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Who am 1?

* Open Source developer for 15 years
* C++ developer for 13 years

* Software Architect at Intel’s Open Source Technology
Center (OTC)

* Maintainer of two modules in the Qt Project
QtCore and QtDBus

* MBA and double degree in Engineering

* Previously, led the “Qt Open Governance” project
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Qt5

First major version in 7 years

Goals: Release status:

* New graphics stack * Qt 5.0.2 released in April

* Declarative Ul design with QML * Qt 5.1.0 beta 1 released
iIn May

* More modular for quicker releases
* New, modern features

© 2013 Intel, 2012 KDAB



Agenda

Qt API Basics

The event loop
* Event loops and threads

* Networking and 1/O
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Qt API Basics




API principles

Qt strives to be: Qt functionality support

* Easy to use (intuitive)

* Powerful

Possible 9%
* Cross-platform ossible 9%

* Backwards compatible for
years

Easy 90%
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Naming convention

* camelCase with first letter lowercase

* Properties: nouns or sometimes adjectives
state, value, duration, size: visible, enabled, checkable

* Mutators and actions (including slots): verbs in the imperative
lock, set, create, load, append, replace, compare

* Signals: verbs in the past tense (sometimes implicit)
started, stopped, connected; bytes(Were)Written, undo(Became)Available

* Exceptions to the rules exist:
Compatibility with Standard Library, like begin() instead of beginning()
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Events vs signals

* Events derive from QEvent * Signals are member functionst
* Carry information * Indicate state changes
* Directed to one destination * Are not directed

* Usually from the outside world ¢ Usually indicate processing
(spontaneous event) done by an object

* Require overriding virtualsto ¢ Does not require a new class,
be handled just a receiver member (slot)

© 2013 Intel, 2012 KDAB 1 There’s a reason for that: http://www.macieira.org/blog/2011/09/the-future-of-moc/
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Signals and slots

* The main communication mechanism in Qt
* M:N connections

* Does not require a new class for handling a specific purpose

You can connect one signal to another7

QObject::connect(thread, SIGNAL(finished()), thread, SLOT(deletelLater())); “(//,

// convenience signal forwards
QObject::connect(doc, SIGNAL (undoAvailable(bool)), q, SIGNAL(undoAvailable(bool)));
QObject::connect(doc, SIGNAL(redoAvailable(bool)), q, SIGNAL(redoAvailable(bool)));

New syntax:

Q0bject::connect(thread, &QThread::finished, thread, &Q0bject::deletelLater);
Q0bject: :connect(gApp, &QCoreApplication::aboutToQuit, [=]1(0){});
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Emitting a signal

* Signals are member functions whose body is implemented by
moc

* To emit a signal, simply call the signalfunction

emit readBufferSizeChanged(size);

* emit and Q_EMIT are just for readability
They are #define’d to nothing
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Connection types

1.DirectConnection:
Slot is called immediately, by simple function call
Synchronous, same thread

2.QueuedConnection:
An event is posted so the slot is called later
Asynchronous, potentially run in another thread

3.BlockingQueuedConnection:
Same as QueuedConnection, but includes a semaphore to wait
Synchronous, always run in another thread

* AutoConnection: choose at emission time
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The Event Loop




Classes relating to the event loop

* QAbstractEventDispatcher

* QEventLoop

* QCoreApplication

* QTimer & QBasicTimer

* QSocketNotifier & QWinEventNotifer
* QThread
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What an event loop does

* While linterrupted:
* If there are new events, dispatch them

* Walit for more events

* Event loops are the inner core of modern applications
Headless servers and daemons, GUI applications, etc.
Everything but shell tools and file-processing tools
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Qt event loop feature overview

* Receives and translates GUI ¢ Integrates with:

events Generic Unix select(2)
NSEvents (on Mac) Glib
MSG (on Windows) Mac’s CFRunLoop
X11 events (using XCB) Windows’s WaitForMultipleObjects
Wayland events * Services timers
Many others With coarse timer support
* Manages the event queue e Polls sockets

(priority queue)
e * Polls Windows events
* Allows for event filtering
* Thread-safe waking up
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QAbstractEventDispatcher

* Each thread has one instance
* Only of interest if you're porting to a new OS...

virtual bool processEvents(QEventlLoop::ProcessEventsFlags flags) = 0;
virtual bool hasPendingEvents() =

virtual void registerSocketNotifier(QSocketNotifier *notifier) = @
virtual void wnregisterSocketNotifier(QSocketNotifier #*notifier) =
virtual void registerTimer(int timerId, int interval,

Qt::TimerType timerType, QObject *object) =
virtual bool unregisterTimer(int timerId) = 0;

#ifdef Q_OS_WIN
virtual bool registerEventNotifier(QWinEventNotifier *notifier)

virtual void wunregisterEventNotifier(QWinEventNotifier *notifier)
#endif

@

virtual void wakeUp() =
virtual void interrupt() = 0;
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Data sources: QTimer

* Millisecond-based timing
* One signal: timeout ()
* Convenience function for single-shot timers

* Three levels of coarseness:
Precise: accurate to the millisecond
Coarse (default): up to 5% error introduced so timers can be coalesced
VeryCoarse: rounded to the nearest second

QTimer timer;

timer.setInterval (2000);

QObject::connect(&timer, &QTimer::timeout, []1() {
gDebug() << "Timed out”;
gApp->exit(1);

1)
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Data sources: QSocketNotifier

* Polling for read, write or exceptional activity on sockets
* On Unix, can poll anything that has a file descriptor
* One signal: activated(int)

PipeReader: :PipeReader(int fd, QObject *parent)
: QObject(parent), notifier(nullptr), m_fd(fd)

{
notifier = new QSocketNotifier(m_fd, QSocketNotifier::Read, this);
connect(notifier, &QSocketNotifier::activated, this, &PipeReader::readFromFd);
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On Unix, it really means...

f Atomic variable

while (!interrupted.load()) {
struct timeval tm = maximumWaitTime();
fd_set readFds = enabledReadFds;
fd_set writeFds = enabledWriteFds;
fd_set exceptFds = enabledExceptFds;

emit aboutToBlock();
::select(maxFd + 1, &readFds, &writeFds, &exceptFds, &tm);
emit awake();

sendPostedEvents();
dispatchFds(&readFds, &writeFds, &exceptFds);
dispatchExpiredTimers();
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Data sources: QWinEventNotifier

* Windows is different...
* Similar to QSocketNotifier
* One signal: activated(HANDLE)
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Data sinks: objects (slots and event handlers)

* Objects receive signals and event

 Starting with Qt 5, signhals can be connected to lambdas, non-
member functions, functors and some types of member functions

public slots: void PipeReader::closeChannel()
void start(); {
::close(m_fd);
private slots: emit channelClosed();
void closeChannel(); }

void readFromFd();
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Q{Core,Gul,}Application

* One instance of QCoreApplication per application
QGuiApplication if you want to use QWindow
QApplication if you want to use QWidget

* Defines the “GUI thread” and connects to the Ul server
* Starts the main event loop
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A typical main(): exec()
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int main(int argc, char x*argv)

{
QGuiApplication app(argc, argv);

AnalogClockWindow clock;
clock.show();

app.exec();




Simple example: timed read from a pipe (Unix)

class PipeReader : public QObject
{
Q_OBJECT
public:
PipeReader(int fd, QObject *parent = 0);

signals:
void dataReceived(const QByteArray &data);
void channelClosed();
void timeout();

private slots:
void closeChannel();
void readFromFd();

};
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Simple example: timed read from a pipe (Unix)

int main(int argc, char *argv[])
{
QCoreApplication a(argc, argv);
PipeReader reader(fileno(stdin));
QObject::connect(&reader, &PipeReader::channelClosed, &QCoreApplication::quit);
Q0bject::connect(&reader, &PipeReader::dataReceived, []J(const QByteArray &data) {
gDebug() << "Received"” << data.length() << "bytes”;
1)
QTimer timer;
timer.setlnterval (2000);
Q0bject::connect(&timer, &QTimer::timeout, []1() {
qDebug() << "Timed out”;
gApp->exit(1);
1)
timer.start();
return a.exec();
}
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Nesting event loops: QEventLoop

* Make non-blocking operations into “blocking” ones
* Without freezing the Ul

* Avoid if you can!
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Using the pipe reader with QEventLoop

OByteArray nestedLoop()
{
QEventLoop loop;
OByteArray data;
PipeReader reader(fileno(stdin));
QO0bject::connect(&reader, &PipeReader::dataReceived,

[&](const QByteArray &newData) { data += newData; 1});
QObject::connect(&reader, &PipeReader::channelClosed, &loop, &QEventlLoop::quit);
loop.exec();
return data;

3
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exec() in other classes

* It appears in modal GUI classes
QDialog
QProgressDialog
QFileDialog

QMenu

* Like QEventLoop’s exec(), avoid if you can!
Use show() and return to the main loop
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Using the pipe reader with QProgressDialog

X W pipere.. & & & &

Bytes received

|5tcp reading| S

int progressDialog()
{
QProgressDialog dialog("Bytes received”, "Stop reading”, @, 100); // expect 100 bytes
PipeReader reader(fileno(stdin));
QO0bject: :connect(&reader, &PipeReader::channelClosed,
&dialog, &QProgressDialog: :accept);
Q0bject::connect(&reader, &PipeReader::dataReceived, [&](const QByteArray &data) {
gDebug() << "Received"” << data.length() << "bytes”;
dialog.setValue(gMin(dialog.maximum(), dialog.value() + data.length()));

s

dialog.exec();
return dialog.result() == QDialog::Accepted ? @ : 1;
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Threading with Qt




QThread

* Manages a new thread in the application
Starting, waiting, requesting or forcing exit, notifying of exit, etc.

* Also provides some methods for the current thread
Sleeping, yielding
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Why threads?

Good reasons Bad reasons
* Calling blocking functions * Touse sleep()
* CPU-Intensive work * Networking and 1/O

e Real-time work Except for scalability

* Scalability
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A typical thread (without event loops)

© 2013 Intel, 2012 KDAB

class MyThread : public QThread

{
public:
void run()
{
// code that takes a long time to run goes here
}
}s




Thread example: blocking read from a pipe

void run()

{

forever {

QByteArray buffer (4096, Qt::Uninitialized);
ssize_t r = ::read(m_fd, buffer.data(), buffer.size());
if (r <= 0)
return;
buffer.resize(r);
emit dataReceived(buffer);
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Threads and event loops: thread affinity

* Each QObject is associated with one thread
* Where its event handlers and slots will be called
* Where the object must be deleted
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Moving objects to threads

ThreadedPipeReader?2: :ThreadedPipeReader2(int fd, QObject *parent)
: QThread(parent), reader(new PipeReader(fd))
{
reader->moveToThread(this);
connect(reader, &PipeReader::dataReceived, this,
&ThreadedPipeReader2: :dataReceived, Qt::DirectConnection);
connect(reader, &PipeReader::channelClosed,
[=1(0) { delete reader; quit(); 1});
3

» Automatically moves children

PipeReader: :PipeReader(int fd, QObject *parent)
: QObject(parent), notifier(nullptr), m_fd(fd)
{ \/
notifier = new QSocketNotifier(m_fd, QSocketNotifier::Read, this);
connect(notifier, &QSocketNotifier::activated, this, &PipeReader::readFromFd);
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Connection types redux

* DirectConnection:
Slot is called immediately, by simple function call
Synchronous, same thread

* QueuedConnection:
An event is posted so the slot is called later
Asynchronous, potentially run in another thread

* BlockingQueuedConnection:
Same as QueuedConnection, but includes a semaphore to wait
Synchronous, always run in another thread

* AutoConnection: choose at emission time
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A typical thread with event loop

© 2013 Intel, 2012 KDAB

void ThreadedPipeReader?2::run()
{
// preparation goes here
exec();
// clean-up goes here




Qt 1/O and Networking




The I/O classes

Random access

* QFile
QTemporaryFile
QSaveFile

* QBuffer

© 2013 Intel, 2012 KDAB

Sequential access
* QNetworkReply

* QProcess

* QLocalSocket

* QTcpSocket

* QUdpSocket



QIODevice

* Base class of all Qt I/O classes

* Provides:
CRLF translation
read(), readAll(), readLine(), write(), peek()
Signals: readyRead(), bytesWritten()
Buffering support, bytesAvailable(), bytesToWrite()
ateEnd(), size(), pos(), seek()
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Random-access I/O characteristics

* Defining feature: seek() and size()
* Device can be put in unbuffered mode

* All /O Is synchronous
I/O latency is not considered as blocking

* No notification support (signals not emitted)
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Random-access example: QFile

Can open a file name, a FILE* or
a file descriptor

OFile f: ¥
f.open(stdin, QIODevice::ReadOnly | QIODevice::Text);
while (!f.aténd()) {
QByteArray line = f.readLine().trimmed();
gDebug() << "Line is"” << line.length() << "bytes long";
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Sequential-access 1/O

* Defining feature: you must read sequentially
* |/O functions are non-blocking (asynchronous)

* All operations are buffered
Unlimited size by default
Actual I/O happens in the event loop

* Signals notify of incoming or outgoing activity

© 2013 Intel, 2012 KDAB



The walitFor functions

* Exception to the non-blocking rule
* Provided for synchronous I/O

* Operate on the buffers

* Matched 1:1 with an I/O signal

readyRead - waitForReadyRead
bytesWritten -» waltForBytesWritten
connected / started -» waitForConnected / waitForStarted

disconnected / finished - waitForDisconnected / waitForFinished
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Synchronous sequential access

* Remember: read() and write() operate on buffers
* Must call waitForReadyRead() and/or waitForBytesWritten()

* Both functions execute both input and output
No buffer deadlock
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Asynchronous sequential access

* read() when readyRead() is emitted
* write() when necessary
* Event loop takes care of the rest!

* To limit buffer size:
Input buffer: setReadBufferSize()
Output buffer: manual control using bytesToWrite()
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When to use synchronous or asynchronous

* Networking in the GUI thread? Always asynchronous
* Multiple I/O in the same thread? Asynchronous

* Short child process? Synchronous

* Writing a blocking function? Synchronous
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QProcess example

AsyncProcess()
{
auto proc = new QProcess;
connect(proc,
(void (QProcess::*)(int))&QProcess::finished,
(=10 {

proc->readlLine(); // skip first line
proc->deletelLater();

emit dataReceived(proc->readLine().trimmed());

1)
proc->start("gmake”, QStringList() << "-v");
3
QByteArray syncProcess()
{
QProcess proc;
proc.start(”"gmake”, QStringlList() <<
proc.waitForFinished();
proc.readLine(); // skip first line
return proc.readLine().trimmed();
}

n_.,n

\Y

);
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HTTP/0.9 downloader example

© 2013 Intel, 2012 KDAB

OByteArray http@9Downloader ()

{

QTcpSocket socket;
socket.connectToHost("qt-project.org”, 80);
socket.write("GET /\r\n");
socket.waitForDisconnected();

return socket.readAll();




Gopher example

© 2013 Intel, 2012 KDAB

QByteArray gopher()

{

QTcpSocket socket;

socket.
socket.
socket.
return

connectToHost("gopher.floodgap.com”, 70);
write("/feeds/latest\r\n");
waltForDisconnected();

socket.readAll();
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