.Rincon
> Research

% Corporation

Thread-Safe and Thread-Neutral Bags

Richard T. Saunders — Rincon Research Corporation

12 May 2013 C++ Now! 2013 1

.Rincon
> Research

%2 Corporation

* Overview
 Work Crew
» Slowest Worker Problem
* The Bag
— Implementation 1: The Drawer
— Implementation 2: The Cupboard
 False Sharing
» Hyper-thread Problems
« Conclusion

12 May 2013 C++ Now! 2013 2

>
4’ -

Rincon

'i:‘.,-, Research ’ 5 ‘ ' ‘ﬁ, "
| i It’s Josh’s Fag% "

 Dealing with multiple threads in C++ to compute a heavy weight DSP
object called a Cross Ambiguity Function (CAF)

* Too slow!
— “Why do the threads all finish at different times?”
— If they all finished at the same time, the CAF would be faster!

 This led to investigations of how to implement THE BAG, with all sorts
of ramifications

— Thread-Neutrality

— Thread-Safety

— Hyper-Threading

— “Slowest Worker” Problem
— False Sharing

— C++ 11 Atomics

12 May 2013 C++ Now! 2013 3

.Rincon \ | , 7
. Research Cross Ambiguity Fuwa_
1 Corporation e

12 May 2013 C++ Now! 2013 4

<=

Rincon -
& Research - - wv.B ; /
B Corporstion CAF Embarrassmglyﬁel v

* CAF: Cross Ambiguity Function
— Digital Signal Processing bread and butter function

— Time Difference of Arrival (TDOA) vs Frequency Difference of
Arrival (FDOA)

« Signals have time and frequency shifts, trying to find true time
and frequency

* Try to find where energy is “maximized”

* Embarrassingly Parallel!
— Every line is “essentially” an inverse Fast Fourier Transform
» Read: each line is expensive to compute
— Every line can be computed in parallel by separate thread

12 May 2013 C++ Now! 2013 5

.Rincon
= Research

4y, Corporation

After all threads
finish, final CAF
image is
generated

12 May 2013

Original Strateg;

-

a priori Division of

C++ Now! 2013

Thread 1

Thread 2

Thread 3

Rincon

. Reseach Simple Way to Divide W@’rioﬁ ,
i, Corporation :

* a priori
— Evenly divide up work among all workers
— Worker 1 gets X pieces of work, Worker 2 gets X pieces of work...
— ... seems fair ...

* Ideally: If work is divided up a priori
— each worker would get exactly the same amount of work
— every worker would finish at exactly the same time
 Realistically:
— Each worker takes a different amount of time
» Scheduled by operating system differently

» Other applications running simultaneously interfere with
workers’ consistency

» Hyper-threading causes added scheduling irregularities

12 May 2013 C++ Now! 2013 7

Rincon

. Reseach Definition: Slowest Worker

% Corporation

» Under a priori division, work crew becomes throttled by the
SLOWEST WORKER:

— Each worker has done the “same amount of work”, but realistically,
scheduling has caused the SLOWEST WORKER to limit how fast
the work crew can finish

— THIS IS THE SLOWEST WORKER PROBLEM
» Scheduling inconsistencies throttle the work crew

12 May 2013 C++ Now! 2013 8

| Rincon

41, Corporation

5 Research Definitions: B: ﬁ‘& " “

» A bag is a fundamental container holding future work for multiple

threads BAG: ; -

— When a worker wants g B %] D 0 |
work, it gets a single I g g Werkebedve]
piece of work from bag

Input
Worker
Threads

Output

12 May 2013 C++ Now! 2013 9

.Rincon
> Research

i Corporation Definitions: Work : 3 v,

« A work-crew is a group of related threads pulling work from the bag

until the bag is empty: BAG: ~ 3 ~
TRY L
Work to be divided
T Ny
Input
Work Crew _ // v/ Worker
(aka, map-reduce model) Threads
(aka, OpenMP model) \\\ /
— Output
12 May 2013 C++ Now! 2013 10

gRincon Definition: Thread-$

= Research

%, Corporation and Thread-Neu

* Thread-Safe Bag
— The state of the bag is never inconsistent amidst multiple threads
* i.e., each piece of work only served exactly once
* (no accidental serves of same data or failing to serve)
— BAG IS CORRECT

» Thread-Neutral Bag

— Multiple threads do not impede each other’s progress as they
reach into the bag to grab work

 Lack of “collateral damage” from other threads
— BAG IS FAST

12 May 2013 C++ Now! 2013 11

Rincon Bag Allows Dynamié>

= Research
o

<2

_—

i1 Corporation Distribution of v ! “

» The bag allows threads to pull dynamically a piece of work whenever
they need it (as opposed to a priori division of work)

— Avoids SLOWEST WORKER problem

A poorly scheduled worker (“Fred”) won’t completely throttle a
work-crew

— “Come on!!l When is Fred going to finish???”

* Instead, the X work of Fred will dynamically be redistributed
among all threads

— All threads will finish at “approximately” the same time

« Caveat: still have to divide up work into small enough quanta that
work can be distributed

 Poorly divided work can still suffer from similar problems ... but
that’s the application’s fault, not the scheduler

— There is a sweet spot for work size
» Our purpose: avoid slowdowns from scheduling inconsistencies

12 May 2013 C++ Now! 2013 12

<5
Rincon 3

& Research - ' ‘ ’
~:-;:\;‘;\ Corporation Bag. Abstract IW ‘ ‘

* Fundamental Operation:
— get: returns a single piece of work for worker thread
* Interface?
— One Way: Microsoft ConcurrentBag<T>
» Huge interface for gets, puts, complex interface
— A Simpler Way:
» A key simplification is that a bag should only return integers in
range 0..n-1

* Then “real work™ can be kept in a well-understood container like
STL vector, where the bag gives “indexes” into the vector.

* Leverage STL vector<T>
— Everyone understands vector!
— Bag IS conceptually simple

 Gives you simple mechanism to build work (but you can
Implement any policy you want for filling vector of work)

12 May 2013 C++ Now! 2013 13

| Rincon

Research Bag of Ints : ﬁ““»\/&’) !

41, Corporation

class BAG OF INTS {
// Return false if the bag is empty.
// Otherwise return true and return
// an integer from the bag
bool get (uilnt32Z2 té& result);

by

12 May 2013 C++ Now! 2013 14

.Rincon &
= Research A‘» 2

B Corporation Bag of Ints Usagg 2

Vector<8tring> WOr]{{“Wl”,“W2”,“W3”},'
BAG OF INTS bag(0, work.length());
// Bag of {0,1,2}

// main loop: get work from bag
ulnt32 t 1ndex;
while (bag.get(index)) {
string& single work = work[index];
do work (single work);

J

12 May 2013 C++ Now! 2013 15

<=
Rincon

. Rescach The Drawer: Bag Implenﬁon % /
7 Corporation ’ :

» The fundamental thread-safe bag is the iDrawer
— Only to emphasize integer nature

— We are only dealing with integers; why not use fundamentally fast
atomic int operations?

 Why atomic? (So bag is thread-safe)

* Implemented using a C++11 Atomic primitive
— Using a C++11 std::atomic<uint32_t>
— Usually implemented using a CPU’s atomic instructions
* On Intel, many C++11 ops correspond to a single instruction

* Get:
— Fundamentally, increment integer
* That's it! (Of course, abitmoretoit...)

12 May 2013 C++ Now! 2013 16

Rincon

- Research iDrawer Implemen

. Corporation

struct iDrawer {
iDrawer (uint32 t start, uint32 t length)
current (start),upperBound (start+length) {}

bool get (uint32 té& index) {
i1f (current >= upperBound) return false;
uint32 t t=current .fetch add(1l);
if (t >= upperBound) return false;
// double-checked lock pattern
index = t; return true;
}
protected:
std::atomic<uint32 t> current ;

uint32 t upperBound ;
I

12 May 2013 C++ Now! 2013 17

Rincon
: -

fgfesearch Correctness A&é}” " e

41, Corporation

* Think of
uint32 t temp = current .fetch add(1l);
— As
uint32 t temp = current ++;

« Except, in the face of multiple threads, each thread will increment
current exactly once, and the state will never be inconsistent:

— It will increment 0,1,2,... in order without losses or skips

12 May 2013 C++ Now! 2013 18

o

<2

Rincon —
= Research _ s
% Corporation Double ChECkeqﬁ “ :

* Like Singleton “Double-Checked Lock™ pattern (Modern C++ Design,
6.9.1), we have to check against the upper bound twice.

— Metaphor: like buying tickets at a full theater with too many tickets
* First check keeps threads out once upper bound is past.
— “SOLD OUT”
» Second check is to make sure there are enough seats

— Made it into the theater, but too many tickets may have been
sold. We have to see if there is a seat for us.

» The second check is for threads that “sneak in” just before the theater
sells out of tickets (just before the upper bound is surpassed)

* Note that this technique ONLY works if the number of threads that
sneak can't cause current to wrap back aroundto O

— In reality, not a problem: can always throttle back and reset
occasionally (and 4 billion is pretty big...)

12 May 2013 C++ Now! 2013 19

Rincon
‘4
> Research

“-;';..,HLCorporation Pre c 11 compl J “

* Not everyone is at C++11 yet.

* In a GNU world

— GNU C++ supports the same kind of atomic primitives. Only need
two changes to use GNU atomic primitives

// In get: atomic fetch and add for GNU
uint32 t temp= sync fetch and add(current , 1);

// Declaration of current

volatile uint32 t current ;

— Can still support bag idea in earlier C++ compilers using GNU
Intrinsics.

12 May 2013 C++ Now! 2013 20

<5
Rincon

= Research _ - ‘ /
B Cormoration Thread Neutrajr” "

* Is the bag Thread-Safe?
— Yes: correctness was argued earlier
* Is the bag Thread-Neutral?
— Thread-Neutral:
 Lack of collateral damage from other threads
» Other threads don’t affect the run-time of the current thread

* Issues affecting Thread-Neutrality
— How many worker threads are possibly getting in the way?
* More threads == more likely that current is hit hard
— What kind of work is done by each thread?
* Negligible: Each worker gets data out of bag as fast as possible

» Some: Each worker gets data quickly, but some work is done
before the worker calls get again

« Ample: Each worker calls get infrequently

12 May 2013 C++ Now! 2013 21

<4
Rincon

= Research = N . ”
R o Synthetic Peﬂormapgts "

* Plot the number of threads vs. time: we plot two things
— Time of the test

* On a 6-CPU Intel Xeon machine (looks like 12 CPUS with
hyper-threading)

— Perfect Speedup

* In a perfect world, n threads would be n TIMES faster than a
single thread

» Smaller is better (i.e., measuring runtimes)
* Work Types:
— Negligible: exactly 1 add per get operation
— Some: 100 adds before a get
— Ample: 1e6 adds before a get

» Synthetic Performance Tests:
— no real work was done in the running of these tests

12 May 2013 C++ Now! 2013 22

<&
P —

jRincon Drawer Timings: @

Research

5.1, Corporation Negligible Work PW “

Synthetic Benchmark: drawer with neglible type of work
14 | | | |

|
timed data —+—
) perfect speedup —-x—--

Number of Threads

12 May 2013 C++ Now! 2013 23

| Rincon

= Research

X
A

41, Corporation

<&
<

Drawer Timin

gs: ¢
Some Work per

Get”

Synthetic Benchmark: drawer with some type of work
T T T T
timed data ————
e perfect speedup ——--
6 I _
X
X
X
X
w4 g 7
0 A
9 A
o X
e %
= 3 XX _
2 %
o,
23
1+ WM%’T: : + + 4
0 |] |] |
2 4 6 8 10
Number of Threads
12 May 2013

C++ Now! 2013

24

| Rincon
= Research

41, Corporation

<&
<

Drawer Timin

gSi ¢
Ample Work Per

Get”

Synthetic Benchmark: drawer with ample type of work
7 | | T T
timed data —+——
perfect speedup —x--
¥
6 I
X
5 3 -
X
X
w 4 X -
@ ‘){
= *
E 3r X
8"
XXXX)(
1 %&&x%x%jﬁ N . L . |
XMWWWW_
0 l | l |
2 6 8 10
Number of Threads
12 May 2013

C++ Now! 2013

12

25

e

Rincon —
’i:l.-_,. Research Dr wer n I i BN /S ”
W Cornoration awer Conc 4s e

* For ample, and some work types
— Drawer is essentially “Thread-Neutral”
— Reaches “perfect speedup” line

* Modulo it doesn’t scale well after 6 processors ... we'll discuss
this more in Hyper-Threading section

 For negligible work type:
— Drawer is NOT “Thread-Neutral”!
— Other workers slow down

» Makes sense, all worker threads are incrementing current as
fast as they possibly can; at some point they get into each
other’s way

» For most work types, a Drawer is probably “good enough”

12 May 2013 C++ Now! 2013 26

.Rincon
= Research
% Corporation

Gnomes 5‘@.»,
=

12 May 2013 C++ Now! 2013 27

. Corporation The Cupboard

Recon . Handling the Negligible @ypg:

* How can we keep workers (“gnomes”) out of each other’s way?
— Solution: Give each gnome his own drawer
* In C++ speak:
— A cupboard is a Vector of Drawers
— Work is divided evenly between drawers
« Drawer O gets integers 0..X
* Drawer 1 gets integers x+1..2x
— Incidentally, this is why Drawer constructor specifies start, len

— NOTE: we are building the Cupboard atop an atomic primitive that
already works:

« we are not adding any more “synchronization” code!
 Defer to drawer when possible
« Starts like a priori, but then rifle through others’ drawers

12 May 2013 C++ Now! 2013 28

jRincon Cupboard: get Usage Ch:

> Research

Corporation Sl ig h‘tly

vector<string> work = { .. };
// Each thread gets its own number: 0..workers-1
// Main loop for each thread

volid thread main loop (int thread number)

int starting drawer = thread number;
int ending drawer = -1; // returned by get
int work index = -1; // returned by get

while (bag.get(starting drawer,
work index, ending drawer)) {
string& single work = work[work index];
doSomething(single work);

starting drawer = ending drawer;

}

12 May 2013 C++ Now! 2013 29

.Rincon ..: i
'i"i';':;-. Research c“pboard get») “

41, Corporation

* Once each worker is looking in a particular drawer, they tend to stay
In that drawer

— Multiple workers do NOT interfere with each other, as they each
have their own drawer (most of the time)

12 May 2013 C++ Now! 2013 30

.Rincon
> Research

% Corporation

// Get from SOME drawer: start looking from the
// given drawer. If something found, return true
// with the index found as well as ending drawer.
bool get (int starting drawer,
uint32 t& index, 1int& ending drawer)
int drawer = starting drawer;
for (int 11=0; ii<drawers .length(); 11++) {
if (drawers [drawer].get(index)) {
// FOUND an item! Done!
ending drawer=drawer; return true;
}
drawer = (drawer+l) % drawers .length();

}

return false;

}

12 May 2013 C++ Now! 2013 31

pRincon Cupboard get: No Ex

> Research

4y, Corporation Synch ronization N ..

» Cupboard relies on Drawer being correct (Thread-Safe)

* Once a drawer is empty, it's empty
— It can’t get “refilled” except by creating a new cupboard
» Seems like a limitation but ...
* Model of OpenMP:
— A program is a series of map-reduce points

» Work created
» Work ends
» Move to next worker crew

12 May 2013 C++ Now! 2013 32

| Rincon

Research

. Corporation

T
timed data ——+—

Synthetic Benchmark: cupboard with neglible type of work
14 T T T
* perfect speedup -—-—x--
12 h
X
X
10 8
X
7 sp o T
0 *
@ X
o X
- 6 %
4
2 —
0 l | l l
2 6 8 10
Number of Threads
12 May 2013 C++ Now! 2013

33

| Rincon

Research
41, Corporation

Synthetic Benchmark: cupboard with some type of work

7 l I I I
timed data ——+—
perfect speedup —-»--
*
6 - .
X
5 [X -
X
X
w4 X -
5 X
'-E,-' %
£ 3 ‘X‘i{
= L |
Xxx
2 — —
Tr WXMWWMW
0 | | | | |
2 4 6 8 10 12

Number of Threads
12 May 2013 C++ Now! 2013 34

| Rincon

Research

41, Corporation

Synthetic Benchmark: cupboard with ample type of work
6 | T T |
|| timed data ———
! perfect speedup ——---
|
x
5 .
1
X
Sk]
¢
=
3 5
) %
s 3 % y
c *
i: X
e
po. I &3(’&& _
X%K"x
X}{X
1 | %}{)(XXK_K% —|
o o0 * + - +
” %
0 | | | | |
2 4 6 8 10
Number of Threads
12 May 2013

12
C++ Now! 2013

35

Rincon

Research Cupboard Performance:Wh

. Corporation

» The entire purpose of the cupboard is to make “negligible” work type
scenario Thread-Neutral

— Obviously, it didn’t work ...

* Why?
— Look to High-Speed Producer/Consumer work from IEEE

International Parallel and Distributed Processing Symposium
(IPDPS) 2006:

« Saunders, Jeffery, Jones

— Same kind of problem: multiple threads accessing resources as
fast as possible

* Problem:
— False Sharing

12 May 2013 C++ Now! 2013 36

e

Rincon —
’i:‘._-_, Research . : N /N ”
W Cornoration Problem: False S,@ e

 False Sharing:
— When two threads accidentally access the same cache line
» Causes cache-misses and forces caches to be refilled
— EXPENSIVE operation!

— Cache lines are typically 32-64 bytes: if two threads access data
from same cache line ... cache data “ping pongs” between caches

.................... Inside the cupboard
vector<iDrawer> cupboard data; // cupboard impl.

Drawers are stored contiguously in memory, inside the vector:

current = 4 bytes

upperBound = 4 bytes (drawer O0)
current = 4 bytes

upperBound = 4 Dbytes (drawer 1)

 Drawer 0 and 1 in the same cache line!ll

12 May 2013 C++ Now! 2013 37

| Rincon

- Research Gnomes With No Elbow Roc

32 Corporation

12 May 2013 C++ Now! 2013 38

.Rincon
= Research

= Corporation False Sharing Sql- ®

« Add Padding
— Fill out each drawer so it is the size of a cache line

12 May 2013 C++ Now! 2013 39

Py
i

jRincon iDrawer Implementation

> Research

3 Corporation (False Sharing Fixe

struct iDrawer {

protected:

std::atomic<uint32 t> current ;

// Eliminate false sharing between current and
// upper bound: processors can now cache
// upperBound at construction

char padding between frequent[64];
uint32 t upperBound ;

// Eliminate false sharing between drawers

char padding between drawers[64];
bi

12 May 2013 C++ Now! 2013 40

.Rincon
> Research

41, Corporation

Cupboard Tlmmgs (Falseg

Synthetic Benchmark: cupboard with neglible type of work
14 | | | T
timed data ——+—

¥ perfect speedup —-»--
|

12 g
;

10 F }
X
— 8 x\
7]
X
@ x}f
E %
= B X
4
2 —
0 | | | |
2 4 ¢] 10
Number of Threads
12 May 2013

C++ Now! 2013

41

.Rincon
= Research

X
X
A

41, Corporation

Cupboard Timings (Falseg

Fixed): Some Work

Synthetic Benchmark: cupboard with some type of work
7 | | | T
timed data —+—
+ perfect speedup ——x--
6 [t -
A
X
5 '11
X
X
‘[.I? 4 — x"\ —
o A
u x
£
o3t % .
X
2
X%
XX}(X E
1L + + ¥ + =
MXMW%
0 | | | | |
2 4 6 8 10 12
Number of Threads
12 May 2013

C++ Now! 2013

42

| Rincon

= Research

Cupboard Timings (False
iy, Corporation

Synthetic Benchmark: cupboard with ample type of work
7 | | T T T
timed data ——+—
perfect speedup —-——-
1
6 .
X
5 -7 -
X
X
w4 X
@
b
£
F 3 *x
"
h &"9‘&‘& i
%
%xxxx
1 MX%M
0]] | |]
2 4 6 8 10
Number of Threads
12 May 2013

C++ Now! 2013

43

Rincon —
& Research _ - id . ,
., Corporation Hyper Threadm@ e

» AKA Simultaneous Multithreading

* Ideally, Hyper-Threading (simplified) allows you to reuse functional
units in the CPU

— When doing “floating point” work, integer ALU is not being used
— When doing “Integer” work, floating point ALU is not being used

» Hyper-Threading is a hardware technique (supported by the
processor) for allowing two threads to proceed simultaneously

— 1 hyper-thread does floating point work
— 1 hyper-thread does integer work
» Net gain! 2x!

* That's why a 6-CPU machine looks like a 12-CPU machine
— Operating System exposes hyper-threads as “real threads”

12 May 2013 C++ Now! 2013 44

<=

Rincon —
& Research - - L /e ”
“~;‘;\.;:\ Corporation Hyper Threadl“@ ‘ ‘

» Unfortunately, Hyper-Threading can be problematic
— For much scientific computing, all work is floating point
* Integer unit sits idle
— CAF: all floating point work once we throw a bunch of threads at it

« WORST Case for Scientific Computation:
— Scheduler schedules 2 threads per CPU

 expecting one thread to use the floating point unit, and the other
thread to use the integer unit

« BUT ALL Floating Point work!

— S0, one thread sits idle waiting for FP unit to become
available

— Naive scheduler may cut performance by 2x

12 May 2013 C++ Now! 2013 45

Rincon —
& Research _ - > . ,
., Corporation Hyper Threadm@ e

* In real code, the scheduler decides where to run threads, and
sometimes things work out, sometimes they don’t

— Scheduler irregularities

* Whole purpose of Bag is to help mitigate scheduler irregularities

« If we consider the 6 CPU machine with Hyper-Threading to be a 6-
FPU machine ONLY

— For the purpose of our Scientific Computing, only HAS 6 CPUs
* We do achieve perfect speedup

« Another sanity check on Hyper-Threading:

— Evaluating the Impact of Simultaneous Multithreading on Network
Servers using Real Hardware from ACM SIGMETRICS, 2005

* Y. Ruan, V.S. Pai, E. Nahum, J.M. Tracey

12 May 2013 C++ Now! 2013 46

Rincon

’i‘:é:; Research Back to the CAB) “ |

.. Corporation

» The original purpose of the bag was to make CAF processing “faster”
— Mitigate scheduler irregularities

— Dole out work dynamically so “over-zealous” worker threads can
pick up the slack of “slacker” worker threads

* In real CAF code
— “negligible” doesn’t make too much sense (FFT per CAF line)
— “some” work types were not historically a problem

— “ample” work type was the only work type that seemed to suffer
from irregular completion times

* longer running work is more likely to suffer the effects of poor
scheduling due to hyper-threading, other applications, etc.

GOAL: (1) Speed up CAF in “ample” work case
(2) and NOT hinder other work types

12 May 2013 C++ Now! 2013 47

| Rincon

Research CAF Timing: Sow ' 1 e

i Corporation

CAF processing: some work per line

I
apriori —+—
- R % bag ---x--
80 f- - — e — . |

70 .

60 - .

50 - .

40 F -

Time (secs)

10 | .

Number of Threads

12 May 2013 C++ Now! 2013 48

| Rincon

Research CAF Timings: Ampl

41, Corporation

CAF processing: ample work per line

e I I I l l

apriori —+——
bag -——--

120 - -

100 -

80 -

60

Time (secs)

0 | | | | |
1 2 3 4 5 6 7

Number of Threads

12 May 2013 C++ Now! 2013 49

| Rincon

= Research
41, Corporation

CAF processing: very large CAFs

I I I I I

apriori —+—
bag —-¢--

1000 3

800

w
g 600
u
o
E
l_
400 |- .
200 |- .
0]]]]]
2 3 4 5 6 7 8

Number of Threads

12 May 2013 C++ Now! 2013 50

Rincon
I

> Research ooy — /N '
Corporation CAF Tlmlngs Res J “

» Bag did not hinder performance
— “some” work type
» Bag helped performance
— “ample”
* maybe 3%-5% faster
— bigger “ample” work types
» 15-20% faster

« All threads “finished at the same time” when computing the CAF
— Achieves part of the original purpose, use whole machine

12 May 2013 C++ Now! 2013 51

=

Rincon

& Research | ~, . Y |
B No perfect speedup ’ffﬁs. "

* CAFs inherently break cache
— Very large FFTs don't sit in cache
— Stride across memory, taxing memory subsystem to its limits
* Direct correlation to front-side bus speedup and CAF speedup
 Perfect speedup is hard to achieve for CAFs
— Memory system being hit hard by all threads

* “collateral damage” of other threads is clogging the memory
subsystem of the machine

12 May 2013 C++ Now! 2013 52

<=
Rincon

;i;‘.é:‘} Research | Conclusion .. & ﬁ . /
7 Corporation ’ ‘» “

» There are different types of bags for different applications
— Drawer: useful in most situations
» Simple and fast
« Easy interface
* Built on single C++11 atomic primitive (also can use GNU...)
— Cupboard : better for high-speed extractions
* Built on Drawer
« Slightly more complex interface

* Real World Numbers (CAF):
— The bag is at least as good as a priori division of work (some)
— The bag is better than a priori division of work (ample work type)

» The bag helps mitigate scheduling irregularities (Hyper-Threads, etc).

12 May 2013 C++ Now! 2013 53

