bureauE'r

SOFTWARE R&D

Scaling with C++ 11
Edouard Alligand, Founder

2013: Expectations

bureau 14,

RRRRRRRRRRR

2013: Reality

bureau E(

SOFTWARE R&D

Congratulations...

...you have

a scalability problem!

bureau

SOFTWARE R&D

Somewhat

= Performance not important
= CPU not the bottleneck
= Too expensive

= Need « some » performance

Need to be as fast as possible
Strict latency requirements
It will make my mother proud

Before we continue: a few words about us

SOFTWARE R&D

Independent software vendor
bureau ‘ |[|, Ir established in 2008

Bootstrapped through consulting

%

QuUasardb Designed from the ground up
a post-modern database: quasardb

bureau 14,

RRRRRRRRRRR

Scalability: our story

Yahoo benchmark - Read mostly 10 kiB entries

45000

40000

35000

30000

25000

20000

15000

Operations per second

10000

5000

0

bureauis

/

1 5 10 20
Number of threads

——=cuasardb ===3 famous open source competitor

Scalability: more cowbell

500 simultaneous clients reads

2500

2000

1500

1000

Bandwith per client in kiB/s

500

0 -~ \

4096 102400 20971520
Entry size in bytes

= uasardb =g famous open source competitor =3 famous commercial competitor

bureau|is

Three steps toward extreme scalability

bureau

RRRRRRRRRRR

= « Limitless »
= Natural
= Scalable algorithms

= Space-time tradeoffs

’ = Spot hidden costs
strategles = Adaptable

Memory

Tactical = Benchmark everything
. = Scalability first, local optimizations
solutions —

Is C++ (11) relevant?

bureau|is

V)

10

bureau

RRRRRRRRRRR

Design
for
scalability

“Talents imitate, geniuses steal.”

—Oscar Wilde

11

Manufacturing a piston

12

Manufacturing many pistons

(on
=
8
=
5]

RRRRRRRRRRR

13

Change the gravitational constant of the universe

Manufacturing billions of pistons

s Head 7 Conveyor Y 7 Conveyor Y
_>
T Rode y Conveyor ¥ y Conveyor
\ Parts)——> Assemble | Belt)

O - __
b

bureau 14,

RRRRRRRRRRR

15

A scalable design

= Design your software as independent modules that communicate
through messages

= No shared state

= Every component should be lightweight and fast
= Never block! The spice must flow.

Module A { Module B > Module C

bureau 14,

RRRRRRRRRRR

16

Mathematically speaking

P(x) = (heogef)(x)

C++ speaking

// your program is a series of functors
struct f { int operator()(int x); };
struct g { int operator()(int x); };
struct h { int operator()(int x); };

// once you have “this”
// scaling is easy!
// you can use our composition library
// at https://github.com/bureauld4/open_1lib
int main(int argc, char ** argv)
{
return h(g(f(argv[0])));

bureau 14,

RRRRRRRRRRR

18

Asynchronous 1/O

Pending result
I/O intensive I/O result Resumed
I/O completion

bureau 14,

RRRRRRRRRRR

19

Scalability: you need more

Module A |

|

=
|

B Merger H Module C

‘
——

‘ Module B2
I 2
‘ Module B3

Duplicate CPU intensive components
to increase scalability

bureau 14, 20

RRRRRRRRRRR

Scalability: you need more

Concurrent
Module A { Module B ’»

Or make them
highly concurrent

bureau 14,

RRRRRRRRRRR

% Module C

21

Outstanding issues

P~

bureau|is

Distribution and load-balancing
Tasks scheduling

Tasks granularity

Shared memory design

22

Designing for scalability: take away

[FTH L AR
TR
i ma
L
TR
'liriili i

EnEEREEN

“‘Scalability isn’t a feature you add to a program,
you design a program to be scalable.”

bureau 14,

RRRRRRRRRRR

23

bureau

RRRRRRRRRRR

strategies

“Intelligence is the wife, imagination is the
mistress, memory is the servant.”

—Victor Hugo

24

Read scalability

Shared read throughput per threads count

30 -
25 -
20 -
15 -

10 -

bureau 14,

RRRRRRRRRRR

Write scalability

Shared write throughput per threads count

1,2 -

1’0 | \
0,8 -

0,6 -

0,4 -

0,2 -

0,0

bureau

RRRRRRRRRRR

13

17

21

25

26

Memory management: it takes out all the fun

= '

bureau

RRRRRRRRRRR

= Lifetime management is a fundamental
computer science problem and a core
C++ Issue

= Adding threads: obviously
not a simplification

ol

e,
27

Value based memory management

bureau

RRRRRRRRRRR

= C++ 11ish
= No leaks
= No locks

= Speed
= Memory usage

28

The SR-71 solution

bureau

SOFTWARE R&D

N

29

Reference counted objects

Pointer intensive manipulations—8 threads

Runtime in ms (lower is better)

bureau

RRRRRRRRRRR

350
300
250
200
150
100

50

Q Q
S S
& &

===gtd::shared_ptr

S ® & &
e & &
SO L MR

Number of objects

===poost::shared_ptr

O O O
S & S
S & .S
MR PN

w———raw ptr

Q
N

S

30

Memory recycling and pools

// initialization
void * buf = scalable alloc(sizeof(T));
T * p = new(buf)T();

// recycling
p->~T();
p = new(p)T();

// final destruction

p->~T();
scalable free(p);

bureau 14,

RRRRRRRRRRR

31

Hazard pointers

bureau

RRRRRRRRRRR

Thread #1 Thread #2 Thread #3

IS OBJECT POINTER IN LIST ?

ADD OBJECT POINTER TO LIST

v

(1
/

v

READ

Shared object

DELETE

Hazard Pointers list

32

Read-copy update

TIME

\ 4

Private

copy

N\

bureau

SOFTWARE R&D

CPU #2

|

Private

copy

CPU #3 CPU #4

Fetch current value

A

Modify—create new version

Fetch current value

Pointer to current value ¥

A

Value
version 1

Value
version 2

33

Garbage collectors

Don’t outsource strategic components

= That being said...
Many exist for C++
Very useful for prototyping
“Generally” greater memory usage
Corner cases may be catastrophic

bureau|is

Memory management: take away

= ‘—ﬁ» —
iy
’
-
o & PR .
L S 1
a ™] '
3 Vs
’
@

bureau|is

“You need to have
several different
memory management
Strategies.”

bureau

RRRRRRRRRRR

Tactical
solutions

“There are not more than five musical notes,
yet the combinations of these five give rise to
more melodies than can ever be heard.”

—SunTzu

36

C++ 11 brings us

std::thread()
Locks
std::async()

Futures and promises

bureau 14,

RRRRRRRRRRR

And much more!

std::call once

thread_local

Perfect forwarding

Lambdas

37

Lockfree structures

// most famous lockfree structure: the lockfree queue
boost: :lockfree::queue<int> q;

// never blocks, returns false when g is full
q.push(3);

// never blocks, returns false when g is empty
int value = -1;

q.pop(Vv);

// also available: stacks, skip lists, blocking queues

bureau 14, 38

RRRRRRRRRRR

Lockfree queue example

static tbb::concurrent _bounded _queue<message> _ queue;

void foreground(void) {

74 L]

__queue.push(m);

/][]

void background(void) {
message m;
while(true) {
__queue.pop(m); if (stop_requested(m)) break;
/] [..]

bureau 14,

RRRRRRRRRRR

39

Thread local storage — la surprise du chef

// now in the C++ 11 standard!
thread local int _ tls int = -1;

int f(void)

{
// working directly on the tls variable can be slow
int local copy = tls int;
// do stuff on local copy...
__tls int = local copy;
}

// TBB underestimated jewels:
// tbb::combinable and tbb::enumerable thread specific

T

bureau 14,

RRRRRRRRRRR

40

Thread local storage example

// waitfree process-wide unique value

// don’t
std::atomic<int> _ value = 0;
int unique(void) { return _ value++; }

// do

thread local int _ value = 0;

int unique(void)

{
return (__value++ << 16) + (gettid() & oxffff);

bureau 14,

RRRRRRRRRRR

41

Atomics!

// now in the C++ 11 standard!
std::atomic<int> v = 0;

int snapshot = v++;

if (v == 42) // will be fenced if needed

// relax memory ordering for more performance
int snapshot = v.fetch _add(1, std::memory order relaxed);
// but be careful..

if (v.load(std::memory order relaxed) == 42)

// may not be lockfree!
v.is lock free()

T

bureau 14,

RRRRRRRRRRR

42

Lightweight locks

// use them like vanilla locks

{
tbb::spin_lock::scoped_lock lock(_mutex);

// lock held

// you also have reader-writer lightweight locks

{

tbb::spin_rw_mutex::scoped lock lock(mutex, false);
// read-only lock held

bureau 14,

RRRRRRRRRRR

43

And so much more!

bureau 14,

RRRRRRRRRRR

Transactional memory
Asynchronous operations

OS specific tools (kpoll,
overlapped 1/0O...)

Many third party libraries

44

Tactical solutions: take away

"Be proficient in many arts but
thoughtful with their usage.”

bureau 14,

RRRRRRRRRRR

45

Tools of the trade

The Boost libraries
http://www.boost.orqg/

FastFlow
http://calvados.di.unipi.it/dokuwiki/doku.php?id=ffnamespace:about

Valgrind
http://valgrind.org/

Intel Threading Building blocks
http://threadingbuildingblocks.orqg/

Intel Amplifier XE

http://software.intel.com/en-us/intel-vtune-amplifier-xe

Bureau 14 Open Source Libraries
https://github.com/bureaul4/open_lib

T

bureau|is

46

http://www.boost.org/
http://calvados.di.unipi.it/dokuwiki/doku.php?id=ffnamespace:about
http://valgrind.org/
http://threadingbuildingblocks.org/
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
https://github.com/bureau14/open_lib

Suggested reading

bureau

Communicating Sequential Processes
C.A.R. Hoare

C++ Concurrency in Action
Anthony Williams

The Art of Concurrency
Clay Breshears

Synchronization Algorithms and Concurrent Programming
Gadi Taubenfeld

Intel Threading Building Blocks documentation

T

iy a

Questions and answers

http://www.quasardb.net/
http://mww.bureaul4.fr/
@edouardal4
edouard@bureaul4.fr

