
Thread-Safe and Thread-Neutral Bags

Richard T. Saunders ‒ Rincon Research Corporation

12 May 2013 1 C++ Now! 2013

Overview

• Overview

• Work Crew

• Slowest Worker Problem

• The Bag

– Implementation 1: The Drawer

– Implementation 2: The Cupboard

• False Sharing

• Hyper-thread Problems

• Conclusion

12 May 2013 C++ Now! 2013 2

It’s Josh’s Fault!

• Dealing with multiple threads in C++ to compute a heavy weight DSP

object called a Cross Ambiguity Function (CAF)

• Too slow!

– “Why do the threads all finish at different times?”

– If they all finished at the same time, the CAF would be faster!

• This led to investigations of how to implement THE BAG, with all sorts

of ramifications

– Thread-Neutrality

– Thread-Safety

– Hyper-Threading

– “Slowest Worker” Problem

– False Sharing

– C++ 11 Atomics

12 May 2013 C++ Now! 2013 3

Cross Ambiguity Function: CAF

12 May 2013 C++ Now! 2013 4

CAF: Embarrassingly Parallel

• CAF: Cross Ambiguity Function

– Digital Signal Processing bread and butter function

– Time Difference of Arrival (TDOA) vs Frequency Difference of

Arrival (FDOA)

• Signals have time and frequency shifts, trying to find true time

and frequency

• Try to find where energy is “maximized”

• Embarrassingly Parallel!

– Every line is “essentially” an inverse Fast Fourier Transform

• Read: each line is expensive to compute

– Every line can be computed in parallel by separate thread

12 May 2013 C++ Now! 2013 5

Original Strategy:

a priori Division of Lines

12 May 2013 C++ Now! 2013 6

Thread 1

Thread 2

Thread 3

After all threads
finish, final CAF

image is
generated

Simple Way to Divide Work: a priori

• a priori

– Evenly divide up work among all workers

– Worker 1 gets X pieces of work, Worker 2 gets X pieces of work…

– … seems fair …

• Ideally: If work is divided up a priori

– each worker would get exactly the same amount of work

– every worker would finish at exactly the same time

• Realistically:

– Each worker takes a different amount of time

• Scheduled by operating system differently

• Other applications running simultaneously interfere with

workers’ consistency

• Hyper-threading causes added scheduling irregularities

12 May 2013 C++ Now! 2013 7

Definition: Slowest Worker Problem

• Under a priori division, work crew becomes throttled by the

SLOWEST WORKER:

– Each worker has done the “same amount of work”, but realistically,

scheduling has caused the SLOWEST WORKER to limit how fast

the work crew can finish

– THIS IS THE SLOWEST WORKER PROBLEM

• Scheduling inconsistencies throttle the work crew

12 May 2013 C++ Now! 2013 8

Definitions: Bag

• A bag is a fundamental container holding future work for multiple

threads BAG:

– When a worker wants

 work, it gets a single

 piece of work from bag

12 May 2013 C++ Now! 2013 9

Definitions: Work Crew

• A work-crew is a group of related threads pulling work from the bag

until the bag is empty: BAG:

12 May 2013 C++ Now! 2013 10

Work Crew
(aka, map-reduce model)

(aka, OpenMP model)

Definition: Thread-Safe

 and Thread-Neutral

• Thread-Safe Bag

– The state of the bag is never inconsistent amidst multiple threads

• i.e., each piece of work only served exactly once

• (no accidental serves of same data or failing to serve)

– BAG IS CORRECT

• Thread-Neutral Bag

– Multiple threads do not impede each other’s progress as they

reach into the bag to grab work

• Lack of “collateral damage” from other threads

– BAG IS FAST

12 May 2013 C++ Now! 2013 11

Bag Allows Dynamic

Distribution of Work

• The bag allows threads to pull dynamically a piece of work whenever

they need it (as opposed to a priori division of work)

– Avoids SLOWEST WORKER problem

• A poorly scheduled worker (“Fred”) won’t completely throttle a

work-crew

– “Come on!!! When is Fred going to finish???”

• Instead, the X work of Fred will dynamically be redistributed

among all threads

– All threads will finish at “approximately” the same time

• Caveat: still have to divide up work into small enough quanta that

work can be distributed

• Poorly divided work can still suffer from similar problems … but

that’s the application’s fault, not the scheduler

– There is a sweet spot for work size

• Our purpose: avoid slowdowns from scheduling inconsistencies

12 May 2013 C++ Now! 2013 12

Bag: Abstract Idea

• Fundamental Operation:

– get: returns a single piece of work for worker thread

• Interface?

– One Way: Microsoft ConcurrentBag<T>

• Huge interface for gets, puts, complex interface

– A Simpler Way:

• A key simplification is that a bag should only return integers in

range 0..n-1

• Then “real work” can be kept in a well-understood container like

STL vector, where the bag gives “indexes” into the vector.

• Leverage STL vector<T>

– Everyone understands vector!

– Bag is conceptually simple

• Gives you simple mechanism to build work (but you can

implement any policy you want for filling vector of work)
12 May 2013 C++ Now! 2013 13

Bag of Ints

class BAG_OF_INTS {

 // Return false if the bag is empty.

 // Otherwise return true and return

 // an integer from the bag

 bool get (uint32_t& result);

};

12 May 2013 C++ Now! 2013 14

Bag of Ints Usage

vector<string> work{“w1”,“w2”,“w3”};

BAG_OF_INTS bag(0, work.length());

 // Bag of {0,1,2}

// main loop: get work from bag

uint32_t index;

while (bag.get(index)) {

 string& single_work = work[index];

 do_work(single_work);

}

12 May 2013 C++ Now! 2013 15

The Drawer: Bag Implementation #1

• The fundamental thread-safe bag is the iDrawer

– Only to emphasize integer nature

– We are only dealing with integers; why not use fundamentally fast

atomic int operations?

• Why atomic? (So bag is thread-safe)

• Implemented using a C++11 Atomic primitive

– Using a C++11 std::atomic<uint32_t>

– Usually implemented using a CPU’s atomic instructions

• On Intel, many C++11 ops correspond to a single instruction

• Get:

– Fundamentally, increment integer

• That’s it! (Of course, a bit more to it …)

12 May 2013 C++ Now! 2013 16

iDrawer Implementation

struct iDrawer {

 iDrawer(uint32_t start, uint32_t length) :

 current_(start),upperBound_(start+length) {}

 bool get(uint32_t& index) {

 if (current_>= upperBound_) return false;

 uint32_t t=current_.fetch_add(1);

 if (t >= upperBound_) return false;

 // double-checked lock pattern

 index = t; return true;

 }

 protected:

 std::atomic<uint32_t> current_;

 uint32_t upperBound_;

};

12 May 2013 C++ Now! 2013 17

Correctness

• Think of

 uint32_t temp = current_.fetch_add(1);

– As

 uint32_t temp = current_++;

• Except, in the face of multiple threads, each thread will increment
current_ exactly once, and the state will never be inconsistent:

– It will increment 0,1,2,… in order without losses or skips

12 May 2013 C++ Now! 2013 18

Double-Checked Lock

• Like Singleton “Double-Checked Lock” pattern (Modern C++ Design,

6.9.1), we have to check against the upper bound twice.

– Metaphor: Iike buying tickets at a full theater with too many tickets

• First check keeps threads out once upper bound is past.

– “SOLD OUT”

• Second check is to make sure there are enough seats

– Made it into the theater, but too many tickets may have been

sold. We have to see if there is a seat for us.

• The second check is for threads that “sneak in” just before the theater

sells out of tickets (just before the upper bound is surpassed)

• Note that this technique ONLY works if the number of threads that
sneak can’t cause current_ to wrap back around to 0

– In reality, not a problem: can always throttle back and reset

occasionally (and 4 billion is pretty big…)

12 May 2013 C++ Now! 2013 19

Pre C++11 Compilers

• Not everyone is at C++11 yet.

• In a GNU world

– GNU C++ supports the same kind of atomic primitives. Only need

two changes to use GNU atomic primitives

// In get: atomic fetch and add for GNU

uint32_t temp=__sync_fetch_and_add(current_, 1);

// Declaration of current

volatile uint32_t current_;

– Can still support bag idea in earlier C++ compilers using GNU

intrinsics.

12 May 2013 C++ Now! 2013 20

Thread-Neutrality

• Is the bag Thread-Safe?

– Yes: correctness was argued earlier

• Is the bag Thread-Neutral?

– Thread-Neutral:

• Lack of collateral damage from other threads

• Other threads don’t affect the run-time of the current thread

• Issues affecting Thread-Neutrality

– How many worker threads are possibly getting in the way?

• More threads == more likely that current_ is hit hard

– What kind of work is done by each thread?

• Negligible: Each worker gets data out of bag as fast as possible

• Some: Each worker gets data quickly, but some work is done

before the worker calls get again

• Ample: Each worker calls get infrequently

 12 May 2013 C++ Now! 2013 21

Synthetic Performance Tests

• Plot the number of threads vs. time: we plot two things

– Time of the test

• On a 6-CPU Intel Xeon machine (looks like 12 CPUS with

hyper-threading)

– Perfect Speedup

• In a perfect world, n threads would be n TIMES faster than a

single thread

• Smaller is better (i.e., measuring runtimes)

• Work Types:

– Negligible: exactly 1 add per get operation

– Some: 100 adds before a get

– Ample: 1e6 adds before a get

• Synthetic Performance Tests:

– no real work was done in the running of these tests

12 May 2013 C++ Now! 2013 22

Drawer Timings:

Negligible Work Per Get

12 May 2013 C++ Now! 2013 23

Drawer Timings:

 Some Work per Get

12 May 2013 C++ Now! 2013 24

Drawer Timings:

Ample Work Per Get

12 May 2013 C++ Now! 2013 25

Drawer Conclusions

• For ample, and some work types

– Drawer is essentially “Thread-Neutral”

– Reaches “perfect speedup” line

• Modulo it doesn’t scale well after 6 processors … we’ll discuss

this more in Hyper-Threading section

• For negligible work type:

– Drawer is NOT “Thread-Neutral”!

– Other workers slow down

• Makes sense, all worker threads are incrementing current_ as

fast as they possibly can; at some point they get into each

other’s way

• For most work types, a Drawer is probably “good enough”

12 May 2013 C++ Now! 2013 26

Gnomes

12 May 2013 C++ Now! 2013 27

Handling the Negligible Work Type:

The Cupboard

• How can we keep workers (“gnomes”) out of each other’s way?

– Solution: Give each gnome his own drawer

• In C++ speak:

– A cupboard is a Vector of Drawers

– Work is divided evenly between drawers

• Drawer 0 gets integers 0..x

• Drawer 1 gets integers x+1..2x

– Incidentally, this is why Drawer constructor specifies start, len

– NOTE: we are building the Cupboard atop an atomic primitive that

already works:

• we are not adding any more “synchronization” code!

• Defer to drawer when possible

• Starts like a priori, but then rifle through others’ drawers

12 May 2013 C++ Now! 2013 28

Cupboard: get Usage Changes

Slightly

vector<string> work = { … };

// Each thread gets its own number: 0..workers-1

// Main loop for each thread

void thread_main_loop (int thread_number) {

 int starting_drawer = thread_number;

 int ending_drawer = -1; // returned by get

 int work_index = -1; // returned by get

 while (bag.get(starting_drawer,

 work_index, ending_drawer)) {

 string& single_work = work[work_index];

 doSomething(single_work);

 starting_drawer = ending_drawer;

 }

}

12 May 2013 C++ Now! 2013 29

Cupboard get

• Once each worker is looking in a particular drawer, they tend to stay

in that drawer

– Multiple workers do NOT interfere with each other, as they each

have their own drawer (most of the time)

12 May 2013 C++ Now! 2013 30

Cupboard Get Implementation

// Get from SOME drawer: start looking from the

// given drawer. If something found, return true

// with the index found as well as ending drawer.

bool get(int starting_drawer,

 uint32_t& index, int& ending_drawer) {

 int drawer = starting_drawer;

 for (int ii=0; ii<drawers_.length(); ii++) {

 if (drawers_[drawer].get(index)) {

 // FOUND an item! Done!

 ending_drawer=drawer; return true;

 }

 drawer = (drawer+1) % drawers_.length();

 }

 return false;

}

12 May 2013 C++ Now! 2013 31

Cupboard get: No Extra

Synchronization Needed!

• Cupboard relies on Drawer being correct (Thread-Safe)

• Once a drawer is empty, it’s empty

– It can’t get “refilled” except by creating a new cupboard

• Seems like a limitation but …

• Model of OpenMP:

– A program is a series of map-reduce points

» Work created

» Work ends

» Move to next worker crew

12 May 2013 C++ Now! 2013 32

Cupboard Timings: Negligible

12 May 2013 C++ Now! 2013 33

Cupboard Timings: Some

12 May 2013 C++ Now! 2013 34

Cupboard Timings: Ample

12 May 2013 C++ Now! 2013 35

Cupboard Performance: Why??

• The entire purpose of the cupboard is to make “negligible” work type

scenario Thread-Neutral

– Obviously, it didn’t work …

• Why?

– Look to High-Speed Producer/Consumer work from IEEE

International Parallel and Distributed Processing Symposium

(IPDPS) 2006:

• Saunders, Jeffery, Jones

– Same kind of problem: multiple threads accessing resources as

fast as possible

• Problem:

– False Sharing

12 May 2013 C++ Now! 2013 36

Problem: False Sharing

• False Sharing:

– When two threads accidentally access the same cache line

• Causes cache-misses and forces caches to be refilled

– EXPENSIVE operation!

– Cache lines are typically 32-64 bytes: if two threads access data

from same cache line … cache data “ping pongs” between caches

… ……………..Inside the cupboard ………………….

 vector<iDrawer> cupboard_data; // cupboard impl.

Drawers are stored contiguously in memory, inside the vector:

 current_ = 4 bytes

 upperBound _= 4 bytes (drawer 0)

 current = 4 bytes

 upperBound_ = 4 bytes (drawer 1)

• Drawer 0 and 1 in the same cache line!!!
12 May 2013 C++ Now! 2013 37

Gnomes With No Elbow Room

12 May 2013 C++ Now! 2013 38

False Sharing Solution

• Add Padding

– Fill out each drawer so it is the size of a cache line

12 May 2013 C++ Now! 2013 39

iDrawer Implementation

(False Sharing Fixed)

struct iDrawer {

 …

 protected:

 std::atomic<uint32_t> current_;

 // Eliminate false sharing between current and

 // upper bound: processors can now cache

 // upperBound at construction

 char padding_between_frequent[64];

 uint32_t upperBound_;

 // Eliminate false sharing between drawers

 char padding_between_drawers[64];

};

12 May 2013 C++ Now! 2013 40

Cupboard Timings (False Sharing

Fixed): Negligible Work Type

12 May 2013 C++ Now! 2013 41

Cupboard Timings (False Sharing

Fixed): Some Work Type

12 May 2013 C++ Now! 2013 42

Cupboard Timings (False Sharing

Fixed): Ample Work Type

12 May 2013 C++ Now! 2013 43

Hyper-Threading (1)

• AKA Simultaneous Multithreading

• Ideally, Hyper-Threading (simplified) allows you to reuse functional

units in the CPU

– When doing “floating point” work, integer ALU is not being used

– When doing “Integer” work, floating point ALU is not being used

• Hyper-Threading is a hardware technique (supported by the

processor) for allowing two threads to proceed simultaneously

– 1 hyper-thread does floating point work

– 1 hyper-thread does integer work

» Net gain! 2x!

• That’s why a 6-CPU machine looks like a 12-CPU machine

– Operating System exposes hyper-threads as “real threads”

12 May 2013 C++ Now! 2013 44

Hyper-Threading (2)

• Unfortunately, Hyper-Threading can be problematic

– For much scientific computing, all work is floating point

• Integer unit sits idle

– CAF: all floating point work once we throw a bunch of threads at it

• WORST Case for Scientific Computation:

– Scheduler schedules 2 threads per CPU

• expecting one thread to use the floating point unit, and the other

thread to use the integer unit

• BUT ALL Floating Point work!

– So, one thread sits idle waiting for FP unit to become

available

– Naïve scheduler may cut performance by 2x

 12 May 2013 C++ Now! 2013 45

Hyper-Threading (3)

• In real code, the scheduler decides where to run threads, and

sometimes things work out, sometimes they don’t

– Scheduler irregularities

• Whole purpose of Bag is to help mitigate scheduler irregularities

• If we consider the 6 CPU machine with Hyper-Threading to be a 6-

FPU machine ONLY

– For the purpose of our Scientific Computing, only HAS 6 CPUs

• We do achieve perfect speedup

• Another sanity check on Hyper-Threading:

– Evaluating the Impact of Simultaneous Multithreading on Network

Servers using Real Hardware from ACM SIGMETRICS, 2005

• Y. Ruan, V.S. Pai, E. Nahum, J.M. Tracey
12 May 2013 C++ Now! 2013 46

Back to the CAF

• The original purpose of the bag was to make CAF processing “faster”

– Mitigate scheduler irregularities

– Dole out work dynamically so “over-zealous” worker threads can

pick up the slack of “slacker” worker threads

• In real CAF code

– “negligible” doesn’t make too much sense (FFT per CAF line)

– “some” work types were not historically a problem

– “ample” work type was the only work type that seemed to suffer

from irregular completion times

• longer running work is more likely to suffer the effects of poor

scheduling due to hyper-threading, other applications, etc.

GOAL: (1) Speed up CAF in “ample” work case

 (2) and NOT hinder other work types

12 May 2013 C++ Now! 2013 47

CAF Timing: Some

12 May 2013 C++ Now! 2013 48

CAF Timings: Ample Time

12 May 2013 C++ Now! 2013 49

CAF Timings: Ample (extra) Work

12 May 2013 C++ Now! 2013 50

CAF Timings Results

• Bag did not hinder performance

– “some” work type

• Bag helped performance

– “ample”

• maybe 3%-5% faster

– bigger “ample” work types

• 15-20% faster

• All threads “finished at the same time” when computing the CAF

– Achieves part of the original purpose, use whole machine

12 May 2013 C++ Now! 2013 51

No perfect speedup for CAFs?

• CAFs inherently break cache

– Very large FFTs don’t sit in cache

– Stride across memory, taxing memory subsystem to its limits

• Direct correlation to front-side bus speedup and CAF speedup

• Perfect speedup is hard to achieve for CAFs

– Memory system being hit hard by all threads

• “collateral damage” of other threads is clogging the memory

subsystem of the machine

12 May 2013 C++ Now! 2013 52

Conclusion

• There are different types of bags for different applications

– Drawer: useful in most situations

• Simple and fast

• Easy interface

• Built on single C++11 atomic primitive (also can use GNU...)

– Cupboard : better for high-speed extractions

• Built on Drawer

• Slightly more complex interface

• Real World Numbers (CAF):

– The bag is at least as good as a priori division of work (some)

– The bag is better than a priori division of work (ample work type)

• The bag helps mitigate scheduling irregularities (Hyper-Threads, etc).

12 May 2013 C++ Now! 2013 53

