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Congratulations...

...you have

a scalability problem!
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Somewhat

= Performance not important
= CPU not the bottleneck
= Too expensive

= Need « some » performance

Need to be as fast as possible
Strict latency requirements
It will make my mother proud



Before we continue: a few words about us

SOFTWARE R&D

Independent software vendor
bureau ‘ |[|, Ir established in 2008

Bootstrapped through consulting

%

QuUasardb Designed from the ground up
a post-modern database: quasardb
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Scalability: our story

Yahoo benchmark - Read mostly 10 kiB entries
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Scalability: more cowbell

500 simultaneous clients reads
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Three steps toward extreme scalability
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= « Limitless »
= Natural
= Scalable algorithms

= Space-time tradeoffs

’ = Spot hidden costs
strategles = Adaptable

Memory

Tactical = Benchmark everything
. = Scalability first, local optimizations
solutions —



Is C++ (11) relevant?
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Design
for
scalability

“Talents imitate, geniuses steal.”

—Oscar Wilde

11



Manufacturing a piston
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Manufacturing many pistons
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Change the gravitational constant of the universe




Manufacturing billions of pistons
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A scalable design

= Design your software as independent modules that communicate
through messages

= No shared state

= Every component should be lightweight and fast
= Never block! The spice must flow.

Module A { Module B > Module C
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Mathematically speaking

P(x) = (heogef)(x)




C++ speaking

// your program is a series of functors
struct f { int operator()(int x); };
struct g { int operator()(int x); };
struct h { int operator()(int x); };

// once you have “this”
// scaling is easy!
// you can use our composition library
// at https://github.com/bureauld4/open_1lib
int main(int argc, char ** argv)
{
return h(g(f(argv[0])));
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Asynchronous 1/O

Pending result
I/O intensive I/O result Resumed
I/O completion
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Scalability: you need more

Module A |

|

=
|

B Merger H Module C

‘
——

‘ Module B2
I 2
‘ Module B3

Duplicate CPU intensive components
to increase scalability
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Scalability: you need more

Concurrent
Module A { Module B ’»

Or make them
highly concurrent
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% Module C
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Outstanding issues

P~
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Distribution and load-balancing
Tasks scheduling

Tasks granularity

Shared memory design
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Designing for scalability: take away
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“‘Scalability isn’t a feature you add to a program,
you design a program to be scalable.”
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strategies

“Intelligence is the wife, imagination is the
mistress, memory is the servant.”

—Victor Hugo
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Read scalability

Shared read throughput per threads count
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Write scalability

Shared write throughput per threads count
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Memory management: it takes out all the fun

= '
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= Lifetime management is a fundamental
computer science problem and a core
C++ Issue

= Adding threads: obviously
not a simplification

ol

e,
27




Value based memory management
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= C++ 11ish
= No leaks
= No locks

= Speed
= Memory usage
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The SR-71 solution
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Reference counted objects

Pointer intensive manipulations—8 threads

Runtime in ms (lower is better)
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Memory recycling and pools

// initialization
void * buf = scalable alloc(sizeof(T));
T * p = new(buf)T();

// recycling
p->~T();
p = new(p)T();

// final destruction

p->~T();
scalable free(p);
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Hazard pointers
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Thread #1 Thread #2 Thread #3

IS OBJECT POINTER IN LIST ?

ADD OBJECT POINTER TO LIST

v

(1
/

v

READ

Shared object

DELETE

Hazard Pointers list
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Read-copy update

TIME

\ 4

Private

copy

N\
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CPU #2

|

Private

copy

CPU #3 CPU #4

Fetch current value

A

Modify—create new version

Fetch current value

Pointer to current value ¥

A

Value
version 1

Value
version 2
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Garbage collectors

Don’t outsource strategic components

= That being said...
Many exist for C++
Very useful for prototyping
“Generally” greater memory usage
Corner cases may be catastrophic
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Memory management: take away
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“You need to have
several different
memory management
Strategies.”
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Tactical
solutions

“There are not more than five musical notes,
yet the combinations of these five give rise to
more melodies than can ever be heard.”

—SunTzu

36



C++ 11 brings us

std::thread()
Locks
std::async()

Futures and promises
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And much more!

std::call once

thread_local

Perfect forwarding

Lambdas
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Lockfree structures

// most famous lockfree structure: the lockfree queue
boost: :lockfree::queue<int> q;

// never blocks, returns false when g is full
q.push(3);

// never blocks, returns false when g is empty
int value = -1;

q.pop(Vv);

// also available: stacks, skip lists, blocking queues
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Lockfree queue example

static tbb::concurrent _bounded _queue<message> _ queue;

void foreground(void) {

74 L]

__queue.push(m);

/][]

void background(void) {
message m;
while(true) {
__queue.pop(m); if (stop_requested(m)) break;
/] [..]
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Thread local storage — la surprise du chef

// now in the C++ 11 standard!
thread local int _ tls int = -1;

int f(void)

{
// working directly on the tls variable can be slow
int local copy =  tls int;
// do stuff on local copy...
__tls int = local copy;
}

// TBB underestimated jewels:
// tbb::combinable and tbb::enumerable thread specific

T
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Thread local storage example

// waitfree process-wide unique value

// don’t
std::atomic<int> _ value = 0;
int unique(void) { return _ value++; }

// do

thread local int _ value = 0;

int unique(void)

{
return (__value++ << 16) + (gettid() & oxffff);
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Atomics!

// now in the C++ 11 standard!
std::atomic<int> v = 0;

int snapshot = v++;

if (v == 42) // will be fenced if needed

// relax memory ordering for more performance
int snapshot = v.fetch _add(1, std::memory order relaxed);
// but be careful..

if (v.load(std::memory order relaxed) == 42)

// may not be lockfree!
v.is lock free()

T
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Lightweight locks

// use them like vanilla locks

{
tbb::spin_lock::scoped_lock lock(_mutex);

// lock held

// you also have reader-writer lightweight locks

{

tbb::spin_rw_mutex::scoped lock lock( mutex, false);
// read-only lock held
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And so much more!
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Transactional memory
Asynchronous operations

OS specific tools (kpoll,
overlapped 1/0O...)

Many third party libraries
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Tactical solutions: take away

"Be proficient in many arts but
thoughtful with their usage.”
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Tools of the trade

The Boost libraries
http://www.boost.orqg/

FastFlow
http://calvados.di.unipi.it/dokuwiki/doku.php?id=ffnamespace:about

Valgrind
http://valgrind.org/

Intel Threading Building blocks
http://threadingbuildingblocks.orqg/

Intel Amplifier XE

http://software.intel.com/en-us/intel-vtune-amplifier-xe

Bureau 14 Open Source Libraries
https://github.com/bureaul4/open_lib

T
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Suggested reading
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Communicating Sequential Processes
C.A.R. Hoare

C++ Concurrency in Action
Anthony Williams

The Art of Concurrency
Clay Breshears

Synchronization Algorithms and Concurrent Programming
Gadi Taubenfeld

Intel Threading Building Blocks documentation
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Questions and answers

http://www.quasardb.net/
http://mww.bureaul4.fr/
@edouardal4
edouard@bureaul4.fr




