
Parallel Programming with Charm++

Phil Miller, Ramprasad Venkataraman, Laxmikant Kalé

Parallel Programming Lab
University of Illinois
charmplusplus.org

May 14, 2012

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 1 / 86

charmplusplus.org

Audience Poll: Challenges of Parallel Programming

How many of you have written parallel programs that suffer from:

Bad scaling?

Cores

Performance

Bad scaling?
Races, deadlocks, etc: gremlins of shared state?

Limited to shared memory? GPU? No sharing allowed?
Coded to match core count?
Independent tasks serialized or badly split across resources?
Application logic interwoven with parallelism optimizations?
Wasted energy?
Square-peg logic in round-hole framework abstractions?

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 2 / 86

Audience Poll: Challenges of Parallel Programming

How many of you have written parallel programs that suffer from:

Sad scaling?

Cores

Performance

Bad scaling?

Races, deadlocks, etc: gremlins of shared state?

Limited to shared memory? GPU? No sharing allowed?
Coded to match core count?
Independent tasks serialized or badly split across resources?
Application logic interwoven with parallelism optimizations?
Wasted energy?
Square-peg logic in round-hole framework abstractions?

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 2 / 86

Audience Poll: Challenges of Parallel Programming

How many of you have written parallel programs that suffer from:

Bad scaling?

Races, deadlocks, etc: gremlins of shared state?

Limited to shared memory? GPU? No sharing allowed?

Coded to match core count?

Independent tasks serialized or badly split across resources?

Application logic interwoven with parallelism optimizations?

Wasted energy?

Square-peg logic in round-hole framework abstractions?

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 2 / 86

Audience Poll: Challenges of Parallel Programming

How many of you have written parallel programs that suffer from:

Bad scaling?

Races, deadlocks, etc: gremlins of shared state?

Limited to shared memory? GPU? No sharing allowed?

Coded to match core count?

Independent tasks serialized or badly split across resources?

Application logic interwoven with parallelism optimizations?

Wasted energy?

Square-peg logic in round-hole framework abstractions?

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 2 / 86

Audience Poll: Challenges of Parallel Programming

How many of you have written parallel programs that suffer from:

Bad scaling?

Races, deadlocks, etc: gremlins of shared state?

Limited to shared memory? GPU? No sharing allowed?

Coded to match core count?

Independent tasks serialized or badly split across resources?

Application logic interwoven with parallelism optimizations?

Wasted energy?

Square-peg logic in round-hole framework abstractions?

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 2 / 86

Audience Poll: Challenges of Parallel Programming

How many of you have written parallel programs that suffer from:

Bad scaling?
Races, deadlocks, etc: gremlins of shared state?
Limited to shared memory? GPU? No sharing allowed?
Coded to match core count?
Independent tasks serialized or badly split across resources?

time

parallel
module

A

parallel
module

B

Rank 1

Rank 2

Rank 3

Rank 4

time

parallel
module

A

parallel
module

B

Rank 1

Rank 2

Rank 3

Rank 4

Independent tasks serialized or badly split across resources?
Application logic interwoven with parallelism optimizations?
Wasted energy?
Square-peg logic in round-hole framework abstractions?

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 2 / 86

Audience Poll: Challenges of Parallel Programming

How many of you have written parallel programs that suffer from:

Bad scaling?

Races, deadlocks, etc: gremlins of shared state?

Limited to shared memory? GPU? No sharing allowed?

Coded to match core count?

Independent tasks serialized or badly split across resources?

Application logic interwoven with parallelism optimizations?

Wasted energy?

Square-peg logic in round-hole framework abstractions?

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 2 / 86

Audience Poll: Challenges of Parallel Programming

How many of you have written parallel programs that suffer from:

Bad scaling?

Races, deadlocks, etc: gremlins of shared state?

Limited to shared memory? GPU? No sharing allowed?

Coded to match core count?

Independent tasks serialized or badly split across resources?

Application logic interwoven with parallelism optimizations?

Wasted energy?

Square-peg logic in round-hole framework abstractions?

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 2 / 86

Audience Poll: Challenges of Parallel Programming

How many of you have written parallel programs that suffer from:

Bad scaling?

Races, deadlocks, etc: gremlins of shared state?

Limited to shared memory? GPU? No sharing allowed?

Coded to match core count?

Independent tasks serialized or badly split across resources?

Application logic interwoven with parallelism optimizations?

Wasted energy?

Square-peg logic in round-hole framework abstractions?

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 2 / 86

Charm++

Parallel ...

... programming model

... programming framework

... runtime system

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 3 / 86

Charm++

Parallel ...

... programming model

... programming framework

... runtime system

General-purpose

Macro Dataflow

Unified data and task parallelism

Unified handling of shared and distributed memory

Parallel algorithm independent of available processors

Seamless parallel composability of modular components

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 3 / 86

Charm++

Parallel ...

... programming model

... programming framework

... runtime system

Code generation, Base classes, utility functions and other API

Multi-paradigm parallel code (procedural, object oriented, generic)

Rich ecosystem of tools

Separation of roles and concerns

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 4 / 86

Charm++

Parallel ...

... programming model

... programming framework

... runtime system

Managed parallel execution

Measurement-based performance introspection

Adaptive response for better performance
I Fault tolerance
I Dynamic load balancing
I Energy management

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 5 / 86

Charm++: Portability

Environments

Embedded ARM: CARMA dev
boards, cell phones

Commodity x86: servers, desktops,
laptops, tablets

Clusters: commodity, with a network

Supercomputers: IBM Blue Gene
and POWER, Cray

Operating Systems

Linux

Mac OS X

Windows

Proprietary Cray & IBM

Compilers

GCC

Clang

Microsoft VC++

IBM XL

Intel

Portland Group (PGI)

Cray

Fujitsu

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 6 / 86

Charm++: Portability

Environments

Embedded ARM: CARMA dev
boards, cell phones

Commodity x86: servers, desktops,
laptops, tablets

Clusters: commodity, with a network

Supercomputers: IBM Blue Gene
and POWER, Cray

Operating Systems

Linux

Mac OS X

Windows

Proprietary Cray & IBM

Compilers

GCC

Clang

Microsoft VC++

IBM XL

Intel

Portland Group (PGI)

Cray

Fujitsu

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 6 / 86

Charm++: Portability

Environments

Embedded ARM: CARMA dev
boards, cell phones

Commodity x86: servers, desktops,
laptops, tablets

Clusters: commodity, with a network

Supercomputers: IBM Blue Gene
and POWER, Cray

Operating Systems

Linux

Mac OS X

Windows

Proprietary Cray & IBM

Network Interfaces

TCP, UDP

Shared memory

MPI

Infiniband Verbs

IBM BlueGene P,Q (DCMF, PAMI)

Cray Gemini and Aries (uGNI)

Compilers

GCC

Clang

Microsoft VC++

IBM XL

Intel

Portland Group (PGI)

Cray

Fujitsu

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 6 / 86

Charm++: Portability

Environments

Embedded ARM: CARMA dev
boards, cell phones

Commodity x86: servers, desktops,
laptops, tablets

Clusters: commodity, with a network

Supercomputers: IBM Blue Gene
and POWER, Cray

Operating Systems

Linux

Mac OS X

Windows

Proprietary Cray & IBM

Compilers

GCC

Clang

Microsoft VC++

IBM XL

Intel

Portland Group (PGI)

Cray

Fujitsu

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 6 / 86

Charm++: Pedigree

1987: Chare Kernel arose from parallel Prolog work

1992: Initial C++-based Charm++

1994-1996: NAMD developed

1997: Application-facing abstractions reach near-current form

1997: Adaptive MPI (AMPI) built atop Charm++

2000-present: More applications developed, runtime facilities
extended, scaling with new machines

Award-winning
Gordon Bell award in 2002
HPC Challenge award in 2011
Sidney Fernbach award for Kalé in 2012

several best papers

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 7 / 86

Charm++: Pedigree

1987: Chare Kernel arose from parallel Prolog work

1992: Initial C++-based Charm++

1994-1996: NAMD developed

1997: Application-facing abstractions reach near-current form

1997: Adaptive MPI (AMPI) built atop Charm++

2000-present: More applications developed, runtime facilities
extended, scaling with new machines

Award-winning
Gordon Bell award in 2002
HPC Challenge award in 2011
Sidney Fernbach award for Kalé in 2012

several best papers

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 7 / 86

D

C

K

P

M
N

Express parallel algo independent of processors

Use units natural to domain

matrix block

tile of an image

slice of a computation’s work

volume of simulation space

partition of a graph, tree or other data structures

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 8 / 86

Data decomposition: via an object collection

A[0]

A[1]

A[5]

A[3]

A[6]

A[2]

A[4]

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 9 / 86

Multiple data parallel collections

S[2]

J[1]

S[1]J[2]

S[0]
J[0]

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 10 / 86

Work decomposition: also via objects / collections

fib(5)

fib(4)

fib(3) fib(2)

fib(3)

sequential fib(3) sequential fib(2)

sequential fib(3)

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 11 / 86

Functional decomposition: via multiple classes

S[2]

J[1]

S[1]J[2]

S[0]
J[0]

B[0] B[1]

G[1]

B[2]

G[0] G[2]

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 12 / 86

App logic: via classes and object collections

D

C

K

P

M
N S[2]

J[1]

S[1]J[2]

S[0]
J[0]

A[0]

A[1]

A[5]

A[3]

A[6]

A[2]

A[4]

B[0] B[1]

G[1]

B[2]

G[0] G[2]

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 13 / 86

Concurrency requires placing objects on all processors

Processor 0 Processor 1 Processor p...

D

C

K

P

M
N S[2]

J[1]

S[1]J[2]

S[0]
J[0]

A[0]

A[1]

A[5]

A[3]

A[6]

A[2]

A[4]

B[0] B[1]

G[1]

B[2]

G[0] G[2]

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 14 / 86

However, do not burden programmer with this view

Processor 0 Processor 1 Processor p...

D

C

K

P

M
N S[2]

J[1]

S[1]J[2]

S[0]
J[0]

A[0]

A[1]

A[5]

A[3]

A[6]

A[2]

A[4]

B[0] B[1]

G[1]

B[2]

G[0] G[2]

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 14 / 86

Elevate some objects to global visibility

Processor 0 Processor 1 Processor p...

Globally Visible Object Space

D

C

K

P

M
N S[2]

J[1]

S[1]J[2]

S[0]
J[0]

A[0]

A[1]

A[5]

A[3]

A[6]

A[2]

A[4]

B[0] B[1]

G[1]

B[2]

G[0] G[2]

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 15 / 86

Globally visible objects = chares

Processor 0 Processor 1 Processor p...

Globally Visible Object Space

D

C

K

P

M
N S[2]

J[1]

S[1]J[2]

S[0]
J[0]

A[0]

A[1]

A[5]

A[3]

A[6]

A[2]

A[4]

B[0] B[1]

G[1]

B[2]

G[0] G[2]

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 15 / 86

Globally visible object collections = chare arrays

Processor 0 Processor 1 Processor p...

Globally Visible Object Space

D

C

K

P

M
N S[2]

J[1]

S[1]J[2]

S[0]
J[0]

A[0]

A[1]

A[5]

A[3]

A[6]

A[2]

A[4]

B[0] B[1]

G[1]

B[2]

G[0] G[2]

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 15 / 86

Annotating classes to enable global visibility

In foo.ci

module foo module {
array [2D] Foo {
// . . .
};
}

In foo.h

#include ”foo module.decl
.h”

class Foo : public
CBase Foo {

// . . .
};

In foo.C

#include ”foo.h”

// . . .

#include ”foo module.def.h”

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 16 / 86

Annotating classes to enable global visibility

In foo.ci

module foo module {
array [2D] Foo {
// . . .
};
}

In foo.C

#include ”foo.h”

// . . .

#include ”foo module.def.h”

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 17 / 86

Indexing into Object Collections

In foo.ci

module foo module {
array [2D] Foo {
// . . .
};
}

multidimensional, integer (1D .. 6D)
I Dense
I Sparse

anything hashable (strings, bitvectors)

Static

Dynamic (elements come and go)

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 18 / 86

Quantum Chemistry: OpenAtom

GSpace
PairCalculator

RealSpace

RhoR

Density

Ortho

Transpose

Transpose

Reduction

Multicast

RhoRHartRhoG

RhoGHart

I

VI

II

V

III IV

VII

VIII

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 19 / 86

Quantum Chemistry: OpenAtom

 0.01

 0.1

 1

 10

128 256 512 1K 2K 4K 8K 16K 32K

T
im

e
pe

r
st

ep
 (

s)

Number of cores

OpenAtom on Blue Gene/Q

W256
W32

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 20 / 86

Object collections maketh not a parallel program

Processor 0 Processor 1 Processor p...

Globally Visible Object Space

D

C

K

P

M
N S[2]

J[1]

S[1]J[2]

S[0]
J[0]

A[0]

A[1]

A[5]

A[3]

A[6]

A[2]

A[4]

B[0] B[1]

G[1]

B[2]

G[0] G[2]

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 21 / 86

Object interactions

D

C

K

P

M
N S[2]

J[1]

S[1]J[2]

S[0]
J[0]

A[0]

A[1]

A[5]

A[3]

A[6]

A[2]

A[4]

B[0] B[1]

G[1]

B[2]

G[0] G[2]

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 22 / 86

Object interactions

D

C

K

P

M
N S[2]

J[1]

S[1]J[2]

S[0]
J[0]

A[0]

A[1]

A[5]

A[3]

A[6]

A[2]

A[4]

B[0] B[1]

G[1]

B[2]

G[0] G[2]

A[0].m1()

A[1].f6()

A[3].m1()
P.f1() S[0].f2()

A[6].m4()

M.f3()

D.m0()B[1].m6()

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 22 / 86

Object interactions ... via remote method invocations

Processor 0 Processor 1 Processor p...

D

C

K

P

M
N S[2]

J[1]

S[1]J[2]

S[0]
J[0]

A[0]

A[1]

A[5]

A[3]

A[6]

A[2]

A[4]

B[0] B[1]

G[1]

B[2]

G[0] G[2]

A[0].m1()

A[1].f6()

A[3].m1()
P.f1() S[0].f2()

A[6].m4()

M.f3()

D.m0()B[1].m6()

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 22 / 86

1. Not every object is remotely invocable

Processor 0 Processor 1 Processor p...

Globally Visible Object Space

D

C

K

P

M
N S[2]

J[1]

S[1]J[2]

S[0]
J[0]

A[0]

A[1]

A[5]

A[3]

A[6]

A[2]

A[4]

B[0] B[1]

G[1]

B[2]

G[0] G[2]

A[0].m1()

A[1].f6()

A[3].m1()
P.f1() S[0].f2()

A[6].m4()

M.f3()

D.m0()B[1].m6()

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 23 / 86

2. Not every method is remotely invocable

Processor 0 Processor 1 Processor p...

Globally Visible Object Space

D

C

K

P

M
N S[2]

J[1]

S[1]J[2]

S[0]
J[0]

A[0]

A[1]

A[5]

A[3]

A[6]

A[2]

A[4]

B[0] B[1]

G[1]

B[2]

G[0] G[2]

A[0].m1()

A[1].f6()

A[3].m1()
P.f1() S[0].f2()

A[6].m4()

M.f3()

D.m0()B[1].m6()

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 24 / 86

3. Remote methods are of void return type

What happens if an object waits for a return value from a method
invocation?

Instance A

Instance B

B.m1()

execute m1()

idle waiting for B

B.m1() returns

kernelA()

Performance

Latency

Reasoning about correctness

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 25 / 86

3. Remote methods are of void return type

What happens if an object waits for a return value from a method
invocation?

Instance A

Instance B

B.m1()

execute m1()

idle waiting for B

B.m1() returns

kernelA()

Performance

Latency

Reasoning about correctness

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 25 / 86

3. Remote methods are of void return type

What happens if an object waits for a return value from a method
invocation?

Instance A

Instance B

B.m1()

execute m1()

idle waiting for B

B.m1() returns

kernelA()

Performance

Latency

Reasoning about correctness

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 25 / 86

3. Remote methods are of void return type

Instance A

Instance B

B.m1()

execute m1()

idle

A.m2() response

kernelA()

Hence, method invocations should be asynchronous
I No return values

Computations are driven by the incoming data
I Initiated by the sender or method caller

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 26 / 86

Asynchronous, non-blocking remote method invocations on chares

Processor 0 Processor 1 Processor p...

Globally Visible Object Space

D

C

K

P

M
N S[2]

J[1]

S[1]J[2]

S[0]
J[0]

A[0]

A[1]

A[5]

A[3]

A[6]

A[2]

A[4]

B[0] B[1]

G[1]

B[2]

G[0] G[2]

A[0].m1()

A[1].f6()

A[3].m1()
P.f1() S[0].f2()

A[6].m4()

M.f3()

D.m0()B[1].m6()

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 27 / 86

Asynchronous, non-blocking remote method invocations on chares

Processor 0 Processor 1 Processor p...

Globally Visible Object Space

D

C

K

P

M
N S[2]

J[1]

S[1]J[2]

S[0]
J[0]

A[0]

A[1]

A[5]

A[3]

A[6]

A[2]

A[4]

B[0] B[1]

G[1]

B[2]

G[0] G[2]

A[0].m1()

A[1].f6()

A[3].m1()
P.f1() S[0].f2()

A[6].m4()

M.f3()

D.m0()B[1].m6()

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 27 / 86

Entry Methods

Asynchronous, non-blocking remote method invocations on chares

Processor 0 Processor 1 Processor p...

Globally Visible Object Space

D

C

K

P

M
N S[2]

J[1]

S[1]J[2]

S[0]
J[0]

A[0]

A[1]

A[5]

A[3]

A[6]

A[2]

A[4]

B[0] B[1]

G[1]

B[2]

G[0] G[2]

A[0].m1()

A[1].f6()

A[3].m1()
P.f1() S[0].f2()

A[6].m4()

M.f3()

D.m0()B[1].m6()

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 27 / 86

Globally visible entry methods

In foo.ci

array [2D] Foo {
entry Foo(int c, double d);
entry void compute(int count, double[count] data);
};

In foo.h

class Foo : public CBase Foo {
int c ; double d ;

public:
Foo(int c, double d);
void compute(int count, double ∗ data);
};

In foo.C

Foo::Foo(int c, double d) : c (c), d (d) { }
void Foo::compute(int count, double ∗ data)
{ /∗ . . . ∗/ }

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 28 / 86

Calling Entry Methods: Proxy Objects

// Construct a 10∗10 array of Foo chares, each initialized with {42, 2.7}
CProxy Foo f = CProxy Foo::ckNew(10, 10, 42, 2.7);

double d[7] = {0.0, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6};

// Call Foo::compute(7, d) on the object at (1, 2) in the collection
f(1, 2).compute(7, d);

Tenet: Do not hide locality information from developer

Many RMI implementations try to hide remote-ness.
Ours draws attention to potential expense of non-local operations.
Proxy objects are explicitly visible to client code. Any invocations via
proxies are potentially remote.

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 29 / 86

How do you get return values

Processor 0 Processor 1 Processor p...

Globally Visible Object Space

D

C

K

P

M
N S[2]

J[1]

S[1]J[2]

S[0]
J[0]

A[0]

A[1]

A[5]

A[3]

A[6]

A[2]

A[4]

B[0] B[1]

G[1]

B[2]

G[0] G[2]

A[0].m1()

A[1].f6()

A[3].m1()
P.f1() S[0].f2()

A[6].m4()

M.f3()

D.m0()B[1].m6()

G[0].getX()

J[2].calcX()
G[1].useX()

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 30 / 86

Method invocation on object collections

Processor 0 Processor 1 Processor p...

Globally Visible Object Space

D

C

K

P

M
N S[2]

J[1]

S[1]J[2]

S[0]
J[0]

A[0]

A[1]

A[5]

A[3]

A[6]

A[2]

A[4]

B[0] B[1]

G[1]

B[2]

G[0] G[2]

A[0].m1()

A[1].f6()

A[3].m1()
P.f1() S[0].f2()

A[6].m4()

M.f3()

D.m0()B[1].m6()

G[0].getX()

J[2].calcX()
G[1].useX()

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 31 / 86

Method invocation on object collections

Processor 0 Processor 1 Processor p...

Globally Visible Object Space

D

C

K

P

M
N S[2]

J[1]

S[1]J[2]

S[0]
J[0]

A[0]

A[1]

A[5]

A[3]

A[6]

A[2]

A[4]

B[0] B[1]

G[1]

B[2]

G[0] G[2]

B.m3()

A[3:5].m2

A[0].m1()

A[1].f6()

A[3].m1()
P.f1() S[0].f2()

A[6].m4()

M.f3()

D.m0()B[1].m6()

G[0].getX()

J[2].calcX()
G[1].useX()

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 31 / 86

Entry methods and Dataflow

void return types imply one-way information transfer

signal application’s intent to perform (possibly) remote task

carry required input data for remote task

express parallel dependencies

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 32 / 86

Biomolecular Physics: NAMD
Parallel decomposition and dependencies

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 33 / 86

Biomolecular Physics: NAMD
Chromatophore vesicle in purple bacteria

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 34 / 86

Biomolecular Physics: NAMD
ApoA1 on IBM BlueGene P/Q (Intrepid/Mira)

794 us / step

 1

 5

 25

 125

 16 64 256 1024 4096 16384 65536

m
s/

st
ep

number of cores

Bluegene/Q
Bluegene/P

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 35 / 86

Biomolecular Physics: NAMD
ApoA1 on IBM BlueGene P/Q (Intrepid/Mira)

794 us / step

 1

 5

 25

 125

 16 64 256 1024 4096 16384 65536

m
s/

st
ep

number of cores

Bluegene/Q
Bluegene/P

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 35 / 86

Biomolecular Physics: NAMD
100M atom STMV on Cray XK6 (Titan)

9 ms/step Number of cores

T
im

es
te

p
(m

s/
st

ep
)

 25

 125

298992128K64K16K4K

Cutoff only
PME every 4 steps

13ms/
step

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 36 / 86

RMI → Messages

Processor 0 Processor 1 Processor p...

Globally Visible Object Space

D

C

K

P

M
N S[2]

J[1]

S[1]J[2]

S[0]
J[0]

A[0]

A[1]

A[5]

A[3]

A[6]

A[2]

A[4]

B[0] B[1]

G[1]

B[2]

G[0] G[2]

B.m3()

A[3:5].m2

A[0].m1()

A[1].f6()

A[3].m1()
P.f1() S[0].f2()

A[6].m4()

M.f3()

D.m0()B[1].m6()

G[0].getX()

J[2].calcX()
G[1].useX()

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 37 / 86

Remember the void return types?

void return types imply one-way information transfer

signal application’s intent to perform (possibly) remote task

carry required input data for remote task

express parallel dependencies

Entry methods express when something can execute.
Not when something should execute.

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 38 / 86

Remember the void return types?

void return types imply one-way information transfer

signal application’s intent to perform (possibly) remote task

carry required input data for remote task

express parallel dependencies

Entry methods express when something can execute.
Not when something should execute.

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 38 / 86

Message queues

Processor 0 Processor 1 Processor p...

msg queue msg queuemsg queue

Ap
pl

ica
tio

n
Co

m
po

ne
nt

s
Ru

nt
im

e
Sy

st
em

Globally Visible Object Space

D

C

K

P

M
N S[2]

J[1]

S[1]J[2]

S[0]
J[0]

A[0]

A[1]

A[5]

A[3]

A[6]

A[2]

A[4]

B[0] B[1]

G[1]

B[2]

G[0] G[2]

B.m3()

A[3:5].m2

A[0].m1()

A[1].f6()

A[3].m1()
P.f1() S[0].f2()

A[6].m4()

M.f3()

D.m0()B[1].m6()

G[0].getX()

J[2].calcX()
G[1].useX()

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 39 / 86

Scheduler

Processor 0 Processor 1 Processor p...

msg queue msg queuemsg queue

schedulerscheduler scheduler

Ap
pl

ica
tio

n
Co

m
po

ne
nt

s
Ru

nt
im

e
Sy

st
em

Globally Visible Object Space

D

C

K

P

M
N S[2]

J[1]

S[1]J[2]

S[0]
J[0]

A[0]

A[1]

A[5]

A[3]

A[6]

A[2]

A[4]

B[0] B[1]

G[1]

B[2]

G[0] G[2]

B.m3()

A[3:5].m2

A[0].m1()

A[1].f6()

A[3].m1()
P.f1() S[0].f2()

A[6].m4()

M.f3()

D.m0()B[1].m6()

G[0].getX()

J[2].calcX()
G[1].useX()

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 39 / 86

Charm++

objects = fundamental unit of state / functionality

methods = fundamental unit of execution

Entry Methods ...

are scheduled for execution

are not preempted

are not reentrant

have unspecified delivery order

do not require threading / locking mechanisms (typically)

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 40 / 86

Charm++

objects = fundamental unit of state / functionality

methods = fundamental unit of execution

Entry Methods ...

are scheduled for execution

are not preempted

are not reentrant

have unspecified delivery order

do not require threading / locking mechanisms (typically)

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 40 / 86

Prioritized Execution

Processor 0 Processor 1 Processor p...

msg queue msg queuemsg queue

schedulerscheduler scheduler

Ap
pl

ica
tio

n
Co

m
po

ne
nt

s
Ru

nt
im

e
Sy

st
em

Globally Visible Object Space

D

C

K

P

M
N S[2]

J[1]

S[1]J[2]

S[0]
J[0]

A[0]

A[1]

A[5]

A[3]

A[6]

A[2]

A[4]

B[0] B[1]

G[1]

B[2]

G[0] G[2]

B.m3()

A[3:5].m2

A[0].m1()

A[1].f6()

A[3].m1()
P.f1() S[0].f2()

A[6].m4()

M.f3()

D.m0()B[1].m6()

G[0].getX()

J[2].calcX()
G[1].useX()

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 41 / 86

Prioritized Execution

Processor 0 Processor 1 Processor p...

msg queue msg queuemsg queue

schedulerscheduler scheduler

Ap
pl

ica
tio

n
Co

m
po

ne
nt

s
Ru

nt
im

e
Sy

st
em

Globally Visible Object Space

D

C

K

P

M
N S[2]

J[1]

S[1]J[2]

S[0]
J[0]

A[0]

A[1]

A[5]

A[3]

A[6]

A[2]

A[4]

B[0] B[1]

G[1]

B[2]

G[0] G[2]

B.m3()

A[3:5].m2

A[0].m1()

A[1].f6()

A[3].m1()
P.f1() S[0].f2()

A[6].m4()

M.f3()

D.m0()B[1].m6()

G[0].getX()

J[2].calcX()
G[1].useX()

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 41 / 86

Cosmology: ChaNGa

Gas
Stars

Dark Matter

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 42 / 86

Cosmology: ChaNGa

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 43 / 86

Cosmology: ChaNGa

4

8

16

32

64

16 32 64 128 256 512

T
im

e
 p

e
r

s
te

p
 (

s
)

Number of nodes (64 processes per node)

ChaNGa scaling on IBM BG/Q

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 44 / 86

Parallel Decomposition
Recap

Data or Task parallelism encoded in objects

Object count independent of processors

How many objects, then? How big?

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 45 / 86

Parallel Decomposition
Overdecomposition

Want several objects per processor

Increase chance that one will have work available

Overlap communication of one with computation of another

Important for later optimizations

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 46 / 86

Parallel Decomposition
Overdecomposition Example: Weather Forecasting in BRAMS

BRAMS: Brazillian weather code (based on RAMS)

AMPI version (Eduardo Rodrigues, with C. Mendes and J. Panetta)

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 47 / 86

Basic Virtualization of BRAMS

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 48 / 86

Baseline: 64 objects on 64 processors

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 49 / 86

Over-decomposition: 1024 objects on 64 processors
Benefits from communication/computation overlap

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 50 / 86

Grain Size

Working Definition

The amount of computation per potentially parallel event (task creation,
enqueue/dequeue, messaging, locking, etc.)

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 51 / 86

Modularity & Composability

Easy to write code separately and then run it separately

time

parallel
module

A

parallel
module

B

Rank 1

Rank 2

Rank 3

Rank 4

time

parallel
module

A

parallel
module

B

Rank 1

Rank 2

Rank 3

Rank 4

Possible to write code for explicit paralllel composition, interleaving
multiple modules

Want seamless resource sharing by separate pieces of code

time

parallel
module

A

parallel
module

B

Rank 1

Rank 2

Rank 3

Rank 4

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 52 / 86

Separation of Roles and Concerns

Different layers / components, different focus

Application logic

Parallel Algorithm

Performance related application code

Parallel runtime infrastructure

Different expertise, different focus

Domain specialists write domain logic

Performance experts specify tuning and optimizations

HPC and CS experts develop and deploy runtime services

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 53 / 86

Separation of Roles and Concerns

Different layers / components, different focus

Application logic

Parallel Algorithm

Performance related application code

Parallel runtime infrastructure

Different expertise, different focus

Domain specialists write domain logic

Performance experts specify tuning and optimizations

HPC and CS experts develop and deploy runtime services

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 53 / 86

Different expertise, different focus: Object Mapping Code

/// Implement a mapping that tiles a 2D processor tile
/// in the 2D chare array
class LUMap : public CBase LUMap {
// . . .
int procNum(int arrayHdl, const CkArrayIndex &idx) {

const int ∗coor = idx.data();
int tileYIndex = coor[1] / peCols;
int XwithinPEtile = (coor[0] + tileYIndex ∗ peRotate) % peRows;
int YwithinPEtile = coor[1] % (peCols / peStride);
int subtileY = (coor[1] % peCols) / (peCols / peStride);
int peNum = XwithinPEtile ∗ peStride +

YwithinPEtile ∗ peStride ∗ peRows + subtileY;
return peNum;
}
};

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 54 / 86

Different expertise, different focus
Mapping Example: Quantum Chemistry with OpenAtom

GSpace
PairCalculator

RealSpace

RhoR

Density

Ortho

Transpose

Transpose

Reduction

Multicast

RhoRHartRhoG

RhoGHart

I

VI

II

V

III IV

VII

VIII

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 55 / 86

Different expertise, different focus
Mapping Example: Quantum Chemistry with OpenAtom

GSpacePairCalculator

RealSpace

States

Planes

States

Planes

Planes

States

States

3D Torus Partition

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 56 / 86

Different expertise, different focus
Mapping Example: Quantum Chemistry with OpenAtom

 0

 2

 4

 6

 8

 10

 12

 1024 2048 4096 8192

T
im

e
pe

r
ite

ra
tio

n
(s

)

Number of cores

Performance of OpenAtom

Default Mapping
Topology Mapping

40% improvement, application only changed in initialization!

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 57 / 86

Separation of Concerns

Layered responsibility

Application worries about what, runtime system worries about how

What data to send, vs. message allocation and packing

Who to talk to, vs. where they live

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 58 / 86

Separation of Concerns
Example: Object location services

Possible solutions to “Where does object X live?”
I Name is location-specific
I Object creator specifies location, passes along with name
I Fixed mapping from names to locations
I Dynamic lookup

Charm++approach
I Mapping scheme defines home location – default location, and

responsible for knowing current location
I Cache of last known locations on each processor
I Messages sent to cached location, or home if none known

Application is mostly oblivioous

Fire off message, runtime delivers

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 59 / 86

Separation of Concerns
Example: Object location services

Possible solutions to “Where does object X live?”
I Name is location-specific
I Object creator specifies location, passes along with name
I Fixed mapping from names to locations
I Dynamic lookup

Charm++approach
I Mapping scheme defines home location – default location, and

responsible for knowing current location
I Cache of last known locations on each processor
I Messages sent to cached location, or home if none known

Application is mostly oblivioous

Fire off message, runtime delivers

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 59 / 86

Separation of Concerns
Example: Object location services

Possible solutions to “Where does object X live?”
I Name is location-specific
I Object creator specifies location, passes along with name
I Fixed mapping from names to locations
I Dynamic lookup

Charm++approach
I Mapping scheme defines home location – default location, and

responsible for knowing current location
I Cache of last known locations on each processor
I Messages sent to cached location, or home if none known

Application is mostly oblivioous

Fire off message, runtime delivers

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 59 / 86

Separation of Concerns
Example: Object location services

Processor 0 Processor 1 Processor p...

Globally Visible Object Space

object
location
service

object
location
service

object
location
service

Ap
pl

ica
tio

n
Co

m
po

ne
nt

s
Ru

nt
im

e
Sy

st
em

A[6].m4()

D

C

K

P

M
N S[2]

J[1]

S[1]J[2]

S[0]
J[0]

A[0]

A[1]

A[5]

A[3]

A[6]

A[2]

A[4]

B[0] B[1]

G[1]

B[2]

G[0] G[2]

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 60 / 86

Separation of Concerns: Object Migration

Why migrate?

Fault tolerance

Communication locality

Load balance

Power, Energy, and Heat management

Application provides serialization routines, runtime can do the rest!

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 61 / 86

Separation of Concerns: Object Migration

Why migrate?

Fault tolerance

Communication locality

Load balance

Power, Energy, and Heat management

Application provides serialization routines, runtime can do the rest!

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 61 / 86

Object Serialization

class MyChare : public
CBase MyChare {

int a; float b; char c;
float localArray[LOCAL SIZE];
int heapArraySize;
float∗ heapArray;
MyClass ∗pointer;
// . . .
};

void MyChare::pup(PUP::er &p) {
CBase MyChare::pup(p);
p | a; p | b; p | c;
p(localArray, LOCAL SIZE);
p | heapArraySize;
if (p.isUnpacking()) {

heapArray =
new float[heapArraySize];

}
p(heapArray, heapArraySize);
bool isNull = pointer==NULL;
p | isNull;
if (!isNull) {

if (p.isUnpacking())
pointer = new MyClass();

p | ∗pointer;
}

}

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 62 / 86

Introspective, Adaptive Runtime System

All about execution resources: processors, network, nodes, etc.

Watch how each object and method uses resources: time running,
bytes/messages sent & received, CPU frequency sensitivity,
performance counters

Record instrumented data for other components to use

Invoke adaptation mechanisms at appropriate intervals

Adjust system configuration accordingly

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 63 / 86

Load Imbalance

Performance limited by difference between most-loaded processor and
overall average.

Causes vary in severity, time scale, nature

Response must suit causes, other application concerns, system scale

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 64 / 86

Load Imbalance

Performance limited by difference between most-loaded processor and
overall average.

Causes vary in severity, time scale, nature

Response must suit causes, other application concerns, system scale

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 64 / 86

Load Imbalance

Performance limited by difference between most-loaded processor and
overall average.

Causes vary in severity, time scale, nature

Response must suit causes, other application concerns, system scale

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 64 / 86

With Load Balancing: 1024 objects on 64 processors

No overdecomp (64 threads): 4988 sec
Overdecomp into 1024 threads: 3713 sec

Load balancing (1024 threads): 3367 sec

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 65 / 86

With Load Balancing: 1024 objects on 64 processors

No overdecomp (64 threads): 4988 sec
Overdecomp into 1024 threads: 3713 sec
Load balancing (1024 threads): 3367 sec

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 65 / 86

Load Balancing Adaptive Mesh Refinement for solving
PDEs

{
{ { {

P0 PnP1 P2
. . .

Load changes gradually and incrementally, suggesting localized strategies

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 66 / 86

Load Balancing Adaptive Mesh Refinement for solving
PDEs

 1
 2
 4
 8

 16
 32
 64

 128

 1024 2048 4096 8192 16384

St
ep

s p
er

 S
ec

on
d

Number of Processes

NoLB
DistributedLB

Ideal

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 67 / 86

Load Imbalance: Crack Propagation

As computation progresses, crack
propagates, and new elements are
added, leading to more complex
computations in some chunks
Picture: S. Breitenfeld and P. Geubelle

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 68 / 86

Load Imbalance: Crack Propagation

Sudden, severe shift in load suggests comprehensive rebalancing

Link-time: -balancer GreedyLB or -balancer MetisLB

Run-time: +balancer FooLB

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 69 / 86

Load Imbalance: Crack Propagation

Sudden, severe shift in load suggests comprehensive rebalancing

Link-time: -balancer GreedyLB or -balancer MetisLB

Run-time: +balancer FooLB
Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 69 / 86

Load Imbalance: Adaptive Response

When to run load balancer?

When imbalance hurts (worse than the
cost)!

How to activate?

./pgm argsA argsB argsC +MetaLB

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 70 / 86

Load Imbalance: Adaptive Response

When to run load balancer? When imbalance hurts (worse than the
cost)!

How to activate?

./pgm argsA argsB argsC +MetaLB

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 70 / 86

Load Imbalance: Adaptive Response

When to run load balancer? When imbalance hurts (worse than the
cost)!

How to activate?

./pgm argsA argsB argsC +MetaLB

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 70 / 86

Load Imbalance: Adaptive Response

When to run load balancer? When imbalance hurts (worse than the
cost)!

When to allow migration?

When imbalance hurts (worse than the
cost)!

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 71 / 86

Load Imbalance: Adaptive Response

When to run load balancer? When imbalance hurts (worse than the
cost)!

When to allow migration? When imbalance hurts (worse than the
cost)!

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 71 / 86

Power, Energy, and Heat
Motivations

Reduce direct costs of execution - cumulative machine energy, cooling
energy from start to finish

Reduce capital costs - transformers, chillers

Improve reliability

Improve user experience - fan noise, ambient heat, battery life

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 72 / 86

Power, Energy, and Heat

Established Technique

Set temperature threshold, periodic DVFS to enforce

Slower clocks can hurt performance

Load balance to compensate

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 0.75 0.8 0.85 0.9 0.95 1 1.05

N
o

rm
a

liz
e

d
 T

im
e

Normalized Energy

14.4°C17.8°C

21.1°C

24.4°C
14.4°C

17.8°C

21.1°C

24.4°CTempLDB
Naive DVFS

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 0.8 0.85 0.9 0.95 1 1.05

N
o

rm
a

liz
e

d
 T

im
e

Normalized Energy

14.4°C17.8°C

21.1°C

24.4°C

14.4°C

17.8°C

21.1°C

24.4°C

TempLDB
Naive DVFS

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 0.85 0.9 0.95 1 1.05 1.1 1.15

N
o

rm
a

liz
e

d
 T

im
e

Normalized Energy

14.4°C

17.8°C

21.1°C

14.4°C

17.8°C

21.1°C

24.4°C

TempLDB
Naive DVFS

Upcoming Technique

Set power threshold on newer Intel CPUs, load balance as overloads appear

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 73 / 86

Power, Energy, and Heat

Established Technique

Set temperature threshold, periodic DVFS to enforce

Slower clocks can hurt performance

Load balance to compensate

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 0.75 0.8 0.85 0.9 0.95 1 1.05

N
o

rm
a

liz
e

d
 T

im
e

Normalized Energy

14.4°C17.8°C

21.1°C

24.4°C
14.4°C

17.8°C

21.1°C

24.4°CTempLDB
Naive DVFS

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 0.8 0.85 0.9 0.95 1 1.05

N
o

rm
a

liz
e

d
 T

im
e

Normalized Energy

14.4°C17.8°C

21.1°C

24.4°C

14.4°C

17.8°C

21.1°C

24.4°C

TempLDB
Naive DVFS

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 0.85 0.9 0.95 1 1.05 1.1 1.15

N
o

rm
a

liz
e

d
 T

im
e

Normalized Energy

14.4°C

17.8°C

21.1°C

14.4°C

17.8°C

21.1°C

24.4°C

TempLDB
Naive DVFS

Upcoming Technique

Set power threshold on newer Intel CPUs, load balance as overloads appear

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 73 / 86

Contagion and Information Spread: CharmEpiSimDemics

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 74 / 86

Contagion and Information Spread: CharmEpiSimDemics
Full US population simulations on Cray XE6 (Blue Waters)

 0.1

 1

 10

 100

256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K

Si
m

ul
at

io
n

tim
e

pe
r

da
y

(s
)

Number of core-modules

Strong scaling of EpiSimdemics on Blue Waters

RR
RR splitLoc

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 75 / 86

kd-tree construction on multicores
4 socket, 40 core intel xeon E7-4860 at 2.27GHz

0.00

2.00

4.00

6.00

8.00

10.00

 1 2 4 8 16 32

S
p

e
e

d
u

p

Cores

8-level trees

happy
angel

fairy
bunny

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 76 / 86

kd-tree construction on multicores
4 socket, 40 core intel xeon E7-4860 at 2.27GHz

0.00

2.00

4.00

6.00

8.00

10.00

 1 2 4 8 16 32

S
p

e
e

d
u

p

Cores

15-level trees

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 76 / 86

Numerical Linear Algebra: Dense LU Factorization

 0.1

 1

 10

 100

 128 1024 8192

T
o
ta

l
T

F
lo

p
/s

Number of Cores

Theoretical peak on XT5
Weak scaling on XT5

Theoretical peak on BG/P
Strong scaling on BG/P

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 77 / 86

Performance Analysis Using Projections

Instrumentation and measurement during program execution

Easy setup: just modify link options

Easy setup: data is generated automatically during run

User events can be easily inserted as needed

Visualization and analysis client

Scalable: analyze execution traces for 100s of thousands of cores

Rich feature set: time profile, time lines, usage profile, histograms,
outliers etc

Detect performance problems: load imbalance, grain size,
communication bottleneck, etc

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 78 / 86

Time Profile

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 79 / 86

Extrema Tool for Least Idle Processors

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 80 / 86

Time Lines with Message Back Tracing

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 81 / 86

Communication over Time for all Processors

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 82 / 86

Debugging Charm++applications using CharmDebug

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 83 / 86

Debugging Charm++applications using CharmDebug

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 84 / 86

Recap

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 85 / 86

Questions?

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 86 / 86

	Why Parallelism
	Motivating Challenges
	Charm++
	Expressing Parallel Algorithms
	Asynchronous RMI
	Execution Model
	Decomposition and Grain Size
	Modularity and Composability
	Separation of Concerns
	Introspective, Adaptive Runtime System
	Scalability
	Tooling
	Recap

