consumer of standardized components,
 perceives it to be more expensive to find a
 component that meets his needs, and so verify,
 than to write one anew, a new, duplicative
 component will be written. Notice that we said
 perceives above. It does not matter what the true
 cost of reconstruction is.’’

 —Van Snyder (Brooks95)

103

0. Goals

Achieving Wide-Spread Reuse

``We conjecture that the barriers to reuse are
 not on the producer's side, but on the
 consumer's side. If a software engineer, a
 potential consumer of standardized components,
 perceives it to be more expensive to find a
 component that meets his needs, and so verify,
 than to write one anew, a new, duplicative
 component will be written. Notice that we said
 perceives above. It does not matter what the true
 cost of reconstruction is.’’

 —Van Snyder (Brooks95)

104

0. Goals

Achieving Wide-Spread Reuse

``We conjecture that the barriers to reuse are
 not on the producer's side, but on the
 consumer's side. If a software engineer, a
 potential consumer of standardized components,
 perceives it to be more expensive to find a
 component that meets his needs, and so verify,
 than to write one anew, a new, duplicative
 component will be written. Notice that we said
 perceives above. It does not matter what the true
 cost of reconstruction is.’’

 —Van Snyder (Brooks95)

105

0. Goals

Achieving Wide-Spread Reuse

``We conjecture that the barriers to reuse are
 not on the producer's side, but on the
 consumer's side. If a software engineer, a
 potential consumer of standardized components,
 perceives it to be more expensive to find a
 component that meets his needs, and so verify,
 than to write one anew, a new, duplicative
 component will be written. Notice that we said
 perceives above. It does not matter what the true
 cost of reconstruction is.’’

 —Van Snyder (Brooks95)

106

0. Goals

Achieving Wide-Spread Reuse

Reusable library software:

107

0. Goals

Achieving Wide-Spread Reuse

Reusable library software:

Must be perceived as far better than what a
prospective client (or anyone else) could do in
any practical time frame.

108

0. Goals

Achieving Wide-Spread Reuse

Reusable library software:

Must be perceived as far better than what a
prospective client (or anyone else) could do in
any practical time frame.

Unlike a house (or an App), can be consumed
by many different (kinds of) clients.

109

0. Goals

Achieving Wide-Spread Reuse

Reusable library software:

Must be perceived as far better than what a
prospective client (or anyone else) could do in
any practical time frame.

Unlike a house (or an App), can be consumed
by many different (kinds of) clients.

The more clients, the greater the utility (and
vice versa).

110

0. Goals

Achieving Wide-Spread Reuse

No Re-convergence

111

0. Goals

Achieving Wide-Spread Reuse

Significant Re-convergence

112

Maximal Re-convergence

0. Goals

Achieving Wide-Spread Reuse

113

0. Goals

Achieving Wide-Spread Reuse

So how good does
our reusable library
software need to be?

114

0. Goals

Achieving Wide-Spread Reuse

115

0. Goals

Achieving Wide-Spread Reuse

Nothing
Succeeds Like

Excess!
116

0. Goals

Achieving Wide-Spread Reuse

Nothing
Succeeds Like

Excess!
(If it’s worth doing, it’s worth overdoing.)

117

0. Goals

Achieving Wide-Spread Reuse

If we succeed…

App

App

App

App

App

App

App

 App

App

App

App

App

App
App

App App

App

App

App

App

App App

App

App

App

App

App

App

App

App

App

App

App App

App

App

App

App
App App

App
App

118

0. Goals

Achieving Wide-Spread Reuse

If we fail…

 App

 App

 App

 App

 App

 App
 App

 App

App

 App

 App

 App

119

Fortunately, we can amortize the perceived
cost over many products X versions:

 Versions ^
 |

 M | o o o o o o o o o o o o

 . |

 : | : : : : : : : : : ::: :

 3 | o o o o o o o o o ... o

 | Software Capital
 2 | o o o o o o o o o ... o

 |

 1 | o o o o o o o o o ... o

 +---------------------------->

 1 2 3 N Applications

0. Goals

Achieving Wide-Spread Reuse

App
App

App
App
App
App
App App

App
App
App
App
App
App

App
App

App
App
App
App
App App

App
App
App
App
App
App

App
App

App
App
App
App
App App

App
App
App
App
App
App

App
App

App
App
App
App
App App

App
App
App
App
App
App

App
App

App
App
App
App
App App

App
App
App
App
App
App

App
App

App
App
App
App
App App

App
App
App
App
App
App

Applications

120

App
App

App
App
App
App
App App

App
App
App
App
App
App

App
App

App
App
App
App
App App

App
App
App
App
App
App

App
App

App
App
App
App
App App

App
App
App
App
App
App

App
App

App
App
App
App
App App

App
App
App
App
App
App

App
App

App
App
App
App
App App

App
App
App
App
App
App

App
App

App
App
App
App
App App

App
App
App
App
App
App

Applications

0. Goals

Achieving Wide-Spread Reuse

121

Versions ^

 |

 M | $ $ $ $ $ $ $ $ $... $

 . |

 : | : : : : : : : : : ::: :

 3 | $ $ $ $ $ $ $ $ $... $

 | Perceived Cost
 2 | $ $ $ $ $ $ $ $ $... $

 |

 1 | $ $ $ $ $ $ $ $ $... $

 +---------------------------->

 1 2 3 N Applications

Versions ^

 |

 M | $ $ $ $ $ $ $ $ $... $

 . |

 : | : : : : : : : : : ::: :

 3 | $ $ $ $ $ $ $ $ $... $

 | Perceived Cost
 2 | $ $ $ $ $ $ $ $ $... $

 |

 1 | $ $ $ $ $ $ $ $ $... $

 +---------------------------->

 1 2 3 N Applications

0. Goals

Achieving Wide-Spread Reuse

122

App
App

App
App
App
App
App App

App
App
App
App
App
App

App
App

App
App
App
App
App App

App
App
App
App
App
App

App
App

App
App
App
App
App App

App
App
App
App
App
App

App
App

App
App
App
App
App App

App
App
App
App
App
App

App
App

App
App
App
App
App App

App
App
App
App
App
App

App
App

App
App
App
App
App App

App
App
App
App
App
App

Applications

Hierarchically Reusable Software

 Versions ^
 |

 M | o o o o o o o o o o o o

 . |

 : | : : : : : : : : : ::: :

 3 | o o o o o o o o o ... o

 | Software Capital
 2 | o o o o o o o o o ... o

 |

 1 | o o o o o o o o o ... o

 +---------------------------->

 1 2 3 N Applications

0. Goals

Achieving Wide-Spread Reuse

123

Hierarchically Reusable Software

a.k.a.:

 Versions ^
 |

 M | o o o o o o o o o o o o

 . |

 : | : : : : : : : : : ::: :

 3 | o o o o o o o o o ... o

 | Software Capital
 2 | o o o o o o o o o ... o

 |

 1 | o o o o o o o o o ... o

 +---------------------------->

 1 2 3 N Applications

0. Goals

Achieving Wide-Spread Reuse

124

Outline

0. Goals
 What we are trying to do, for whom, and how.

1. Process & Architecture
Organizing Software as Components, Packages, & Package Groups.

2. Design & Implementation
Using Class Categories, Value Semantics, & Vocabulary Types.

3. Verification & Testing
Component-Level Test Drivers, Peer Review, & Defensive Checks.

4. Bloomberg Development Environment
Rendered as Fine-Grained Hierarchically Reusable Components.

125

Outline

0. Goals
 What we are trying to do, for whom, and how.

1. Process & Architecture
Organizing Software as Components, Packages, & Package Groups.

2. Design & Implementation
Using Class Categories, Value Semantics, & Vocabulary Types.

3. Verification & Testing
Component-Level Test Drivers, Peer Review, & Defensive Checks.

4. Bloomberg Development Environment
Rendered as Fine-Grained Hierarchically Reusable Components.

126

1. Process & Architecture

Introduction

All of the software we write is governed
by a common overarching set of

Organizing Principles.

127

1. Process & Architecture

Introduction

All of the software we write is governed
by a common overarching set of

Organizing Principles.

Among the most central of which is

achieving

Sound Physical Design.

128

Lib A

App 1

1. Process & Architecture

Creating a Big Ball of Mud

129

Lib A

App 1

App 2

1. Process & Architecture

Creating a Big Ball of Mud

Where We Put Our Code Matters!

130

Lib A

App 1 Lib B

App 2

App 3 Each new edge is introduced by

the addition of code that

depends on code elsewhere.

Where We Put Our Code Matters!

1. Process & Architecture

Creating a Big Ball of Mud

131

Lib A

App 1 Lib B

App 2

App 4

App 3

?

?

1. Process & Architecture

Creating a Big Ball of Mud

132

Lib A

App 1 Lib B

App 2

Lib C

App 4

App 3

1. Process & Architecture

Creating a Big Ball of Mud

133

App 1.1 Lib B

App 2

Lib C

App 4

App 3

Lib A

1. Process & Architecture

Creating a Big Ball of Mud

134

Lib A.1

App 1.1 Lib B

App 2

Lib C

App 4

App 3

?

1. Process & Architecture

Creating a Big Ball of Mud

135

Lib B

App 2
Lib D

App 4

App 3

App 1.1

Lib A.1

Lib C

1. Process & Architecture

Creating a Big Ball of Mud

136

Lib B

App 2
Lib D

Lib C.1

App 4

App 3

App 1.1

Lib A.1

?

(?)

(?)

(?)

1. Process & Architecture

Creating a Big Ball of Mud

137

Lib B

App 2
Lib D

App 4.1

App 3

App 1.1

Lib A.1

Lib C.1

?

1. Process & Architecture

Creating a Big Ball of Mud

138

Lib B

App 2
Lib D

Lib C.2

App 4.1

App 3

App 1.1

Lib A.1

??

1. Process & Architecture

Creating a Big Ball of Mud

139

Over time …

1. Process & Architecture

Creating a Big Ball of Mud

140

Over time …

1. Process & Architecture

Creating a Big Ball of Mud

141

Over time …

1. Process & Architecture

Creating a Big Ball of Mud

142

1. Process & Architecture

Creating a Big Ball of Mud

Over time …

143

1. Process & Architecture

Creating a Big Ball of Mud

Over time …

144

1. Process & Architecture

Creating a Big Ball of Mud

Over time …

145

1. Process & Architecture

Creating a Big Ball of Mud

146

