Code less.
Create more.
Deploy everywhere.

Qt event loop,
networking and 1/0 API

Thiago Macieira, Qt Core Maintainer
Aspen, May 2013

PRELsoECT e ELNX wieelesR 0| DNIDSMOR] INUX KE

INTEL LINUX GRAPHICS SYNCEVOLUTIONSIMPLE FIRMWARE INTERFACE (SFI) ENTERPRISE SECURITY IN

(=]

Who am 1?

* Open Source developer for 15 years
* C++ developer for 13 years

* Software Architect at Intel’s Open Source Technology
Center (OTC)

* Maintainer of two modules in the Qt Project
QtCore and QtDBus

* MBA and double degree in Engineering

* Previously, led the “Qt Open Governance” project

© 2013 Intel, 2012 KDAB

Qt5

First major version in 7 years

Goals: Release status:

* New graphics stack * Qt 5.0.2 released in April

* Declarative Ul design with QML * Qt 5.1.0 beta 1 released
iIn May

* More modular for quicker releases
* New, modern features

© 2013 Intel, 2012 KDAB

Agenda

Qt API Basics

The event loop
* Event loops and threads

* Networking and 1/O

© 2013 Intel, 2012 KDAB

Qt API Basics

API principles

Qt strives to be: Qt functionality support

* Easy to use (intuitive)

* Powerful

Possible 9%
* Cross-platform ossible 9%

* Backwards compatible for
years

Easy 90%

© 2013 Intel, 2012 KDAB

Naming convention

* camelCase with first letter lowercase

* Properties: nouns or sometimes adjectives
state, value, duration, size: visible, enabled, checkable

* Mutators and actions (including slots): verbs in the imperative
lock, set, create, load, append, replace, compare

* Signals: verbs in the past tense (sometimes implicit)
started, stopped, connected; bytes(Were)Written, undo(Became)Available

* Exceptions to the rules exist:
Compatibility with Standard Library, like begin() instead of beginning()

© 2013 Intel, 2012 KDAB

Events vs signals

* Events derive from QEvent * Signals are member functionst
* Carry information * Indicate state changes
* Directed to one destination * Are not directed

* Usually from the outside world ¢ Usually indicate processing
(spontaneous event) done by an object

* Require overriding virtualsto ¢ Does not require a new class,
be handled just a receiver member (slot)

© 2013 Intel, 2012 KDAB 1 There’s a reason for that: http://www.macieira.org/blog/2011/09/the-future-of-moc/

http://www.macieira.org/blog/2011/09/the-future-of-moc/

Signals and slots

* The main communication mechanism in Qt
* M:N connections

* Does not require a new class for handling a specific purpose

You can connect one signal to another7

QObject::connect(thread, SIGNAL(finished()), thread, SLOT(deletelLater())); “(//,

// convenience signal forwards
QObject::connect(doc, SIGNAL (undoAvailable(bool)), q, SIGNAL(undoAvailable(bool)));
QObject::connect(doc, SIGNAL(redoAvailable(bool)), q, SIGNAL(redoAvailable(bool)));

New syntax:

Q0bject::connect(thread, &QThread::finished, thread, &Q0bject::deletelLater);
Q0bject: :connect(gApp, &QCoreApplication::aboutToQuit, [=]1(0){});

© 2013 Intel, 2012 KDAB

Emitting a signal

* Signals are member functions whose body is implemented by
moc

* To emit a signal, simply call the signalfunction

emit readBufferSizeChanged(size);

* emit and Q_EMIT are just for readability
They are #define’d to nothing

© 2013 Intel, 2012 KDAB

Connection types

1.DirectConnection:
Slot is called immediately, by simple function call
Synchronous, same thread

2.QueuedConnection:
An event is posted so the slot is called later
Asynchronous, potentially run in another thread

3.BlockingQueuedConnection:
Same as QueuedConnection, but includes a semaphore to wait
Synchronous, always run in another thread

* AutoConnection: choose at emission time

© 2013 Intel, 2012 KDAB

Agenda

Qt API Basics

The event loop
* Event loops and threads

* Networking and 1/O

© 2013 Intel, 2012 KDAB

The Event Loop

Classes relating to the event loop

* QAbstractEventDispatcher

* QEventLoop

* QCoreApplication

* QTimer & QBasicTimer

* QSocketNotifier & QWinEventNotifer
* QThread

© 2013 Intel, 2012 KDAB

What an event loop does

* While linterrupted:
* If there are new events, dispatch them

* Walit for more events

* Event loops are the inner core of modern applications
Headless servers and daemons, GUI applications, etc.
Everything but shell tools and file-processing tools

© 2013 Intel, 2012 KDAB

Qt event loop feature overview

* Receives and translates GUI ¢ Integrates with:

events Generic Unix select(2)
NSEvents (on Mac) Glib
MSG (on Windows) Mac’s CFRunLoop
X11 events (using XCB) Windows’s WaitForMultipleObjects
Wayland events * Services timers
Many others With coarse timer support
* Manages the event queue e Polls sockets

(priority queue)
e * Polls Windows events
* Allows for event filtering
* Thread-safe waking up

© 2013 Intel, 2012 KDAB

QAbstractEventDispatcher

* Each thread has one instance
* Only of interest if you're porting to a new OS...

virtual bool processEvents(QEventlLoop::ProcessEventsFlags flags) = 0;
virtual bool hasPendingEvents() =

virtual void registerSocketNotifier(QSocketNotifier *notifier) = @
virtual void wnregisterSocketNotifier(QSocketNotifier #*notifier) =
virtual void registerTimer(int timerId, int interval,

Qt::TimerType timerType, QObject *object) =
virtual bool unregisterTimer(int timerId) = 0;

#ifdef Q_OS_WIN
virtual bool registerEventNotifier(QWinEventNotifier *notifier)

virtual void wunregisterEventNotifier(QWinEventNotifier *notifier)
#endif

@

virtual void wakeUp() =
virtual void interrupt() = 0;

© 2013 Intel, 2012 KDAB

Data sources: QTimer

* Millisecond-based timing
* One signal: timeout ()
* Convenience function for single-shot timers

* Three levels of coarseness:
Precise: accurate to the millisecond
Coarse (default): up to 5% error introduced so timers can be coalesced
VeryCoarse: rounded to the nearest second

QTimer timer;

timer.setInterval (2000);

QObject::connect(&timer, &QTimer::timeout, []1() {
gDebug() << "Timed out”;
gApp->exit(1);

1)

© 2013 Intel, 2012 KDAB

Data sources: QSocketNotifier

* Polling for read, write or exceptional activity on sockets
* On Unix, can poll anything that has a file descriptor
* One signal: activated(int)

PipeReader: :PipeReader(int fd, QObject *parent)
: QObject(parent), notifier(nullptr), m_fd(fd)

{
notifier = new QSocketNotifier(m_fd, QSocketNotifier::Read, this);
connect(notifier, &QSocketNotifier::activated, this, &PipeReader::readFromFd);

© 2013 Intel, 2012 KDAB

On Unix, it really means...

f Atomic variable

while (!interrupted.load()) {
struct timeval tm = maximumWaitTime();
fd_set readFds = enabledReadFds;
fd_set writeFds = enabledWriteFds;
fd_set exceptFds = enabledExceptFds;

emit aboutToBlock();
::select(maxFd + 1, &readFds, &writeFds, &exceptFds, &tm);
emit awake();

sendPostedEvents();
dispatchFds(&readFds, &writeFds, &exceptFds);
dispatchExpiredTimers();

© 2013 Intel, 2012 KDAB

Data sources: QWinEventNotifier

* Windows is different...
* Similar to QSocketNotifier
* One signal: activated(HANDLE)

© 2013 Intel, 2012 KDAB

Data sinks: objects (slots and event handlers)

* Objects receive signals and event

 Starting with Qt 5, signhals can be connected to lambdas, non-
member functions, functors and some types of member functions

public slots: void PipeReader::closeChannel()
void start(); {
::close(m_fd);
private slots: emit channelClosed();
void closeChannel(); }

void readFromFd();

© 2013 Intel, 2012 KDAB

Q{Core,Gul,}Application

* One instance of QCoreApplication per application
QGuiApplication if you want to use QWindow
QApplication if you want to use QWidget

* Defines the “GUI thread” and connects to the Ul server
* Starts the main event loop

© 2013 Intel, 2012 KDAB

A typical main(): exec()

r?(.- Analog Clock

oy ¢d
A /s
" &
N ~
e, -
Sy -
- o
-~ .
- b
s b
& .
7 LY
F L

© 2013 Intel, 2012 KDAB

int main(int argc, char x*argv)

{
QGuiApplication app(argc, argv);

AnalogClockWindow clock;
clock.show();

app.exec();

Simple example: timed read from a pipe (Unix)

class PipeReader : public QObject
{
Q_OBJECT
public:
PipeReader(int fd, QObject *parent = 0);

signals:
void dataReceived(const QByteArray &data);
void channelClosed();
void timeout();

private slots:
void closeChannel();
void readFromFd();

};

© 2013 Intel, 2012 KDAB

Simple example: timed read from a pipe (Unix)

int main(int argc, char *argv[])
{
QCoreApplication a(argc, argv);
PipeReader reader(fileno(stdin));
QObject::connect(&reader, &PipeReader::channelClosed, &QCoreApplication::quit);
Q0bject::connect(&reader, &PipeReader::dataReceived, []J(const QByteArray &data) {
gDebug() << "Received"” << data.length() << "bytes”;
1)
QTimer timer;
timer.setlnterval (2000);
Q0bject::connect(&timer, &QTimer::timeout, []1() {
qDebug() << "Timed out”;
gApp->exit(1);
1)
timer.start();
return a.exec();
}

© 2013 Intel, 2012 KDAB

Nesting event loops: QEventLoop

* Make non-blocking operations into “blocking” ones
* Without freezing the Ul

* Avoid if you can!

© 2013 Intel, 2012 KDAB

Using the pipe reader with QEventLoop

OByteArray nestedLoop()
{
QEventLoop loop;
OByteArray data;
PipeReader reader(fileno(stdin));
QO0bject::connect(&reader, &PipeReader::dataReceived,

[&](const QByteArray &newData) { data += newData; 1});
QObject::connect(&reader, &PipeReader::channelClosed, &loop, &QEventlLoop::quit);
loop.exec();
return data;

3

© 2013 Intel, 2012 KDAB

exec() in other classes

* It appears in modal GUI classes
QDialog
QProgressDialog
QFileDialog

QMenu

* Like QEventLoop’s exec(), avoid if you can!
Use show() and return to the main loop

© 2013 Intel, 2012 KDAB

Using the pipe reader with QProgressDialog

X W pipere.. & & & &

Bytes received

|5tcp reading| S

int progressDialog()
{
QProgressDialog dialog("Bytes received”, "Stop reading”, @, 100); // expect 100 bytes
PipeReader reader(fileno(stdin));
QO0bject: :connect(&reader, &PipeReader::channelClosed,
&dialog, &QProgressDialog: :accept);
Q0bject::connect(&reader, &PipeReader::dataReceived, [&](const QByteArray &data) {
gDebug() << "Received"” << data.length() << "bytes”;
dialog.setValue(gMin(dialog.maximum(), dialog.value() + data.length()));

s

dialog.exec();
return dialog.result() == QDialog::Accepted ? @ : 1;

© 2013 Intel, 2012 KDAB

Threading with Qt

QThread

* Manages a new thread in the application
Starting, waiting, requesting or forcing exit, notifying of exit, etc.

* Also provides some methods for the current thread
Sleeping, yielding

© 2013 Intel, 2012 KDAB

Why threads?

Good reasons Bad reasons
* Calling blocking functions * Touse sleep()
* CPU-Intensive work * Networking and 1/O

e Real-time work Except for scalability

* Scalability

© 2013 Intel, 2012 KDAB

A typical thread (without event loops)

© 2013 Intel, 2012 KDAB

class MyThread : public QThread

{
public:
void run()
{
// code that takes a long time to run goes here
}
}s

Thread example: blocking read from a pipe

void run()

{

forever {

QByteArray buffer (4096, Qt::Uninitialized);
ssize_t r = ::read(m_fd, buffer.data(), buffer.size());
if (r <= 0)
return;
buffer.resize(r);
emit dataReceived(buffer);

© 2013 Intel, 2012 KDAB

Threads and event loops: thread affinity

* Each QObject is associated with one thread
* Where its event handlers and slots will be called
* Where the object must be deleted

© 2013 Intel, 2012 KDAB

Moving objects to threads

ThreadedPipeReader?2: :ThreadedPipeReader2(int fd, QObject *parent)
: QThread(parent), reader(new PipeReader(fd))
{
reader->moveToThread(this);
connect(reader, &PipeReader::dataReceived, this,
&ThreadedPipeReader2: :dataReceived, Qt::DirectConnection);
connect(reader, &PipeReader::channelClosed,
[=1(0) { delete reader; quit(); 1});
3

» Automatically moves children

PipeReader: :PipeReader(int fd, QObject *parent)
: QObject(parent), notifier(nullptr), m_fd(fd)
{ \/
notifier = new QSocketNotifier(m_fd, QSocketNotifier::Read, this);
connect(notifier, &QSocketNotifier::activated, this, &PipeReader::readFromFd);

© 2013 Intel, 2012 KDAB

Connection types redux

* DirectConnection:
Slot is called immediately, by simple function call
Synchronous, same thread

* QueuedConnection:
An event is posted so the slot is called later
Asynchronous, potentially run in another thread

* BlockingQueuedConnection:
Same as QueuedConnection, but includes a semaphore to wait
Synchronous, always run in another thread

* AutoConnection: choose at emission time

© 2013 Intel, 2012 KDAB

A typical thread with event loop

© 2013 Intel, 2012 KDAB

void ThreadedPipeReader?2::run()
{
// preparation goes here
exec();
// clean-up goes here

Qt 1/O and Networking

The I/O classes

Random access

* QFile
QTemporaryFile
QSaveFile

* QBuffer

© 2013 Intel, 2012 KDAB

Sequential access
* QNetworkReply

* QProcess

* QLocalSocket

* QTcpSocket

* QUdpSocket

QIODevice

* Base class of all Qt I/O classes

* Provides:
CRLF translation
read(), readAll(), readLine(), write(), peek()
Signals: readyRead(), bytesWritten()
Buffering support, bytesAvailable(), bytesToWrite()
ateEnd(), size(), pos(), seek()

© 2013 Intel, 2012 KDAB

Random-access I/O characteristics

* Defining feature: seek() and size()
* Device can be put in unbuffered mode

* All /O Is synchronous
I/O latency is not considered as blocking

* No notification support (signals not emitted)

© 2013 Intel, 2012 KDAB

Random-access example: QFile

Can open a file name, a FILE* or
a file descriptor

OFile f: ¥
f.open(stdin, QIODevice::ReadOnly | QIODevice::Text);
while (!f.aténd()) {
QByteArray line = f.readLine().trimmed();
gDebug() << "Line is"” << line.length() << "bytes long";

© 2013 Intel, 2012 KDAB

Sequential-access 1/O

* Defining feature: you must read sequentially
* |/O functions are non-blocking (asynchronous)

* All operations are buffered
Unlimited size by default
Actual I/O happens in the event loop

* Signals notify of incoming or outgoing activity

© 2013 Intel, 2012 KDAB

The walitFor functions

* Exception to the non-blocking rule
* Provided for synchronous I/O

* Operate on the buffers

* Matched 1:1 with an I/O signal

readyRead - waitForReadyRead
bytesWritten -» waltForBytesWritten
connected / started -» waitForConnected / waitForStarted

disconnected / finished - waitForDisconnected / waitForFinished

© 2013 Intel, 2012 KDAB

Synchronous sequential access

* Remember: read() and write() operate on buffers
* Must call waitForReadyRead() and/or waitForBytesWritten()

* Both functions execute both input and output
No buffer deadlock

© 2013 Intel, 2012 KDAB

Asynchronous sequential access

* read() when readyRead() is emitted
* write() when necessary
* Event loop takes care of the rest!

* To limit buffer size:
Input buffer: setReadBufferSize()
Output buffer: manual control using bytesToWrite()

© 2013 Intel, 2012 KDAB

When to use synchronous or asynchronous

* Networking in the GUI thread? Always asynchronous
* Multiple I/O in the same thread? Asynchronous

* Short child process? Synchronous

* Writing a blocking function? Synchronous

© 2013 Intel, 2012 KDAB

QProcess example

AsyncProcess()
{
auto proc = new QProcess;
connect(proc,
(void (QProcess::*)(int))&QProcess::finished,
(=10 {

proc->readlLine(); // skip first line
proc->deletelLater();

emit dataReceived(proc->readLine().trimmed());

1)
proc->start("gmake”, QStringList() << "-v");
3
QByteArray syncProcess()
{
QProcess proc;
proc.start(”"gmake”, QStringlList() <<
proc.waitForFinished();
proc.readLine(); // skip first line
return proc.readLine().trimmed();
}

n_.,n

\Y

);

© 2013 Intel, 2012 KDAB

HTTP/0.9 downloader example

© 2013 Intel, 2012 KDAB

OByteArray http@9Downloader ()

{

QTcpSocket socket;
socket.connectToHost("qt-project.org”, 80);
socket.write("GET /\r\n");
socket.waitForDisconnected();

return socket.readAll();

Gopher example

© 2013 Intel, 2012 KDAB

QByteArray gopher()

{

QTcpSocket socket;

socket.
socket.
socket.
return

connectToHost("gopher.floodgap.com”, 70);
write("/feeds/latest\r\n");
waltForDisconnected();

socket.readAll();

INTEL OPEN SOURCE
TECHNOLOGY CENTER

WL Reess S| DN PR INUX KERNEL

SYNCEVOLUTIONSIMPLE FIRMWARE INTERFACE (SFI) ENTERPRISE SECURITY INFRASTRUCTURE

	This is an Example of a Presentation Title Flowing on to Three Lines
	Basic Text
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

