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Abstract 
Designing one library is hard; designing an open-ended collection of interoperable libraries is harder.  

Partitioning functionality across multiple libraries presents its own unique set of challenges: 

Functionality must be easy to discover, redundancy must be eliminated, and interface and contract 

relationships across components and libraries should be easy to explore without advanced IDE 

capabilities.  Further, dependencies among libraries must be carefully managed – the libraries must 

function as a coherent whole, defining and using a curated suite of vocabulary types, but clients 

should pay in compile time, link time, and executable size only for the functionality they need. 

 

Creating a unified suite of interoperable libraries also has many challenges in common with creating 

individual ones.  The software should be easy to understand, easy to use, highly performant, 

portable, and reliable.  Moreover, all of these libraries should adhere to a uniform physical structure, 

be devoid of gratuitous variation in rendering, and use consistent terminology throughout.  By 

achieving such a high level of consistency, performance, and reliability across all of the libraries at 

once, the local consistency within each individual library becomes truly exceptional.  Additionally, 

even single-library projects that leverage such principles will derive substantial benefit. 

 

There are many software methodologies appropriate for small- and medium-sized projects, but most 

simply do not scale to larger development efforts.  In this talk we will explore problems associated 

with very large scale development, and the cohesive techniques we have found to address those 

problems culminating in a proven component-based methodology, refined through practical 

experience at Bloomberg.  The real-world application of this methodology – including three levels of 

aggregation, acyclic dependencies, nominal cohesion, fine-grained factoring, class categories, narrow 

contracts, and thorough component-level testing – will be demonstrated using the recently released 

open-source distribution of Bloomberg’s foundation libraries.  
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Large-Scale C++ Software Design: 

• Involves many subtle logical and physical aspects. 

• Requires an ability to isolate and modularize 
logical functionality within discrete, fine-grained 
physical components. 

• Requires the designer to delineate logical behavior 
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Sub-Sub-Solutions                                                        

Vocabulary-Type Utilities                                   

Vocabulary Types                                                         

Implementation Utilities                                                

Low-Level Interfaces                                                           

Platform Adapters 

App  1 App  2 App  3 App 4 App  5 
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Achieving Wide-Spread Reuse 

 As library developers, we must  
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Achieving Wide-Spread Reuse 

 As library developers, we must:  

Draw complexity inward; push simplicity 
outward. 
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Achieving Wide-Spread Reuse 

 As library developers, we must:  

Draw complexity inward; push simplicity 
outward. 

Provide correct, complete, yet concise 
function contract documentation. 
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 As library developers, we must:  

Draw complexity inward; push simplicity 
outward. 

Provide correct, complete, yet concise 
function contract documentation. 

Avoid gratuitous variation in rendering. 
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0. Goals 

Achieving Wide-Spread Reuse 

 As library developers, we must:  

Draw complexity inward; push simplicity 
outward. 

Provide correct, complete, yet concise 
function contract documentation. 

Avoid gratuitous variation in rendering. 

Achieve reliability at least as good as our 
compilers. 
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0. Goals 

Achieving Wide-Spread Reuse 

To the maximum extent practicable… 
  …every software component we write must be: 

1. Easy to Understand 

2. Easy to Use 

3. High Performance 

4. Portable 

5. Reliable 
79 



0. Goals 

Achieving Wide-Spread Reuse 

1. Easy to Understand 

• Canonical rendering. 

• Clear and complete reference documentation. 

• Relevant usage examples. 
  

  

 

80 



0. Goals 

Achieving Wide-Spread Reuse 

1. Easy to Understand 

2. Easy to Use 

• Effective usage model. 

• Intuitive interface. 

• Appropriate level of safety. 

• Minimal physical dependencies.  
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0. Goals 

Achieving Wide-Spread Reuse 

1. Easy to Understand 

2. Easy to Use 

3. High Performance 

• Execution (i.e., wall and CPU) run time. 

• Process (i.e., in-core memory) size. 

• Compile time (or the degree of compile-time 
coupling). 

• Link time (or the extent of link-time dependency). 

• Executable (i.e., on-disk) code size. 
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0. Goals 

Achieving Wide-Spread Reuse 

1. Easy to Understand 

2. Easy to Use 

3. High Performance 

4. Portable 

• Builds on all supported platforms. 

• Runs on all supported platforms. 

• Produces the same results on all supported 
platforms. 

• Achieves "reasonable" performance on all supported 
platforms. 

  
83 



0. Goals 

Achieving Wide-Spread Reuse 

1. Easy to Understand 

2. Easy to Use 

3. High Performance 

4. Portable 

5. Reliable 
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Achieving Wide-Spread Reuse 

1. Easy to Understand 

2. Easy to Use 

3. High Performance 

4. Portable 

5. Reliable 

• No core dumps. 
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Achieving Wide-Spread Reuse 

1. Easy to Understand 

2. Easy to Use 

3. High Performance 

4. Portable 

5. Reliable 

• No core dumps. 

• No memory leaks. 
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1. Easy to Understand 

2. Easy to Use 

3. High Performance 

4. Portable 

5. Reliable 

• No core dumps. 

• No memory leaks. 

• No incorrect results. 
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Achieving Wide-Spread Reuse 

1. Easy to Understand 

2. Easy to Use 

3. High Performance 

4. Portable 

5. Reliable 

• No core dumps. 

• No memory leaks. 

• No incorrect results. 

• No bugs! 
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0. Goals 

Achieving Wide-Spread Reuse 

1. Easy to Understand 

2. Easy to Use 

3. High Performance 

4. Portable 

5. Reliable 

• No core dumps. 

• No memory leaks. 

• No incorrect results. 

• No bugs! 

• No, we're not kidding. 
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0. Goals 

Achieving Wide-Spread Reuse 

Wait a minute…  

Just how good does 
software need to be? 
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0. Goals 

Achieving Wide-Spread Reuse 

Writing an application is somewhat 
analogous to building a house: 
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0. Goals 

Achieving Wide-Spread Reuse 

Writing an application is somewhat 
analogous to building a house: 

• It must adequately perform its function. 
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0. Goals 

Achieving Wide-Spread Reuse 

Writing an application is somewhat 
analogous to building a house: 

• It must adequately perform its function. 

• It must be safe under normal conditions. 
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0. Goals 

Achieving Wide-Spread Reuse 

Writing an application is somewhat 
analogous to building a house: 

• It must adequately perform its function. 

• It must be safe under normal conditions. 

• Beyond that, there are costs and 
benefits that have to be weighed. 
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Achieving Wide-Spread Reuse 
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0. Goals 

Achieving Wide-Spread Reuse 

Writing a Reusable library is different. 
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0. Goals 

Achieving Wide-Spread Reuse 

Writing a Reusable library is different. 
 

The goal of reusable software is to be 
reused wherever “appropriate” and 
human beings – not computers – will 
make that determination.  

                                                    – Lakos1x 
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0. Goals 

Achieving Wide-Spread Reuse 

``We conjecture that the barriers to reuse are 
   not on the producer's side, but on the 
   consumer's side.  If a software engineer, a 
   potential consumer of standardized components, 
   perceives it to be more expensive to find a 
   component that meets his needs, and so verify, 
   than to write one anew, a new, duplicative 
   component will be written.  Notice that we said 
   perceives above.  It does not matter what the true 
   cost of reconstruction is.’’ 

                                                 —Van Snyder (Brooks95) 
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``We conjecture that the barriers to reuse are 
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Achieving Wide-Spread Reuse 

``We conjecture that the barriers to reuse are 
   not on the producer's side, but on the 
   consumer's side.  If a software engineer, a 
   potential consumer of standardized components, 
   perceives it to be more expensive to find a 
   component that meets his needs, and so verify, 
   than to write one anew, a new, duplicative 
   component will be written.  Notice that we said 
   perceives above.  It does not matter what the true 
   cost of reconstruction is.’’ 

                                                 —Van Snyder (Brooks95) 
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Achieving Wide-Spread Reuse 

Reusable library software: 
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0. Goals 

Achieving Wide-Spread Reuse 

Reusable library software: 

Must be perceived as far better than what a 
prospective client (or anyone else) could do in 
any practical time frame. 
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0. Goals 

Achieving Wide-Spread Reuse 

Reusable library software: 

Must be perceived as far better than what a 
prospective client (or anyone else) could do in 
any practical time frame. 

Unlike a house (or an App), can be consumed 
by many different (kinds of) clients. 
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0. Goals 

Achieving Wide-Spread Reuse 

Reusable library software: 

Must be perceived as far better than what a 
prospective client (or anyone else) could do in 
any practical time frame. 

Unlike a house (or an App), can be consumed 
by many different (kinds of) clients. 

The more clients, the greater the utility (and 
vice versa). 
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Achieving Wide-Spread Reuse 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

No Re-convergence 
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Significant Re-convergence 
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Maximal Re-convergence 
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0. Goals 

Achieving Wide-Spread Reuse 

So how good does 
our reusable library 
software need to be? 
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0. Goals 

Achieving Wide-Spread Reuse 

Nothing 
Succeeds Like 

Excess! 
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0. Goals 

Achieving Wide-Spread Reuse 

Nothing 
Succeeds Like 

Excess! 
(If it’s worth doing, it’s worth overdoing.) 
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0. Goals 

Achieving Wide-Spread Reuse 

If we succeed… 
 
 

App 
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Achieving Wide-Spread Reuse 

If we fail…                                                                     

      App 

   App 

        App 

       App 

       App 

        App 
      App 

 App 

App 

      App 

     App 

   App 
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Fortunately, we can amortize the perceived 
cost over many  products  X  versions: 
 

               Versions ^ 
                 | 

              M  | o o o o o o o o o o o o 

              .  | . . . . . . . . . ... . 

              :  | : : : : : : : : : ::: : 

              3  | o o o o o o o o o ... o 

                 |      Software Capital 
              2  | o o o o o o o o o ... o 

                 | 

              1  | o o o o o o o o o ... o 

                 +----------------------------> 

                   1 2 3 .  .  .  .  ... N  Applications 
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Versions ^ 

         | 

      M  | $ $ $ $ $ $ $ $ $ ... $ 

      .  | . . . . . . . . . ... . 

      :  | : : : : : : : : : ::: : 

      3  | $ $ $ $ $ $ $ $ $ ... $ 

         |      Perceived Cost 
      2  | $ $ $ $ $ $ $ $ $ ... $ 

         | 

      1  | $ $ $ $ $ $ $ $ $ ... $ 

         +----------------------------> 

           1 2 3 .  .  .  .  ... N  Applications 



Versions ^ 

         | 

      M  | $ $ $ $ $ $ $ $ $ ... $ 

      .  | . . . . . . . . . ... . 

      :  | : : : : : : : : : ::: : 

      3  | $ $ $ $ $ $ $ $ $ ... $ 

         |      Perceived Cost 
      2  | $ $ $ $ $ $ $ $ $ ... $ 

         | 

      1  | $ $ $ $ $ $ $ $ $ ... $ 

         +----------------------------> 

           1 2 3 .  .  .  .  ... N  Applications 

0. Goals 

Achieving Wide-Spread Reuse 

122 

App 
App 

App 
App 
App 
App 
App App 

App 
App 
App 
App 
App 
App 

App 
App 

App 
App 
App 
App 
App App 

App 
App 
App 
App 
App 
App 

App 
App 

App 
App 
App 
App 
App App 

App 
App 
App 
App 
App 
App 

App 
App 

App 
App 
App 
App 
App App 

App 
App 
App 
App 
App 
App 

App 
App 

App 
App 
App 
App 
App App 

App 
App 
App 
App 
App 
App 

App 
App 

App 
App 
App 
App 
App App 

App 
App 
App 
App 
App 
App 

Applications 



Hierarchically Reusable Software  
 

               Versions ^ 
                 | 

              M  | o o o o o o o o o o o o 

              .  | . . . . . . . . . ... . 

              :  | : : : : : : : : : ::: : 

              3  | o o o o o o o o o ... o 

                 |      Software Capital 
              2  | o o o o o o o o o ... o 

                 | 

              1  | o o o o o o o o o ... o 

                 +----------------------------> 
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Hierarchically Reusable Software  

a.k.a.: 
 

               Versions ^ 
                 | 

              M  | o o o o o o o o o o o o 

              .  | . . . . . . . . . ... . 

              :  | : : : : : : : : : ::: : 

              3  | o o o o o o o o o ... o 

                 |      Software Capital 
              2  | o o o o o o o o o ... o 

                 | 

              1  | o o o o o o o o o ... o 

                 +----------------------------> 

                   1 2 3 .  .  .  .  ... N  Applications 
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Outline 

0.   Goals 
                What we are trying to do, for whom, and how. 

1. Process & Architecture 
Organizing Software as Components, Packages, & Package Groups.  

2. Design & Implementation 
Using Class Categories, Value Semantics, & Vocabulary Types. 

3. Verification & Testing 
Component-Level  Test Drivers, Peer Review, & Defensive Checks. 

4. Bloomberg Development Environment 
Rendered as Fine-Grained Hierarchically Reusable Components. 
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1. Process & Architecture  

Introduction 

All of the software we write is governed  
by a common overarching set of 

Organizing Principles. 
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1. Process & Architecture  

Introduction 

All of the software we write is governed  
by a common overarching set of 

Organizing Principles. 

 
Among the most central of which is 

achieving  

Sound Physical Design. 
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Creating a Big Ball of Mud 
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App 1 

App 2 

1. Process & Architecture  

Creating a Big Ball of Mud 

Where We Put Our Code Matters! 
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Lib A 

App 1 Lib B 

App 2 

App 3  Each new edge is introduced by  

the addition of code that 

depends on code elsewhere. 

Where We Put Our Code Matters! 

1. Process & Architecture  

Creating a Big Ball of Mud 
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App 1 Lib B 

App 2 

App 4 

App 3 

? 

? 
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Creating a Big Ball of Mud 
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App 1 Lib B 
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Lib C 

App 4 
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1. Process & Architecture  

Creating a Big Ball of Mud 
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App 1.1 Lib B 

App 2 

Lib C 

App 4 

App 3 

Lib A 

1. Process & Architecture  

Creating a Big Ball of Mud 
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Lib A.1 

App 1.1 Lib B 

App 2 

Lib C 

App 4 

App 3 

? 
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Creating a Big Ball of Mud 
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Lib B 

App 2 
Lib D 

App 4 

App 3 

App 1.1 

Lib A.1 

Lib C 

1. Process & Architecture  

Creating a Big Ball of Mud 
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App 4 

App 3 

App 1.1 

Lib A.1 
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App 2 
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App 3 

App 1.1 

Lib A.1 
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Lib B 

App 2 
Lib D 

Lib C.2 

App 4.1 

App 3 

App 1.1 

Lib A.1 

?? 

1. Process & Architecture  

Creating a Big Ball of Mud 
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Over time … 
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Over time … 
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Over time … 
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Creating a Big Ball of Mud 

Over time … 
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Creating a Big Ball of Mud 

Over time … 
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Creating a Big Ball of Mud 

Over time … 
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