
Managing Asynchrony in
C++
VINAY AMATYA (VAMATYA@CCT.LSU.EDU)

HARTMUT KAISER (HKAISER@BOOST.ORG)

The Venture Point
TECHNOLOGY DEMANDS NEW RESPONSE

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 2

Technology Demands new Response

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 3

Technology Demands new Response

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 4

Technology Demands new Response

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 5

Technology Demands new Response

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 6

Peak performance: 1.17 PetaFLOPs

112,896 computing cores (18,816 2.6 GHz six-core AMD Opteron processors)

Amdahl’s Law (Strong Scaling)

S: Speedup

P: Proportion of parallel
code

N: Number of processors

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 7

𝑆 =
1

1 − 𝑃 +
𝑃
𝑁

Figure courtesy of Wikipedia (http://en.wikipedia.org/wiki/Amdahl's_law)

Starvation
◦ Insufficient concurrent work to maintain high

utilization of resources

Latencies
◦ Time-distance delay of remote resource access and

services

Overheads
◦ Work for management of parallel actions and

resources on critical path which are not necessary
in sequential variant

Waiting for Contention resolution
◦ Delays due to lack of availability of oversubscribed

shared resources

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 8

The 4 Horsemen of the Apocalypse:
SLOW

Starvation
◦ Insufficient concurrent work to maintain high

utilization of resources

Latencies
◦ Time-distance delay of remote resource access and

services

Overheads
◦ Work for management of parallel actions and

resources on critical path which are not necessary
in sequential variant

Waiting for Contention resolution
◦ Delays due to lack of availability of oversubscribed

shared resources

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 9

The 4 Horsemen of the Apocalypse:
SLOW

The Challenges
We need to find a usable way to fully parallelize the applications

Goals are
◦ Defeat The Four Horsemen

◦ Provide manageable paradigms for handling parallelism

◦ Expose asynchrony to the programmer without exposing concurrency

◦ Make data dependencies explicit, hide notion of ‘thread’, ‘communication’, and ‘data
distribution’

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 10

Runtime Systems
THE NEW DIMENSION

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 11

HPX – A General Purpose Runtime System
All examples in this talk are based on HPX

A general purpose runtime system for applications of any scale
◦ http://stellar.cct.lsu.edu/

◦ https://github.com/STEllAR-GROUP/hpx/

Exposes an uniform, standards-oriented API for ease of programming parallel and distributed
applications.

Enables to write fully asynchronous code using hundreds of millions of threads.

Provides unified syntax and semantics for local and remote operations.

Is published under Boost license and has an open, active, and thriving developer community.

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 12

http://stellar.cct.lsu.edu/
https://github.com/STEllAR-GROUP/hpx/

HPX – A General Purpose Runtime System
Governing principles
◦ Active global address space (AGAS) instead of PGAS

◦ Message driven instead of message passing

◦ Lightweight control objects instead of global barriers

◦ Latency hiding instead of latency avoidance

◦ Adaptive locality control instead of static data distribution

◦ Moving work to data instead of moving data to work

◦ Fine grained parallelism of lightweight threads instead of Communicating Sequential
Processes (CSP/MPI)

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 13

HPX – The API
Fully asynchronous
◦ All possibly remote operations are asynchronous by default

◦ ‘Fire & forget’ semantics (result is not available)

◦ ‘Pure’ asynchronous semantics (result is available via hpx::future)

◦ Composition of asynchronous operations (N3634)
◦ hpx::when_all, hpx::when_any, hpx::when_n

◦ hpx::future::then(f)

◦ Can be used ‘synchronously’, but does not block
◦ Thread is suspended while waiting for result

◦ Other useful work is performed transparently

145/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013

HPX – The API
As close as possible to C++11 standard library, where appropriate, for instance

◦ std::thread  hpx::thread

◦ std::mutex  hpx::mutex

◦ std::future  hpx::future

◦ std::async  hpx::async

◦ std::bind  hpx::bind

◦ std::function  hpx::function

◦ std::tuple  hpx::tuple

◦ std::any  hpx::any (N3508)

◦ std::cout  hpx::cout

◦ etc.

155/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013

HPX – The API
Fully move enabled (using Boost.Move)

◦ hpx::bind, hpx::function, hpx::tuple, hpx::any

Fully type safe remote operation
◦ Extends the notion of a ‘callable’ to remote case (actions)

◦ Everything you can do with functions is possible with actions as well

Data types are usable in remote contexts
◦ Can be sent over the wire (hpx::bind, hpx::function, hpx::any)

◦ Can be used with actions (hpx::async, hpx::bind, hpx::function)

165/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013

HPX – The API

R f(p...)
Synchronous

(return R)
Asynchronous

(return future<R>)
Fire & Forget
(return void)

Functions
(direct)

f(p…) async(f, p…) apply(f, p…)

Functions
(lazy)

bind(f, p…)(…) async(bind(f, p…), …) apply(bind(f, p…), …)

Actions
(direct)

HPX_ACTION(f, a)
a(id, p…)

HPX_ACTION(f, a)
async(a, id, p…)

HPX_ACTION(f, a)
apply(f, id, p…)

Actions
(lazy)

HPX_ACTION(f, a)
bind(a, id, p…)(…)

HPX_ACTION(f, a)
async(bind(a, id, p…), …)

HPX_ACTION(f, a)
apply(bind(a, id, p…), …)

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 17

C++

C++ Library

HPX

The Future
A CLOSER LOOK

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 18

What is a (the) future
A (std) future is an object representing a result which has not been calculated yet

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 19

Locality 1

Suspend
consumer
thread

Execute
another
thread

Resume
consumer
thread

Locality 2

Execute
Future:

Producer
thread

Future object

Result is being
returned

 Enables transparent synchronization with
producer

 Hides notion of dealing with threads

 Makes asynchrony manageable

 Allows for composition of several
asynchronous operations

 Turns concurrency into parallelism

What is a (the) Future?

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 20

Many ways to get hold of a future, simplest way is to use (std) async:

int universal_answer() { return 42; }

void deep_thought()

{

future<int> promised_answer = async(&universal_answer);

// do other things for 7.5 million years

cout << promised_answer.get() << endl; // prints 42

}

Stupidest Way to
Calculate Fibonacci Numbers
Synchronous way:

// watch out: O(2n)

int fibonacci_serial(int n)

{

if (n < 2) return n;

return fibonacci_serial(n-1) + fibonacci_serial(n-2);

}

cout << fibonacci_serial(10) << endl; // will print: 55

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 21

Stupidest Way to
Calculate Fibonacci Numbers

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 22

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

10,000,000,000

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

N
u

m
b

er
 o

f
C

al
ls

 t
o

 F
ib

(x
)

Ti
m

e
[s

]

Fibonacci Number

Serial Calculation of Fibonacci Numbers

Complexity: O(2n)

Stupidest Way to
Calculate Fibonacci Numbers
Computational complexity is O(2n) – alright, however

This algorithm is representative for a whole class of applications
◦ Tree based recursive data structures

◦ Adaptive Mesh Refinement – important method for wide range of physics simulations

◦ Game theory

◦ Graph based algorithms
◦ Breadth First Search

Characterized by very tightly coupled data dependencies between calculations
◦ But fork/join semantics make it simple to reason about parallelization

Let’s spawn a new thread for every other sub tree on each recursion level

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 23

Explicit Asynchrony

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 24

Let’s Parallelize It! What could be easier?
Calculate Fibonacci numbers in parallel (1st attempt)

uint64_t fibonacci(uint64_t n)
{

// if we know the answer, we return the value
if (n < 2) return n;

// asynchronously delay-calculate one of the sub-terms
future<uint64_t> f = async(launch::deferred, &fibonacci, n-1);

// synchronously calculate the other sub-term
uint64_t r = fibonacci(n-2);

// wait for the future and calculate the result
return f.get() + r;

}

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 25

Let’s Parallelize It! What could be easier?

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 26

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 5 10 15 20 25 30

Ti
m

e
[s

]

Fibonacci Number

Fibonacci (1st Parallel Version)

1 Core

2 Cores

4 Cores

8 Cores

12 Cores

16 Cores

20 Cores

24 Cores

Serial

Let’s Parallelize It! What could be easier?

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 27

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 5 10 15 20 25 30

Ti
m

e
[s

]

Fibonacci Number

Fibonacci (1st Parallel Version)

1 Core

2 Cores

4 Cores

8 Cores

12 Cores

16 Cores

20 Cores

24 Cores

Serial1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 5 10 15 20 25

Ti
m

e
[s

]

Number of Cores

Fibonacci (1st Parallel Version)

Fib(2)

Fib(4)

Fib(6)

Fib(8)

Fib(10)

Fib(12)

Fib(14)

Fib(16)

Fib(18)

Fib(20)

Fib(22)

Fib(24)

Fib(28)

Let’s Parallelize It! Could it be easier?
Parallel calculation (1st attempt), why is it slow? Why doesn’t it scale?

uint64_t fibonacci(uint64_t n)
{

// if we know the answer, we return the value
if (n < 2) return n;

// asynchronously delay-calculate one of the sub-terms
future<uint64_t> f = async(launch::deferred, &fibonacci, n-1);

// synchronously calculate the other sub-term
uint64_t r = fibonacci(n-2);

// wait for the future and calculate the result
return f.get() + r;

}

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 28

Let’s Parallelize It - 2nd Attempt
What could be easier?
Calculate Fibonacci numbers in parallel (2nd attempt)

uint64_t fibonacci(uint64_t n)
{

// if we know the answer, we return the value
if (n < 2) return n;

// asynchronously calculate one of the sub-terms
future<uint64_t> f = async(launch::async, &fibonacci, n-1);

// synchronously calculate the other sub-term
uint64_t r = fibonacci(n-2);

// wait for the future and calculate the result
return f.get() + r;

}

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 29

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

0 5 10 15 20 25 30

Ti
m

e
[s

]

Fibonacci Number

Fibonacci (2nd Parallel Version)

1 Core

2 Cores

4 Cores

8 Cores

12 Cores

16 Cores

20 Cores

24 Cores

Serial

std::future

Let’s Parallelize It - 2nd Attempt
What could be easier?

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 30

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

0 5 10 15 20 25 30

Ti
m

e
[s

]

Fibonacci Number

Fibonacci (2nd Parallel Version)

1 Core

2 Cores

4 Cores

8 Cores

12 Cores

16 Cores

20 Cores

24 Cores

Serial

std::future

Let’s Parallelize It - 2nd Attempt
What could be easier?

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 31

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25

Sp
ee

d
u

p

Number of Cores

Fibonacci - Scaling (2nd Parallel Version)

Fib(2)

Fib(4)

Fib(8)

Fib(12)

Fib(16)

Fib(20)

Fib(24)

Fib(28)

Let’s Parallelize It - 2nd Attempt
What could be easier?
What’s wrong? While it scales it is still 100 times slower than the serial execution

Creates a new future for each invocation of fibonacci() (spawns an HPX thread)
◦ Millions of threads with minimal work each

◦ Overheads of thread management (creation, scheduling, execution, deletion) are much larger than the
amount of useful work
◦ Future overheads: ~1µs (Thread overheads: ~400ns)

◦ Useful work: ~50ns

Let’s introduce the notion of granularity of work (grain size of work)
◦ The amount of work executed in one thread

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 32

Let’s Parallelize It – 3rd Attempt
What could be easier?
Parallel calculation (3rd attempt), switching to serial execution below given threshold

uint64_t fibonacci(uint64_t n)
{

if (n < 2) return n;
if (n < threshold) return fibonacci_serial(n);

// asynchronously calculate one of the sub-terms
future<uint64_t> f = async(launch::async, &fibonacci, n-1);

// synchronously calculate the other sub-term
uint64_t r = fibonacci(n-2);

// wait for the future and calculate the result
return f.get() + r;

}

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 33

Let’s Parallelize It – 3rd Attempt
What could be easier?

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 34

0.1

1

10

100

0 10 20 30 40 50

Ti
m

e
[s

]

Serial Threshold

Fibonacci(40), 12 Cores

Serial

3rd Version

Granularity Control
The New Dimension
Parallelizing code introduces Overheads (SLOW)

Overheads are caused by code which
◦ Is executed in the parallel version only

◦ Is on the critical path (we can’t ‘hide’ it behind useful work)

◦ Is required for managing the parallel execution
◦ i.e. task queues, synchronization, data exchange

◦ NUMA and core affinities

Controlling not only the amount of resources used but also the granularity of work is an
important factor

Controlling the grain size of work allows finding the sweet-spot between too much overheads
and too little parallelism

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 35

N3634: Improvements to std::future<T> and
Related APIs
Combining futures

◦ when_all(), when_any()
◦ Allows waiting for a combination of passed in future instances

◦ Return a future representing the entire operation

Defining continuations
◦ future::then()

◦ Attaches a function to be executed once the future gets ready

◦ Returns a future representing the result of the continuation function

Unwrapping futures
◦ Asynchronous operations may return future<future<T> >

◦ future::unwrap() returns inner future instance

Create futures which are ‘ready’
◦ future<decay<T>::type> make_ready_future(T);

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 36

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3634.pdf

Futurization

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 37

Special technique allowing to automatically transform code
◦ Delay direct execution in order to avoid synchronization

◦ Turns ‘straight’ code into ‘futurized’ code

◦ Code no longer calculates results, but generates an execution tree representing the original algorithm

◦ If the tree is executed it produces the same result as the original code

◦ The execution of the tree is performed with maximum speed, depending only on the data dependencies
of the original code

◦ Simple transformation rules:

Straight Code Futurized Code

T func() {…} future<T> func() {…}

rvalue: n make_ready_future(n)

T n = func(…); future<T> n = async(&func, …);

Let’s Parallelize It – 4th Attempt
What could be easier?
Parallel way (4th attempt), futurize algorithm to remove suspension points

uint64_t fibonacci(uint64_t n)
{

if (n < 2) return n ;
if (n < threshold) return fibonacci_serial(n) ;

future<uint64_t> f = async(launch::async, &fibonacci, n-1);
uint64_t r = fibonacci(n-2);

return f.get() r

;
}

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 38

future< >

make_ready_future()
make_ready_future()

future< >
future< >

when_all(,).then(
[](future<std::vector<future<uint64_t>>> fv) -> uint64_t {

std::vector<future<uint64_t>> v = fv.get();
return v[0].get() + v[1].get();

})

Let’s Parallelize It – 4th Attempt
What could be easier?
Parallel way (4th attempt), futurize algorithm to remove suspension points

future<std::vector<future<uint64_t>>> f = when_all(f.get(), r);

future<uint64_t> result = f.then(

[](future<std::vector<future<uint64_t>>> fv) -> uint64_t {

std::vector<future<uint64_t>> v = fv.get();

return v[0].get() + v[1].get();

});

return result;

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 39

Let’s Parallelize It – 4th Attempt
What could be easier?
Parallel way (4th attempt), futurize algorithm to remove suspension points

future<uint64_t> fibonacci(uint64_t n)
{

if (n < 2) return make_ready_future(n);
if (n < threshold) return make_ready_future(fibonacci_serial(n));

future<future<uint64_t>> f = async(launch::async, &fibonacci, n-1);
future<uint64_t> r = fibonacci(n-2);

return when_all(f.get(), r).then(
[](future<std::vector<future<uint64_t>>> f) -> uint64_t {

std::vector<future<uint64_t>> v = f.get();
return v[0].get() + v[1].get();

});
}

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 40

Let’s Parallelize It – 4th Attempt
What could be easier?

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 41

0.1

1

10

100

0 10 20 30 40 50

Ti
m

e
[s

]

Serial Threshold

Fibonacci(40), 12 Cores

Serial

3rd Attempt

4th Attempt

Let’s Parallelize It – 4th Try
What could be easier?
Parallel way (4th attempt), futurize algorithm to remove suspension points

future<uint64_t> fibonacci(uint64_t n)
{

if (n < 2) return make_ready_future(n);
if (n < threshold) return make_ready_future(fibonacci_serial(n));

future<future<uint64_t>> f = async(launch::async, &fibonacci, n-1);
future<uint64_t> r = fibonacci(n-2);

return when_all(f.get(), r).then(
[](future<std::vector<future<uint64_t>>> f) -> uint64_t {

std::vector<future<uint64_t>> v = f.get();
return v[0].get() + v[1].get();

});
}

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 42

Let’s Parallelize It – 5th Attempt
What could be easier?
Parallel way (5th attempt), unwrapping inner future

future<uint64_t> fibonacci(uint64_t n)
{

if (n < 2) return make_ready_future(n);
if (n < threshold) return make_ready_future(fibonacci_serial(n));

future<uint64_t> f = async(launch::async, &fibonacci, n-1).unwrap();
future<uint64_t> r = fibonacci(n-2);

return when_all(f, r).then(
[](future<std::vector<future<uint64_t> > > f) -> uint64_t {

std::vector<future<uint64_t> > v = f.get();
return v[0].get() + v[1].get();

});
}

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 43

Guess what? – This is the fastest implementation so far!

N3650: Resumable Functions
Large amount of overheads in HPX are caused by stacks

◦ We don’t know which thread will suspend, thus every thread needs its own stack segment (~8kByte)
◦ Virtual memory segmentation, TLB thrashing, physical memory exhaustion

◦ Not always possible to reuse stack segments as too many threads are being suspended
◦ Fibonacci: many threads get created just to be suspended almost immediately

◦ Figuring out what threads need to be executed first in order to make progress is a NP complete problem

Using when_all(), then(), etc. is an alternative, however
◦ Complex constructs

◦ Integrate badly with straight serial code and control structures

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 44

N3650: Resumable Functions
HPX can ‘simulate’ synchrony while performing asynchronous operations:

int f(stream str)
{

std::vector<char> buf;
future<int> count = str.read(512, buf);
// …
return count.get() + 11; // get() will suspend

}

However, this leaves a half-filled stack frame behind, moreover caller can’t proceed until done

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 45

N3650: Resumable Functions
Introduces 2 new keywords: async and await

future<int> f(stream str) async
{

shared_ptr<vector<char>> buf = ...;
int count = await str.read(512, buf); // returns from f() if not ready!
return count + 11;

}

From N3650:
◦ A resumable function is a function that is capable of split-phase execution, meaning that the function

may be observed to return from an invocation without producing its final logical result or all of its side-
effects.

This allows
◦ Writing asynchronous code as if it was synchronous

◦ Avoids creating stack frames as the resumable function always leaves the stack in ‘virgin’ state

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 46

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3650.pdf

N3650: Resumable Functions
Disadvantage: requires compiler support

◦ Local variables and parameters have to be placed in heap allocated memory

◦ Certain transformations have to be applied to function bodies to create current continuations and to
allow for re-entrance

◦ Heap based allocations necessary to store local variables and parameters

◦ Surprising semantics (return type, side effects of surrounding code, etc.)

Advantages
◦ Only one stack segment is required for each OS-thread

◦ Simplified code

◦ More asynchrony as functions can proceed whenever a called function awaits

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 47

Let’s Parallelize It – 6th Attempt
What could be easier?
Parallel way (6th attempt), using resumable functions

future<uint64_t> fibonacci(uint64_t n) async

{

if (n < 2) return make_ready_future(n);

if (n < threshold) return make_ready_future(fibonacci_serial(n));

future<uint64_t> f = async(launch::async, &fibonacci, n-1); // .unwrap()

future<uint64_t> r = fibonacci(n-2);

return await f + await r;

}

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 48

Let’s Parallelize It – 6th Attempt
What could be easier?
Fastest parallelization results, outperforms all others by a significant amount

◦ Scales better

◦ Runs faster

◦ Uses less memory (less stack segments)

◦ Creates less threads

Resumable functions are a valuable addition to the language
◦ Simplify code, makes asynchronous code look synchronous

◦ Required code transformation are almost trivial and well understood

However, resumable function alone are not sufficient, they work best on code which has already
been parallelized

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 49

Let’s Parallelize It – 6th Attempt
What could be easier?
Fastest parallelization results, outperforms all others by a significant amount

◦ Scales better

◦ Runs faster

◦ Uses less memory (less stack segments)

◦ Creates less threads

Resumable functions are a valuable addition to the language
◦ Simplify code, makes asynchronous code look synchronous

◦ Required code transformation are almost trivial and well understood

However, resumable function alone are not sufficient, they work best on code which has already
been parallelized

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 50

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25

Sp
ee

d
u

p
 r

el
at

iv
e

to
 6

th
 A

tt
em

p
t/

1
C

o
re

Number of Cores

Fibonacci - Speedup (serial threshold: 28)

5th Attempt

6th Attempt

Let’s Parallelize It – 7th Attempt
What could be easier?
Parallel way (7th attempt), using resumable functions

future<uint64_t> fibonacci(uint64_t n)
{

if (n < 2) return make_ready_future(n);
if (n < threshold) return make_ready_future(fibonacci_serial(n));

future<uint64_t> f = async(launch::async, &fibonacci, n-1);
future<uint64_t> r = fibonacci(n-2);

return dataflow(
[](future<uint64_t> f1, future<uint64_t> f2) -> uint64_t {

return f1.get() + f2.get();
},
f, r);

}

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 51

Thanks to Thomas Heller for coming up with this idea

So What’s the Deal?
Too much parallelism is as bad as is too little

◦ Sweetspot is determined by the Four Horsemen, mainly by contention

Granularity control is crucial
◦ Optimal grain size depends very little on number of used resources

◦ Optimal grain size is determined by the Four Horsemen, mainly by overheads, starvation, and latencies

Even problems with (very) strong data dependencies can benefit from parallelization

Doing more is not always bad
◦ While we added more overheads by futurizing the code, we still gained performance

◦ This is a result of the complex interplay of starvation, contention and overheads in modern hardware

Avoid explicit suspension as much as possible, prefer continuation style execution flow
◦ Dataflow style programming is key to managing asynchrony

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 52

Predicting the Future
THE UNIVERSAL SCALABILITY LAW

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 53

Universal Scalability Law

S(N) – Normalized scaling

1 – Concurrency
◦ Without interaction the function would scale linearly

α N − 1 – Contention, (time spent in scalar mode,
i.e. α is serial fraction), starvation

◦ Represents the degree of serialization on shared writable
data and is parameterized by the constant σ.

β N(N − 1) – Latency (Point-to-point), overheads
◦ Represents the penalty incurred for maintaining

consistency of shared writable data

54

S(𝑁) =
𝑁

1+α 𝑁−1 +β 𝑁(𝑁−1)

http://www.perfdynamics.com/index.html

α=0, β=0

α=0, β=0.01

α=0.1, β=0
α=0.005,
β=0.005

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25

Sp
ee

d
u

p
 S

(N
)

Number of Cores (N)

Universal Scalability Law, Examples

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013

Universal Scalability Law
If we know the coefficients (α, β) we can
estimate the N gaining the best speedup:

This does not tell us what causes the
problems, but helps optimizing resource
utilization

Can be done at runtime, 4-6 data points are
sufficient

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 55

𝑁𝑚𝑎𝑥 =
1−α

β

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 5 10 15 20 25

Sp
ee

d
u

p

Number of Cores

Fibonacci(20), 2nd Attempt
Speedup – USL (Measured & Predicted)

Measured Predicted

Nmax = 13

α=0.1149, β=0.0049

Using HPX
EXTENDING THE STANDARD BEYOND ONE NODE

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 56

HPX feature(s) for Asynchronous
Computing:

Actions
o Actions are essentially functions in conventional sense

o But additionally can be invoked to remote locations

Global Actions
o Functions that could to be invoked remotely.

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 57

void some_global_function(double d)
{

cout << d;
}

// This will define the action type 'some_global_action' which represents
// the function 'some_global_function'.
HPX_PLAIN_ACTION(some_global_function, some_global_action);

Example

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 58

// Evaluating Factorial
boost::uint64_t factorial(boost::uint64_t x);
HPX_PLAIN_ACTION(factorial, factorial_action);

boost::uint64_t factorial(boost::uint64_t n)
{

if (n <= 0) return 1;

factorial_action fact;
hpx::future<boost::uint64_t> n1 =

hpx::async(fact, hpx::find_here(), n - 1);
return n * n1.get();

}

Invoking Actions in HPX
Asynchronous Actions without Synchronization

◦ Fully asynchronous, controlling thread does not wait for action to start or complete

◦ Return value ignored if the function had return value

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 59

some_global_action act; // define an instance of some_global_action
hpx::apply(act, hpx::find_here(), data);

some_component_action act; // define an instance of some_component_action
hpx::apply(act, id, "42"); // id is component’s global id

Invoking Actions in HPX
Asynchronous Actions with Synchronization

◦ Controlling thread does not wait for the function to start or complete

◦ Waits for the return value of the function

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 60

some_global_action act; // define an instance of some_global_action
hpx::future<void> f = hpx::async(act, hpx::find_here(), 2.0);

//
// ... do other stuff here
//

f.get(); // this will possibly wait for the asyncronous operation to 'return'

Invoking Actions in HPX
Synchronous Actions

◦ The invoked function is scheduled immediately

◦ The calling thread waits for the function to complete

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 61

some_global_action act; // define an instance of some_global_action
act(hpx::find_here(), 2.0);

some_component_action act; // define an instance of some_component_action
int result = act(id, "42");

Invoking Actions in HPX
Asynchronous Actions With Continuation But Synchronization

◦ Similar to async action with synchronization; but takes additional function argument.

◦ Similar to future_function().then(….) on the same locality

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 62

// first action
boost::int32_t action1(boost::int32_t i)
{

return i+1;
}
HPX_PLAIN_ACTION(action1); // defines action1_type

// second action
boost::int32_t action2(boost::int32_t i)
{

return i*2;
}
HPX_PLAIN_ACTION(action2); // defines action2_type

Invoking Actions in HPX

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 63

action1_type act1; // define an instance of 'action1_type'
action2_type act2; // define an instance of 'action2_type‘
// action1_type and action2_type are global function or component function.
hpx::future<int> f =

hpx::async_continue(act1, hpx::find_here(), 5,
hpx::make_continuation(act2));

hpx::cout << f.get() << "\n"; // will print: 12 ((5+1) * 2)

Continuing to remote locality
The final return of chain of called function goes back to origin

hpx::future<int> f =
hpx::async_continue(act1, hpx::find_here(), 5,

hpx::make_continuation(act2, hpx::find_here()));
// put component_id in place of find_here() for remote function invocation
hpx::cout << f.get() << "\n"; // will print: 12 ((5 + 1) * 2)

Invoking Actions in HPX
Chaining more than 2 operations

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 64

hpx::future<int> f =
hpx::async_continue(act1, hpx::find_here(), 5,

hpx::make_continuation(act2,
hpx::make_continuation(act1)));

hpx::cout << f.get() << "\n"; // will print: 13 (((5+1) * 2) + 1)

Invoking Actions in HPX
Asynchronous Actions With Continuation But Without Synchronization

◦ Similar to async actions with no synchronization,

◦ Similar structure as above, but after evaluation of the last function, the return value if any is discarded

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 65

string greetings(string name) { return "Hello," + name + "!"; }
HPX_PLAIN_ACTION(greetings);

void print(string greetings) { hpx::cout << greetings << '\n'; }
HPX_PLAIN_ACTION(print);

greetings_action_type act1;
print_action_type act2;
hpx::async_continue(act1, hpx::find_here(), "Manuel",

hpx::make_continuation(act2));

// will print: Hello, Manuel!

Components and Actions (Distributed
Computing – HPX)

Components

o “Remotable” C++ objects

o These are First Class objects in HPX, with a globally unique name, or GID

o Context of the instantiated object is preserved, for the duration of the client side that holds reference
to its global name.

Component Actions

o Functions that need to be invoked remotely, but are part of a class object/ component object.

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 66

Components in HPX
class accumulator
: public hpx::components::simple_component_base<accumulator>

{
public:

accumulator() : acculumlate_(0) {}

void add(double to_add) { accumulate_ += to_add; }
double query() const { return accumulator_; }

HPX_DEFINE_COMPONENT_ACTION(accumulator, add, add_action);
HPX_DEFINE_COMPONENT_CONST_ACTION(accumulator, query, query_action);

private:
double accumulate_;

};

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 67

Components in HPX
// create new instance of an accumulator
hpx::id_type id = hpx::new_<accumulator>();

accumulator_add_action add_action;

// Explicitly asynchronous invocation
hpx::future<void> f = hpx::async(add_action, id, 42.0);
// ...
f.get();

// Explicitly ‘synchronous’ invocation
accumulator_query_action query_action;
hpx::cout << query_action(id) << "\n"; // prints: 42

// fire and forget version
hpx::apply(add_action, id, 43);

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 68

The Life of Pi

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 69

Embarrassingly Parallel Applications
Easily broken into approximately equal amounts of work per processors

Each Individual Task (per processor) is independent, i.e. minimal communication among processors

We get near-perfect parallel speedup with modest programming efforts

M work load can be divided into N chunk, with each work load equaling M/N

Parallel Overhead due to communication (over work coordination) and/or reduce operation at the
end

Examples:
◦ Image Processing,
◦ Monte Carlo Simulation
◦ Random Number Generation
◦ Encryption, Compression

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 70

Yi = Fi(Xi)

, where i = 0, 1, 2, … , N.

, xi -> inputs, yi -> outputs and, Fi -> pure function

Begin

End

1 2 3 N

Input Data

Results

Workers

C
o

n
so

le

Embarrassingly Parallel Application

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 71

Monte Carlo
Monte Carlo Methods : simulating physical phenomena based on randomness

◦ Randomly generate a large number of example cases (input) of a phenomenon,

◦ Perform some computation on these inputs

◦ Take average of the observed results

The result is an approximation to some true but unknown quantity

Monte Carlo Simulations are typically embarrassingly parallel
◦ Each unit simulation is completely independent from all such unit simulations.

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 72

Evaluation of Pi (Monte Carlo)

𝐴 =
𝜋𝑟2

2

2

Area of Circle

Area of Square
=
𝜋𝑟2

2 x 2
=
𝜋

4

0

1

1 − 𝑥2 𝑑𝑥 =
𝜋

4

Random Pairs of Numbers, (xr, yr)

𝑥𝑟
2

+ 𝑦𝑟
2 ≤ 1

𝐴𝑟𝑒𝑎 =
𝑥
1

𝑥
2

𝑓 𝑥 𝑑𝑥 = lim
𝑁→∝

1

𝑁 − 1

𝑖=0

𝑁−1

𝑓 𝑥𝑟 (𝑥2 − 𝑥1)

1

𝑦 = 1 − 𝑥2

f(x)

1 1

x

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 73

// define action: can be called remotely
double pi_montecarlo_evaluate(std::size_t num_iteration)
{

// ...
}
// defines pi_montecarlo_evaluate_action
HPX_PLAIN_ACTION(pi_montecarlo_evaluate);

// retrieve all participating localities (nodes)
std::vector<hpx::id_type> localities =

hpx::find_all_localities();

Evaluation of Pi using HPX

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 74

double pi_montecarlo_evaluate(std::size_t num_iteration)
{

base_generator_type generator(0.1);
generator.seed(std::time(0));
gen_type monte_carlo(generator, distribution_type(0, 1));
boost::generator_iterator<gen_type> gen_value(&monte_carlo);

double x, area = 0;

// dx = 1 / num_iteration;
for(std::size_t i = 0; i != num_iteration; ++i)
{

x = *gen_value++;
area += std::sqrt(1 - x*x); // f(x) * dx

}

// return area of quadrant
return area / num_iteration;

}

Evaluation of Pi using HPX

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 75

std::vector<future<double>> futures;

pi_montecarlo_evaluate_action act;
BOOST_FOREACH(id_type const& node, localities)
{

futures.push_back(async(act, node, num_iter));
}

wait_all(futures);

double result = 0, pi = 0;
BOOST_FOREACH(future<double>& fut, futures)
{

result += fut.get();
}

pi = 4 * result;

Evaluation of Pi using HPX

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 76

Results: Pi-Monte Carlo

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 77

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

1 2 4 8 16 32 64

Ti
m

e(
s)

Number of Cores

Pi-MonteCarlo Single Node

10k - iterations 5k-iterations 20 iterations

3.144709 3.140697 9 3.136439
3.143417

3.1416562

3.1413225

3.1409913

3.143508 3.143948 3.142685 3.147301 3.138312

3.141946

3.144814

3.141677 3.141194 3.138715
3.142439

3.141985

3.143657

3.1415453

Results: Pi – Monte Carlo USL projected
Scalability (SMP)

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70

Th
ro

u
gh

p
u

t
(X

)

Number of Cores (N)

Modeled X(N) -20k Measured X -20k Modeled X(N)-10k Measured X-10k Modeled X(N)-5k Measured X-5k

Nmax = 57 , Nopt = 40
α= 0.0252, β= 0.0003

Nmax = 40, Nopt = 27
α = 0.037, β = 0.0006

Nmax 36, Nopt 20
α = 0.052, β = 0.0007

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 78

Fast Fourier Transform (FFT)
Well Known and Understood problem

◦ Data dependency between elements is well defined

Parallel Implementation of FFT Emerging recently with several parallelization techniques
available

◦ In Distributed FFT, data explicitly need to be moved
◦ So a parallel asynchronous computation mechanism would be nice.

◦ HPX async

Implementation of Parallel FFT in HPX
◦ Based on Coley-Tuckey algorithm with Radix – 2DIT

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 79

FFT (Decimation in Time)

𝑥[0] 𝑥[4] 𝑥[2] 𝑥[6] 𝑥[1] 𝑥[5] 𝑥[3] 𝑥[7]

{𝑥′ 0 , 𝑥′ 4 } {𝑥′ 2 , 𝑥′ 6 } {𝑥′ 1 , 𝑥′ 5 } {𝑥′ 3 , 𝑥′ 7 }

{𝑥′′ 0 , 𝑥′′[2], 𝑥′′ 4 , 𝑥′′[6]}

{X 0 , X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 }

{𝑥′′ 1 , 𝑥′′[3], 𝑥′′ 5 , 𝑥′′[7]}

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 80

Results: FFT - USL Projected Scalability
(Transform)

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 81

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70

Th
ro

u
gh

p
u

t
(X

)

CPUS (N)

FFT - USL projected scalability (Transform)

Modeled X(N) - 1mil Measured X -1mil Modeled X(N) - 32k Measured X - 32k

Nmax = 20, Nopt = 13
∝ = 0.0781, β= 0.0023

Nmax = 13, Nopt = 13
∝ = 0.0831, β= 0.0053

Results: FFT - USL Projected Scalability
(SMP)

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 82

0

1

1

2

2

3

0 10 20 30 40 50 60 70

Th
ro

u
gh

p
u

t
(X

)

Threads (N)

FFT - USL projected scalability (SMP)

Modeled X(N) - 1mil Measured X -1mil Modeled X(N) - 32k Measured X - 32k

Nmax = 8, Nopt = 4
∝ = 0.3310, β= 0.009

Nmax = 6, Nopt = 3
∝ = 0.4413, β= 0.0116

Conclusions

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 83

Conclusions
Be aware of the Four Horsemen

Embrace parallelism, it’s here to stay, avoid concurrency

Asynchrony is your friend if used correctly

Think in terms of data dependencies, make them explicit

Avoid thinking in terms of threads

Continuation style, dataflow based programming is key for successful parallelization

Performance modelling can help adjusting parameters

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 84

Where to get HPX
Main repository: https://github.com/STEllAR-GROUP/hpx/ (Boost licensed)

Main website: http://stellar.cct.lsu.edu/

Mailing lists: hpx-users@stellar.cct.lsu.edu, hpx-devel@stellar.cct.lsu.edu

IRC channel: #ste||ar on freenode

5/14/2013 MANAGING ASYNCHRONY IN C++, C++NOW 2013 85

https://github.com/STEllAR-GROUP/hpx/
http://stellar.cct.lsu.edu/
mailto:hpx-users@stellar.cct.lsu.edu
mailto:hpx-devel@stellar.cct.lsu.edu

