I'un with Tuples

Marshall Clow
Qualcomm
mclow.lists@gmail.com
Twitter: mclow

C++Now - May 2013

<

<

<

What do | mean, fun?

Basic information about tuples
What you can do with them
Interesting techniques that I've found / discovered

No emphasis on usability or practicality in this talk.

So, what's a tuple?

* std::tuple introduced in C++2011
* A generalization of std::pair.

* Arbitrary number of elements
* No names for the fields

* Sadly. (first, second, third, nineteenth, fivehundredthirtyseventh)

What's the difference between a
tuple and a struct?

+ Field names

* Layout

What can you do with a tuple?

std::get<IN> (tuple) -- constexpr
std::tuple_element<N> (tuple)::type -- constexpr
std::tuple_size (tuple) -- constexpr

compare them (==, !=, <, etc)

How do | make a tuple?

KX

typedet tuple<int, float, string> Tuple;
Tuple t1 { 3, 2.78, “Hi Mom” };
Tuple t2 = make_tuple (3, 2.78f, string(“Hi Mom”));

Tuple t3 = tuple_cat (make_pair (3, 2.78f), make_tuple(string(“Hi
Mom”)));

std::tie

Creates a tuple of lvalue references

Useful for bursting a tuple into a sequence of variables
- Makes functions that return multiple values easy to use
std::ignore useful for saying “I don’t want this value”

“An object of unspecified type such that any value can be assigned to
it with no effect”

ihitemain (int, char **) {
using namespace std;
auto tup = make tuple (3, 3.14, string ("Hi Mom"));
{7 e
tie (i, ignore, ignore) = tup; // i is now 3

// Fun with ignore

ignore = 4;

ignore = tup;

ignore = string ("Hi Mom");
ignore = ignore;

auto devNull = ignore;
devNull = tup;

return 0;

¥

Comparing Tuples

* operator == is defined as
+ get<]>(tl) == get<1>(12) && get<2>(tl) == get<2>(t2) ...

* the relational operators are defined as a lexicographic compare

SERUCESE
10 o B
float f;
string s;

fis

ERaIe SRRy B 2 f S
S two { 4, 3.2f, “Mom” };

tie (one.i, one.f, one.s) ==
tie (two.i, two.f, two.s);
tie (one.i, one.f) == tie (two.i, two.f);

tie (one.i, one.f, one.s) <
Eit e (R Ol WO e EW O 5 S5

tie (one.s, one.f, one.i) <
Eilel (R ORIS SR O S R O

Is std::tuple a container?

* Not like vector/list/etc, because the elements can be heterogeneous.

* But at compile time...

A container of types

* std::tuple_element<N>(t)::type -- returns the type of the Nth element
of the tuple.

* Consider “typedef std::tuple<int, const char*, void> Tuple;”

+ Is this legal?

Who remembers this book?

~

Modern C++ Design

Generic Programming
and Design Patterns Applied

Andrei Alexandrescu

Foreword by Scott Meyers
Foreword by John Viissides

< I
|

s

C++ In-Depth Series + Bjarne Stroustrup

Tuples and varmadic templates

* Tuples are implemented as variadic templates

* Variadic templates are the tool for manipulating tuples

Printing a tuple

//
T

el

//

Print a tuple
Based on http://cpplove.blogspot.com/2012/07/printing-tuples.html
template<std::size t> struct int {};

Forward declaration
template <typename... Args>
std: :ostream& operator<<(std::ostream& out, const std::tuple<Args...>& t);

Deal with pair, too
template <typename T1, typename T2>
std: :ostream& operator<<(std::ostream& out, const std::pair<T1l, T2>& p) {

return out << '(' << p.first << ", << p.second << ')';

}

template <typename Tuple, size t Pos>

std::ostream& print tuple(std::ostream& out, const Tuple& t, int <Pos>) {
out << std::get< std::tuple size<Tuple>::value-Pos>(t) << ", ";
return print_tuple(out, t, int_<Pos-1>());

}

template <typename Tuple>
std::ostream& print tuple(std::ostream& out, const Tuple& t, int <1>) {
return out << std::get<std::tuple_size<Tuple>::value-1>(t);

¥

template <typename... Args>

std: :ostream& operator<<(std::ostream& out, const std::tuple<Args...>& t) {
GRS (L5
print_tuple(out, t, int <sizeof...(Args)>());
FEEURNF OUTECAE) =

}

alss Marn: CrrmEssrchaps)" of

std:

std:

std:

std:

:tuple<int, std::string, float> t1l

B 2Pl R e bR R e 1)

N c(o] U whT A o IR T G v S GRS i e =Y o

:tuple<int, std::tuple<std::string, float>> t2

{ 10, std::make_tuple ("Test", 3.14)};

ccout << "t2:" << t2 << std::endl;

auto t3 = std::make_tuple (t1,
std: :make_pair ("Foo",

std: :make tuple ("Nest", 23, 2.71, "bar®)), El&ss

std::cout << "t3:" << t3 << std::endl;

return 0;

¥

Sequences of integers

* When you are picking out elements of a tuple, you need an index.
* Usually more than one.
* Enter:

* template <size_t... I[dx> struct indices {};

// Select a subset of a tuple at run time

template <typename ...Ts, size t ...Is>

auto

select(tuple<Ts...> t, indices<Is...>) ->
decltype(make tuple(get<Is>(t)...))

{
)

return make tuple(get<Is>(t)...);

// Select a subset of a tuple at compile time
template <typename Tuple, size t ...Is>
struct select {
typedef
decltype(make tuple(get<Is>(Tuple())...)) type;

s

std: :tuple<int, std::string, float> tl1 {10, "Test", 3.14};

// Make a new tuple with the old values
auto t4 = select (t1, indices<9,2,1>());

// Make a new tuple type and instantiate it
typedef select <std::tuple<int, float, std::string>, 0,2,1>
T5 t5 = std::make_tuple (3, "Hi Mom", 3.14);

v itypediliay

What can we do with this?

* Pretty much any transformation of a tuple (or a tuple type).

* The transformation has to be determined at compile-time.

Apply

* Take a functor and a tuple of values.

* Call the functor with the elements of the tuple as parameters.

template<typename F, typename Tuple, int... I>

auto

apply(F&& f, Tuple&& args, indicies<I...>) ->
decltype(forward<F>(f) (get<I>(forward<Tuple>(args))...))

i
return forward<F>(f)(get<I>(forward<Tuple>(args))...);

¥

More calling tricks

* Given a collection of functors and a collection of tuples, call each
functor on the associated tuple, and return a tuple of values

+ Each on their own thread

* Apply a functor to each element in a tuple, and return the results as a
tuple

* Wrap the tuple value in boost::any?

Conclusions

* For such a simple data structure, there’s a lot to be done with tuple
* I'm pretty sure that I've just scratched the surface here

* Go out and have fun with tuples!

(Questions!

