
Dynamic, Recursive, Heterogeneous

Types in Statically Typed Languages

Richard T. Saunders ‒ Rincon Research Corporation

Dr. Clinton Jeffery ‒ University of Idaho

15 May 2013 1 C++ Now! 2013

Python dict

>>> v = "abc"

>>> v = 1 # dynamic values

heterogeneous types in dict

>> d = { 'a':1, 'nest': {'b':3.14}}

recursive, cascading lookup, insert

>>> print d['nest']['b']

>>> d['nest']['new'] = 17.6 # insert

15 May 2013 C++ Now! 2013 2

Adding Key-Value Dicts to C++

• Most Dynamic Languages have a notion of a dictionary of key-value

pairs

– Python dict

– Unicon/Icon table

– Lua tables

– Javascript objects

– Ruby Hash (key-value store)

• The dict is really easy to use!

 Key-Value Store:

– Associates a key with any kind of value

 >>> d = { 'a': 1, 'b':2.2, 'c':'three' }

 >>> print d['a'] # key of 'a', value 1

 1

• … no real equivalent in C++…

15 May 2013 C++ Now! 2013 3

... using C++ features to make it

easier

• We can add something like dict to C++

• Paradoxically: static features of C++ make dynamic features easier

(??)

– Function Overloading

– Operator Overloading

– User-Defined Conversions

– Type Selection

– Type Inference

15 May 2013 C++ Now! 2013 4

Why Python dicts?

 Goal: Make dynamic, recursive, heterogeneous, dictionaries as easy

to use in C++ as Python

• Why?

– Most major projects span multiple languages

• Scripting languages (Python, JavaScript, Ruby) are the front-

end, gluing together components

• High-performance languages (FORTRAN, C/C++) form the

hardcore backend

– The front-end languages and the back-end languages need a

common currency for communication: the Python dictionary

15 May 2013 C++ Now! 2013 5

Outline

• Definitions

• History/Lessons Learned

• Val, Tab, Arr framework

– Overloading

– User-Defined Conversions

– Cascading Insertion and Lookup

• Boost any type

• Conclusion

15 May 2013 C++ Now! 2013 6

Definition: Dynamically Typed

• Dynamically Typed Language: The type of a variable is determined by

the value in the variable at runtime

– Python, Ruby, Lisp, Unicon are dynamically typed languages

• Python:

>>> a = 1 # a is a int

>>> a = 2.2 # Nope! Now it's a float

>>> a = "three" # Now it's a string

• The type is dynamic and bound at runtime

15 May 2013 C++ Now! 2013 7

Definition: Statically Typed

• Statically Typed Language: The type of a variable is bound at

compile-time: that variable can only hold values of that type.

– FORTRAN, C, C++, Java are statically-typed languages

• C++ Example:

int a = 1;

a = 2.2;

 // converts 2.2 to an int (or ERROR)

a = "three";

 // ERROR: a can only hold int values

15 May 2013 C++ Now! 2013 8

Heterogeneous vs. Homogeneous

• Usually apply term to containers

– A container is heterogeneous if it can hold more than one type

– A container is homogeneous if it can only hold one type

• C++ containers are homogeneous:

 vector<int> v{1,2,3}; // array type for ints only

 map<string, int> m; // key-value, but string->int only

• Python containers are heterogeneous:

 a = [1, 2.2, 'three'] # array type, can hold any type

 d = { 'a':1, 'b':2.2, 'c':'three' }

 # keys and values can mix types

15 May 2013 C++ Now! 2013 9

Definition: Recursive

• A container is recursive if it can contain types of itself

– i.e., containers contain containers

>>> d = { 'a': 1, 'b': 2.2, 'c': {'d':1 } }

• Extension of heterogeneity

– How well does the language support nested types?

// Python: trivial

>>> print d['c']['a'] # Easy to access

1

// C++: // Uhh … ???

map<string, map<string, int> > m;

 // Only contains maps of map? Not really …

15 May 2013 C++ Now! 2013 10

History (or "How I Became Obsessed

with Dynamic Types in C++")

• 1996: Worked on Midas 2k: A C++ framework for doing DSP

– Technical success, political failure

– I work with engineers: simplicity of interface matters

• One major success: OpalValues, OpalTables

– Everyone wrote a list of things that should migrate from Midas 2k

to new system

– Number 1 on everyone's list: OpalValues/OpalTables

15 May 2013 C++ Now! 2013 11

OpalValue:Dynamic Types version 1.0

• OpalValue: A dynamic container for holding any basic type, or tables

• OpalTables: a recursive, heterogeneous key-value container

– OpalTable ot = "{a=1, b=2.2}";

• keys are a, b

• Values are 1, 2.2

• ot.get("b") returns 2.2

– Keys are strings

– Values are OpalValues (heterogeneous), which can also be

OpalTables (recursive)

15 May 2013 C++ Now! 2013 12

OpalValue Successes

• Expressing Dynamic, Recursive, Heterogeneous Types in C++

– New

– Useful (on everyone's list as a feature to migrate)

• Both textual and binary expression

– OpalTables could be saved to file in both binary (fast) and textual

(human-readable) form

15 May 2013 C++ Now! 2013 13

OpalValue Failure: Insertion of Values

was simple, but not trivial

• OpalValue o1 = Opalize(string("hello"))

• OpalValue o2 = OpalTable(); // empty table

• OpalValue o3 = Number(real_8(1.0));

• Wasn't consistent, sometimes needed Opalize

• Using Opalize is wordy

• Number!

15 May 2013 C++ Now! 2013 14

OpalValue Failure: Extraction of

Values was Terrible

• Number n = UnOpalize(ov, Number);

• int i = n;

• string s = UnOpalize(ov, string);

15 May 2013 C++ Now! 2013 15

OpalValue Lesson 1: Number was a

Mistake ….

• Having a container class to contain numbers was a mistake: all

extractions had to go through an extra level of Number

Number n = UnOpalize(ov, Number);

real_8 r = n;

15 May 2013 C++ Now! 2013 16

OpalValue Lesson 2: Number was a

Mistake … but it Taught us Something

• Number n1 = 1; // int

• Number n2 = 2.2; // double

• Number n3 = 3.3f; // float

• int ii = n1; // get out an int

• real_8 rr = n3; // get out double

15 May 2013 C++ Now! 2013 17

OpalValue Failures: Textual

Representation was Non-standard

• Syntax "stovepipe creation", i.e., non-standard

– { a = { 1,2,3}, b = { c="hello"} }

– Remember, this was the pre-JSON and pre-XML era

• Lists and tables had the same syntax with { }

– {1,2.2,"three"} same as {0=1,1=2.2, 2="three"}

15 May 2013 C++ Now! 2013 18

Lessons

• Extraction and Insertion must be trivial

• An extra Number class is a mistake

• Use standard textual representation

• "Holistic" lesson: Be careful when overloading

– Conversions interact in strange ways

– Ambiguous overloads or conversions => compiler complains

15 May 2013 C++ Now! 2013 19

Dynamic Types 2.0: Python: Wow!

• Python got Dynamic, Recursive, Heterogeneous Types right!

15 May 2013 C++ Now! 2013 20

Python

>>> v = "abc"

>>> v = 1 # dynamic values

heterogeneous types in dict

>>> d = { 'a':1, 'nest': {'b':3.14}}

recursive, cascading lookup, insert

>>> print d['nest']['b']

>>> d['nest']['new'] = 17.6 # insert

15 May 2013 C++ Now! 2013 21

Dynamic Types 2.0: Lessons

• Lessons learned:

– Use Python dictionary syntax as much as possible

• People like it

• Easy to use

• In Python, modules, classes and most major namespaces are

implemented as Python dictionaries

– because of this ubiquity, the dict is fast and easy to use

• Textual format is "standard"

– JSON is a subset of Python dictionary (almost)

– Python is widely used

15 May 2013 C++ Now! 2013 22

Dynamic Types 3.0: Var

• Var is a wrapper in C++ for manipulating Python data structures

– Embed a Python interpreter into your C++ program

– Tried to make Python easier to express in C++

• Successes:

– Var: a dynamic type

– Cascading inserts, lookups easy to express

• Failures:

– Extracting info too wordy

– Python interpreter required

– Cascading inserts, lookups used a proxy …

15 May 2013 C++ Now! 2013 23

"Final Version": the Val/Tab/Arr

• Goal: Make dynamic, recursive, heterogeneous dictionaries as easy

to use in C++ as Python

• Why?

– Most major projects span multiple languages

• Scripting languages (Python, Javascript, Ruby) are the front-

end, gluing together components

• High-performance languages (FORTRAN, C/C++) form the

hardcore backend

– The front-end languages and the back-end languages need a

common currency for communication: the Python dictionary

• Those who fail to learn the lessons of history are doomed to repeat

them

15 May 2013 C++ Now! 2013 24

Python

>>> v = "abc"

>>> v = 1 # dynamic values

heterogeneous types in dict

>> d = { 'a':1, 'nest': {'b':3.14}}

recursive, cascading lookup, insert

>>> print d['nest']['b']

>>> d['nest']['new'] = 17.6 # insert

15 May 2013 C++ Now! 2013 25

C++

Val v = "abc";

v = 1; // dynamic values

// heterogeneous types in Tab

Tab d = "{'a':1,'nest': {'b':3.1.4}}";

// recursive, cascading lookup, insert

cout << d["nest"]["b"] << endl;

d["nest"]["new"] = 17.6;

15 May 2013 C++ Now! 2013 26

Basics: the Val

• Every variable in C++ must have a static type: we will use Val as the

type representing dynamic values.

•Val is a simple dynamic container:

– Strings

– Dictionaries (Tab) and lists (Arr)

– Can contain any primitive type: int_1, int_u1, int_2,

int_u2, int_4, int_u4, real_4, real_8, complex_8,

complex_16.

15 May 2013 C++ Now! 2013 27

Static Overloading on Constructor

• Chooses type based on value

• Makes Val construction easy:

Val a = 100; // int

Val b = 3.141592; // real_8

Val c = 3.1415f; // real_4

Val d = "hello"; // string

Val e = None; // empty

Val t = Tab(); // dictionary

15 May 2013 C++ Now! 2013 28

Val Implementation

• Implemented as a type-tag and a union

– That's so 1980s!

– Reasons:

 (1) Union is fast and space-efficient

 (2) Union is also thread and heap friendly

• avoid unnecessary heap allocation: minor lesson from M2k

 (3) Intentional lack of virtual functions or pointers to functions means

you can use the Val in cross-process shared memory

 (4) Yes, use placement new and manual destructors

15 May 2013 C++ Now! 2013 29

Overloading Constructor: Issue

• Has to be overloaded on all primitive types, or compiler complains

– If you forget real_8, what does Val v = 1.0 do?

Class Val {

 public:

 // Constructors on Val overloaded on all primitive types

 Val (int_u1 a) : …

 Val (int_1 a) : …

 Val (int_u2 a) : …

 Val (int_4 a) : …

 Val (int_u8 a) : …

 Val (int_8 a) : …

 Val (real_4 a) : …

 Val (real_8 a) : …

 Val (const string& s) : …

15 May 2013 C++ Now! 2013 30

Why not use

Templatized Constructor?

• Answer:

(1) We don't control it as well, and we have to control all primitive type

conversions to avoid compiler ambiguities

(2) Some backwards compatibility issues:

 users back at RedHat 3 and 4!

15 May 2013 C++ Now! 2013 31

Overloading on

Platform Dependent Types

• Result of many STL operations is a size_t. What is a size_t?

Answer: Some unsigned int. Depends.

• May or may not be same as int_u8 or int_u4. May be platform

defined int

– more likely, GNU quantity: like int, but considered a different type

by C++ type system.

• On some platforms, will be a int_u8/int_u4; on others, not.

15 May 2013 C++ Now! 2013 32

Val and size_t Interactions

• Want Val to work well with size_t:

 Val v=sizeof(Blach);

• But above will NOT work on platforms where size_t is not an int_u4 or

int_u8. We can work around it:

 Val v=int_u8(sizeof(Blach));

• But this subverts the "simplicity" for the users

15 May 2013 C++ Now! 2013 33

Old days: #ifdef

• In old C days, we would add a #ifdef and add a new constructor for

machines where size_t is a new type:

 class Val {

 #ifdef SIZE_T_NOT_INT_U8

 Val(size_t) : …

 #endif

}

Problem: manually check if size_t is available or not, have to manage

macros

15 May 2013 C++ Now! 2013 34

New Days: Type Selection

• Use type selection technique from Modern C++ Design

– Introduce a new dummy type called OC_UNUSED_SIZE_T

– Introduce a new constructor Val(ALLOW_SIZE_T)

– If the compiler notices that size_t is a unique int type

• ALLOW_SIZE_T becomes typedeffed to size_t

– else size_t is NOT a unique int (i.e., it is an int_u4), then

• ALLOW_SIZE_T is typedeffed to OC_UNUSED_SIZE_T

15 May 2013 C++ Now! 2013 35

Type Selection (Idea)

class OC_UNUSED_SIZE_T { };

template <class T> struct FindSizeT {

 typedef size_t Result;

};

template <> struct FindSizeT<int_u4> {

 typedef OC_UNUSED_SIZE_T Result;

}

typedef FindSizeT<size_t>::Result ALLOW_SIZE_T;

Class Val {

 Val (ALLOW_SIZE_T a) : …

 // all other overloads …

}

15 May 2013 C++ Now! 2013 36

By the way … also overload operator=

Val V = 1; // constructor

V = 2.2; // operator=

V = "three"; // operator=

V = None;

V = Tab();

15 May 2013 C++ Now! 2013 37

User-Defined Conversion

• C++ has a unique feature called user-defined conversions which

allow a type to export itself as a different type.

class IntRange { // restricted to 0..99

 operator int () {…} // allow IntRange

 // to be used as int

};

int f(int i); // prototype for f:

 //f only takes an int argument

IntRange m;

f(m); // ERROR?? No!! IntRange is allowed

 // to export itself as an int

15 May 2013 C++ Now! 2013 38

Syntactic Sugar

IntRange m;

f(m);

// Above form is syntactic sugar for:

IntRange m;

int _outcasted_temp_ = m.operator int();

f(_outcasted_temp_); // Legal C++!

15 May 2013 C++ Now! 2013 39

User-Defined Conversions with Val

• Allows us to extract all types from Val with minimal typing. Val
has user-defined conversions for all basic types as well as
Tabs, Arrs and strings:

Val v = 3.141592;

double d = v; // syntactic sugar

// same as

Val v = 3.141592;

double d = v.operator double();

Type of the variable INFORMS the conversion so you don't have to

state explicitly which conversion is being used!

15 May 2013 C++ Now! 2013 40

Val type and conversion mismatch?

• What if type in Val and outcast mismatch?

Val v = 3.141592;

int i = v; // What happens?

• Principle of Least Surprise:

– Do what C++ would do if you explicitly cast.

– If not allowed, throw an exception (like a dynamic language would)

int i = static_cast<int>(3.141592); // cast to 3

15 May 2013 C++ Now! 2013 41

Other Mismatched Conversions

Val v = 3.141;

float f = v; // As C++:f=float(3.141);

int i = v; // As C++:i=int(3.141);

Tab t = v;

 // NOT a table, throw exception!

15 May 2013 C++ Now! 2013 42

Val Implementation

• Like Val constructor, the outcasts have to overload on all primitive
types (and strings, Tab, Arr) or will run into massive compiler
warnings:

class Val {

 operator int_u1();

 operator int_1();

 operator int_u2();

 operator int_4();

 operator int_u4();

 operator int_8();

 operator int_u8();

 operator ALLOW_SIZE_T(); // size_t different?

 operator real_4 ();

 operator real_8();

 …

};

15 May 2013 C++ Now! 2013 43

Val Implementation (code)

Archaic implementation:

but we control all conversions

operator int_4 () { // tag tells which union field

 switch (tag) {

 case 's': return int_4(u.s); // int_1 union field

 case 'S': return int_4(u.S); // int_u1 union field

 case 'i': return int_4(u.i); // int_2 field

 case 'I': return int_4(u.I); // int_u2 field

 case 'l': return int_4(u.l); // int_4 field

 case 'L': return int_4(u.L); // int_u4 field

 case 'x': return int_4(u.x); // int_8 field

 case 'X': return int_4(u.X); // int_u8 field

 case 'f': return int_4(u.f); // real_4 field

 case 'd': return int_4(u.d); // real_8 field

 …

}

15 May 2013 C++ Now! 2013 44

Limitations

Val v = 1;

string s = v; // Works: operator string() on Val

s = v; // FAILS! Overloaded operator=

• Problem: STL string has its own operator= and user-defined outcast

interferes (confuses compiler)

– All these signatures interfere with each other

string& operator=(const string& str);

string& operator=(const char* s);

string& operator=(char c);

Val::operator string();// Which one to use?

15 May 2013 C++ Now! 2013 45

Workaround

string s;

Val v = 1;

s = string(v);

 // forces user-defined conversion

It breaks the idea that the variable chooses the right user-defined

conversion, but at least it's simple and not too much more typing

Idea is useful in longer code snippets:

Val freq, bw = … something …

real_8 lim = real_8(freq) + real_8(bw) * 2.0 + 1000;

15 May 2013 C++ Now! 2013 46

Summary of Val: Easy to Put

 Values in and Take Values Out

// C++

Val v = "hello"; // Val is dynamic container

v = 17;

v = 1.0; // easy to put values in

float d = v; // easy to take values out

string s = d; // easy way to stringize

Python

v = 'hello' # Python

v = 17

v = 1.0

d = float(v)

s = str(d)

15 May 2013 C++ Now! 2013 47

Composite Type: Tab

• Like Python dict

•class Tab : public OCAVLHashT<Val, Val, 8> { }

– AVL Tree where keys at nodes are hashed values

• No hash information lost to modulo operations

• So integer compares to find place in tree

• Values at nodes are (key, value) pairs

– Still have to keep key in case of hash collisions

– Bounded hash table with no rehashing necessary

• M2k was a soft realtime system, incremental data structures

• A Tab is like an incremental hash table of key-values pairs

– Lookups happen by keys

• Strings or ints (Val)

– Values are any Val (including nested Tabs!)

15 May 2013 C++ Now! 2013 48

Composite Type: Arr

• Like Python list

– (Python list is really implemented as a resizing array)

•Arr is an array of Val

– Array is an OpenContainers concept (picklingtools.com)

– Array has been optimized to fit into 32 bytes

• (so can do placement new into Val)

– Backwards compatibility (before STL was ubiquitous)

15 May 2013 C++ Now! 2013 49

Dictionary Literal

• Python:

>>> d = { 'a':1, 'b':2.2,

 'c':[1,2.2, 'three'] }

• C++:

Tab t = "{'a':1, 'b':2.2, 'c':[1,2.2, 'three'] }";

Use string literal (since C++ doesn't support Python syntax)

 Can cut-and-paste dictionaries between Python and C++ AS-IS

 Note: single quote strings of Python makes string literal much easier

to type in C++:

 Tab t = "{\"a\":1, \"b\":2.2,

 \"c\":[1,2.2,\"three\"]}";

 15 May 2013 C++ Now! 2013 50

Dictionary Literal

• Easy to express large dictionary in C++:

Tab t = "{"

 " 'a':1, "

 " 'b': 2.2, "

 " 'c':[1, 2.2, 'three']"

 "}";

(String continuation across lines makes this work)

15 May 2013 C++ Now! 2013 51

Python: Gold Standard

• Python:

>>> d = {'a':1, 'b':2.2, 'c':[1,2.2, 'three']}

>>> print d['a'] # lookup

1

>>> d['c'] = 555; # insert

>>> print d

{ 'a':1, 'b':2.2, 'c':555}

15 May 2013 C++ Now! 2013 52

C++ Lookup

• Val overloads operator[] and returns Val& and can be used in both

insertion and lookup contexts. What user types:

Tab d = "{'a':1, 'b':2.2, 'c':[1,2.2,'three']}";

cerr << d["a"]; // lookup, note double quotes

• Lots of extra work happening for this to look nice: this is equivalent to

the following (legal!) C++:

Tab t = "{'a':1, 'b':2.2, 'c':[1,2.2,'three']}";

Val _key_ = "a"; // Create a Val for the key

Val& _valref_ = d.operator[](_key_);

operator<<(cerr, _valref_);

15 May 2013 C++ Now! 2013 53

C++ Insertion

• Using the Val&, can insert directly into a table

 d["c"] = 555; // what user types

• Long form (what C++ does for us … legal C++!):

 Val _key_ = "c";

 Val& _valref_ = d.operator[](_key_);

 // Not there:creates Val inside d

 Val _newthing_ = 555;

 valref = _newthing_;

15 May 2013 C++ Now! 2013 54

Insertion vs. Lookup

• Can't distinguish between lookup and insertion in C++ via constness

(Meyers, "More Effective C++", Item 30)

• Overload both [] and ():

– Both do same thing: return (some) reference to a Val&

– EXCEPT: if key not there!

• [] creates a new (empty) Val and returns reference to it

• () throws an exception

cerr << t("not there"); // throws exception

t["not there"] = 100; // allows insertion

15 May 2013 C++ Now! 2013 55

Python Gold Standard:Nested

Insertion and Lookup

>>> d={'a':1, 'b':2.2, 'c':[1,2.2,'three']}

>>> print d['c'][1] # nested lookup

>>> d['c'][0] = 'one'; # nested insertion

15 May 2013 C++ Now! 2013 56

C++ Nested Lookup

• User C++ Code:

Tab d="{'a':1, 'b':2.2, 'c':[1,2.2,'three']}";

cout << d("c")(1); // nested lookup

• This translates to:

Tab d="{'a':1, 'b':2.2, 'c':[1,2.2,'three']}";

Val _key1_ = "c";

const Val& _subc_=d.operator()(_key1_);

Val _key2_ = 1;

const Val& _subc1_ = _subc_.operator()(_key2_);

operator<<(cout, _subc1_);

15 May 2013 C++ Now! 2013 57

C++ Nested Insert

• User C++ code:

d["c"][0] = "one"; // nested insert

• What's happening behind the scenes:

Val _key1 = "c";

Val& _subc_ = d.operator[](_key1);

Val _key2 = 0;

Val&_subc0_=_subc_.operator[](_key2);

subc0 = "one";

15 May 2013 C++ Now! 2013 58

Putting It All Together

// C++

Tab d="{'a':1,'b':2.2,'c':[1,2.2,'three']}";

int v = d("c")(0);

v += 3;

d["c"][2] = v;

Python

d = {'a':1, 'b':2.2, 'c':[1,2.2,'three']}

v = int(d['c'][0])

v+=3

d['c'][2] = v

15 May 2013 C++ Now! 2013 59

Speed

• How does C++ dynamic Val compare to other dynamic languages?

– No current benchmark comparing dictionaries of other languages

(perfect for "Programming Language Shootout")

– We compare C Python vs. C++ Val

• C Python very stable, hand optimized over 10s of years

15 May 2013 C++ Now! 2013 60

Pickle Test Suites

• Pickle: How fast can we iterate over a complex Table and extract

dynamic information?

• Python C version: raw C code extracting dynamic info and

iterating over Python dicts at the speed of C

• C++ Val version: raw C++ code extracting dynamic info and

iterating over Tabs at the speed of C++

• UnPickle: How fast can we create dynamic objects and insert into

tables?

• Python C version: raw C unpickling and creating Python objects

• C++ Val version: raw C++ unpickling and creating Vals

• Table is about 10000 keys of varying types of keys and lengths

– Relatively shallow table (but a few nested dicts)

15 May 2013 C++ Now! 2013 61

Speed Tests

PicklingTools 1.3.1

C++ Val Object

C Python Version 2.7

PyObject

PickleText

Pickle Protocol 0

Pickle Protocol 2

 5.90 seconds

12.23 seconds

 1.30 seconds

 4.82 seconds

12.65 seconds

 3.41 seconds

Unpickle Text

Unpickle Protocol 0

Unpickle Protocol 2

23.40 seconds

 7.24 seconds

 4.34 seconds

38.19 seconds

 7.13 seconds

 3.66 seconds

15 May 2013 C++ Now! 2013 62

Speed Tests Results

• Roughly comparable

– C++ Val faster at pickling:

• Much faster at iterating over complex table

– Python C PyObject faster at unpickling

• C Python does an optimization to cache recently used

PyObjects (which speeds up caching, at the cost of thread

neutrality)

– Python GIL enables this optimization, not an option for Val

• This test tells us that C++ dynamic Val is on par with the Cpython's

dynamic PyObjects

15 May 2013 C++ Now! 2013 63

User-Defined Types

• Drawback: Val can't hold arbitrary datatypes

– Only Tab, Arr, string, and primitive types

• Rather than force Val to try to adapt to other types, let other types

become Vals!

– Similar policy to XML: all types can be expressed as a composite

of primitive types, string, and composite tables/lists:i.e., some

combo of Vals

• SO! To work with user-defined types, make your class…

– Construct from Val

– Export to Val

15 May 2013 C++ Now! 2013 64

User-Defined Types with Vals

class MyType {

 // Construct a MyType directly from a Val

 MyType (const Val& v) // import from Val

 // Create a Val from MyType

 operator Val() // export to a Val

};

15 May 2013 C++ Now! 2013 65

Related Work

JSON: JavaScript Object Notation

 representing dicts and lists in all languages

XML:

 many people use for key-value dicts, lists

 Environments have massive tools for handling XML

 (netbeans, Eclipse)

 …If only key-values were easier to deal with in statically typed

languages

15 May 2013 C++ Now! 2013 66

Val vs. Boost any

• Boost has any type

– More general than Val, as it can hold any type

– Suffers from clumsier interface because it is more general

• Val has been designed to look like dynamic languages

15 May 2013 C++ Now! 2013 67

Cascades with Val

• Cascading inserts/lookups with Val are simple:

Tab t = "{'a':{'nest':1}}";

cout << t["a"]["nest"] << endl;

t["a"]["nest"] = 17;

15 May 2013 C++ Now! 2013 68

Cascades with any (1)

• Much more complex, with many more casts

// Boost any approach: no literals,

// create table explicitly

map<string, any> t;

map<string, any> subtable;

subtable["nest"] = 1;

t["a"] = subtable;

15 May 2013 C++ Now! 2013 69

Cascades with any (2)

// Cascade lookup

any& inner = t["a"];

map<string, any>& inner_table =

any_cast<map<string,any>&>(inner);

int r = any_cast<int>(inner_table["nest"]);

cout << r << endl;

15 May 2013 C++ Now! 2013 70

Cascades with any (3)

// Cascade insert

any& inneri = t["a"];

map<string, any>& inneri_table =

 any_cast<map<string, any>& >(inneri);

any& nest = inner_table["nest"];

nest = 17;

15 May 2013 C++ Now! 2013 71

Conclusions

• Work done to support Python dictionaries in C++:

– All work available at http://www.picklingtools.com

– Open Source (BSD license)

• Allows using dictionaries in both C++ and Python

– Information can flow between front-end scripting languages and

back-end optimization languages

– Dictionary becomes currency of system

15 May 2013 C++ Now! 2013 72

http://www.picklingtools.com/

