Rincon
|
= Research

. Corporation

Dynamic, Recursive, Heterogeneous
Types in Statically Typed Languages

Richard T. Saunders — Rincon Research Corporation
Dr. Clinton Jeffery — University of Idaho

15 May 2013 C++ Now! 2013 1

| Rincon

> Research - .
L i Corporation Python dict)4 v

>>> v = "abcll

>>> v = 1 # dynamic wvalues

heterogeneous types in dict
> d = { 'a':l, 'nest': {'b':3.14}}

recursive, cascading lookup, insert

>>> print d['nest']['b']
>>> d['nest']['new'] = 17.6 # insert

15 May 2013 C++ Now! 2013 2

Rincon

- Research Adding Key-Value Dic

zy. Corporation

* Most Dynamic Languages have a notion of a dictionary of key-value
pairs
— Python dict
— Unicon/Icon table
— Luatables
— Javascript objects
— Ruby Hash (key-value store)
* The dict is really easy to use!
Key-Value Store:
— Associates a key with any kind of value
>>> d = { 'a': 1, 'b':2.2, 'c':'"three' }
>>> print d['a']l # key of 'a', value 1
1
* ... noreal equivalent in C++...

15 May 2013 C++ Now! 2013 3

jRincon ... using C++ features to,

> Research

Corporation easier)4 “

» We can add something like dict to C++

» Paradoxically: static features of C++ make dynamic features easier
(?7?)

— Function Overloading

— Operator Overloading

— User-Defined Conversions
— Type Selection

— Type Inference

15 May 2013 C++ Now! 2013 4

>
4‘ -

Rincon

= Researc = ' ﬁ :
H:;‘;\.;;\.Corporre‘ltion Why Python dlc% A“

Goal: Make dynamic, recursive, heterogeneous, dictionaries as easy
to use in C++ as Python

* Why?
— Most major projects span multiple languages

 Scripting languages (Python, JavaScript, Ruby) are the front-
end, gluing together components

» High-performance languages (FORTRAN, C/C++) form the
hardcore backend

— The front-end languages and the back-end languages need a
common currency for communication: the Python dictionary

15 May 2013 C++ Now! 2013 5

| Rincon

y :—' -
» \" ! N

= Research i : .
.;.;';-.,‘_;ACorporation Outline - y “

* Definitions
 History/Lessons Learned
» Val, Tab, Arr framework
— Overloading
— User-Defined Conversions
— Cascading Insertion and Lookup
* Boost any type
» Conclusion

15 May 2013 C++ Now! 2013 6

| Rincon

- Research Definition: Dynamical

zy. Corporation

* Dynamically Typed Language: The type of a variable is determined by
the value in the variable at runtime

— Python, Ruby, Lisp, Unicon are dynamically typed languages

* Python:
>>> g = 1 # a is a int
>>> a = 2.2 # Nope! Now it's a float
>>> a = "three" # Now it's a string

* The type is dynamic and bound at runtime

15 May 2013 C++ Now! 2013 7

Rincon

- Research Definition: Statically

. Corporation

« Statically Typed Language: The type of a variable is bound at
compile-time: that variable can only hold values of that type.

— FORTRAN, C, C++, Java are statically-typed languages
« C++ Example:

int a = 1;
a = 2.2;

// converts 2.2 to an int (or ERROR)
a = "three";

// ERROR: a can only hold int wvalues

15 May 2013 C++ Now! 2013 8

Rincon

- Research Heterogeneous vs. Ho

% Corporation

» Usually apply term to containers
— A container is heterogeneous if it can hold more than one type

— A container is homogeneous if it can only hold one type

« C++ containers are homogeneous:

vector<int> v{1l,2,3}; // array type for ints only

map<string, int> m; // key-value, but string->int only

« Python containers are heterogeneous:
a = [1, 2.2, '"three'] # array type, can hold any type
d={ 'a':1, 'b':2.2, 'c':'three' }

keys and values can mix types

15 May 2013 C++ Now! 2013

.Rincon
> Research

I Corporation Definition: Recqr 3 =t

A container is recursive if it can contain types of itself

— |.e., containers contain containers
>> d = { 'a': 1, 'b': 2.2, 'c¢': {'d':1 } }

» Extension of heterogeneity
— How well does the language support nested types?

// Python: trivial
>>> print d['c']['a"'] # Easy to access
1

// C++: // Uhh .. 227
map<string, map<string, int> > m;

// Only contains maps of map? Not really ..

15 May 2013 C++ Now! 2013 10

(,

jRincon History (or "How | Became @bsessed

= Research

Corporation with Dynamic Types i ") |

» 1996: Worked on Midas 2k: A C++ framework for doing DSP
— Technical success, political failure
— | work with engineers: simplicity of interface matters

* One major success: OpalValues, OpalTables

— Everyone wrote a list of things that should migrate from Midas 2k
to new system

— Number 1 on everyone's list: OpalValues/OpalTables

15 May 2013 C++ Now! 2013 11

Rincon

& Research = = RN R . |
I Cormoraton OpalValue:Dynamic Typgﬁon ‘2

» OpalValue: A dynamic container for holding any basic type, or tables
» OpalTables: a recursive, heterogeneous key-value container
— OpalTable ot = "{a=1, b=2.2}";
- keysarea, b
*Valuesare 1, 2.2
« ot.get("b") returns 2.2
— Keys are strings

— Values are OpalValues (heterogeneous), which can also be
OpalTables (recursive)

15 May 2013 C++ Now! 2013 12

.Rincon
> Research

 BComonion OpalValue Succg i "

» Expressing Dynamic, Recursive, Heterogeneous Types in C++
— New
— Useful (on everyone's list as a feature to migrate)

 Both textual and binary expression

— OpalTables could be saved to file in both binary (fast) and textual
(human-readable) form

15 May 2013 C++ Now! 2013 13

jRincon OpalValue Failure: Insertiol

> Research

i Corporation was simple, but nof

» OpalValue ol = Opalize(string("hello"))
« OpalValue 02 = OpalTable(); // empty table
» OpalValue 03 = Number(real 8(1.0));

« Wasn't consistent, sometimes needed Opalize

» Using Opalize is wordy
* Number!

15 May 2013 C++ Now! 2013 14

jRincon OpalValue Failure: Extrac

= Research

'*;*;-WLCorporation Values was Terr-

* Number n = UnOpalize(ov, Number);
*inti=n;

* string s = UnOpalize(ov, string);

15 May 2013 C++ Now! 2013 15

Rincon OpalValue Lesson 1: Numl@cvas

= Research

'E';';-»,‘_;ACOFDOTaﬁOn MiStake EEEm l “

» Having a container class to contain numbers was a mistake: all
extractions had to go through an extra level of Number

Number n = UnOpalize(ov, Number);
real 8r=n;

15 May 2013 C++ Now! 2013 16

Reon . OpalValue Lesson 2: Numb: rwas a
%1, Corporation Mistake ... but it Taught ¢ ething

e Number nl =1; /] Int
e Number n2 = 2.2; /l double
e Number n3 =3.3f: // float

e Intii =nl; /[get out an int
 real 8rr=n3; /I getoutdouble

15 May 2013 C++ Now! 2013 17

jRincon OpalValue Failures: Te

> Research

5., Coporaion Representation was Noj

» Syntax "stovepipe creation”, i.e., non-standard
—{a={1,2,3}, b ={c="hello"} }
— Remember, this was the pre-JSON and pre-XML era

» Lists and tables had the same syntax with { }
—{1,2.2,"three"} same as {0=1,1=2.2, 2="three"}

15 May 2013 C++ Now! 2013 18

| Rincon

= Research Lessons

zy. Corporation

 Extraction and Insertion must be trivial
* An extra Number class is a mistake
» Use standard textual representation
 "Holistic" lesson: Be careful when overloading
— Conversions interact in strange ways
— Ambiguous overloads or conversions => compiler complains

15 May 2013 C++ Now! 2013 19

| Rincon

'i;;-;-:\. Research Dynamic Types 2.0: PYt

s Corporation

 Python got Dynamic, Recursive, Heterogeneous Types right!

15 May 2013 C++ Now! 2013 20

.Rincon
> Research

%2 Corporation

>>> v = "abcll

>>> v = 1 # dynamic wvalues

heterogeneous types in dict
>>> d = { 'a':1l, 'mest': {'b':3.14}}

recursive, cascading lookup, insert

>>> print d['nest']['b']
>>> d['nest']['new'] = 17.6 # insert

15 May 2013 C++ Now! 2013 21

Rincon

,i:;-é:; Research Dynamic Types 2 0: Li 4

% Corporation

* Lessons learned:
— Use Python dictionary syntax as much as possible
* People like it
» Easy to use

* In Python, modules, classes and most major namespaces are
Implemented as Python dictionaries

— because of this ubiquity, the dict is fast and easy to use
» Textual format is "standard"

— JSON is a subset of Python dictionary (almost)

— Python is widely used

15 May 2013 C++ Now! 2013 22

=

Rincon : -
& Research 3 0=\ 4 > |
Corporation Dynamlc Types 3 @ “

» Var is a wrapper in C++ for manipulating Python data structures
— Embed a Python interpreter into your C++ program
— Tried to make Python easier to express in C++
e Successes:
— Var: a dynamic type
— Cascading inserts, lookups easy to express
* Failures:
— Extracting info too wordy
— Python interpreter required
— Cascading inserts, lookups used a proxy ...

15 May 2013 C++ Now! 2013 23

P

Rincon —
= Research wes H w, = /S /
R Comorsion Final Version™: the \(QAH. .

» Goal: Make dynamic, recursive, heterogeneous dictionaries as easy
to use in C++ as Python

* Why?
— Most major projects span multiple languages

* Scripting languages (Python, Javascript, Ruby) are the front-
end, gluing together components

» High-performance languages (FORTRAN, C/C++) form the
hardcore backend

— The front-end languages and the back-end languages need a
common currency for communication: the Python dictionary

» Those who fail to learn the lessons of history are doomed to repeat
them

15 May 2013 C++ Now! 2013 24

.Rincon
> Research

%2 Corporation

>>> v = "abcll

>>> v = 1 # dynamic wvalues

heterogeneous types in dict
> d = { 'a':l, 'nest': {'b':3.14}}

recursive, cascading lookup, insert

>>> print d['nest']['b']
>>> d['nest']['new'] = 17.6 # insert

15 May 2013 C++ Now! 2013 25

.Rincon
= Research

s Corporation

Val v = "abc";

v = 1; // dynamic values

// heterogeneous types in Tab
Tab d = "{'a':1l,'nest': {'b':3.1.4}}";

// recursive, cascading lookup, insert
cout << d["nest"] ["b"] << endl;
d["nest"] ["new"] = 17.606;

15 May 2013 C++ Now! 2013 26

’Ri’nacon v B&
. Research Basics: the Val " 7 " e

41, Corporation

» Every variable in C++ must have a static type: we will use val as the
type representing dynamic values.

* Val is a simple dynamic container:
— Strings
— Dictionaries (Tab) and lists (Arr)
— Can contain any primitive type: int 1, int ul, int 2,
int u2, int 4, int u4, real 4, real 8, complex §,
complex 16.

15 May 2013 C++ Now! 2013 27

| Rincon

S \esearch Static Overloading on C

s Corporation

» Chooses type based on value
« Makes Val construction easy:

Val a = 100; // int

Val b = 3.141592; // real 8

Val ¢ = 3.1415%f; // real 4

Val d = "hello"; // string

Val e = None; // empty

Val t = Tab(); // dictionary

15 May 2013 C++ Now! 2013 28

=

Rincon ® | |
& Research Val Implementati @
Corporation a p eme tat% ’ “

* Implemented as a type-tag and a union
— That's so 1980s!
— Reasons:
(1) Union is fast and space-efficient
(2) Union is also thread and heap friendly
» avoid unnecessary heap allocation: minor lesson from M2k

(3) Intentional lack of virtual functions or pointers to functions means
you can use the Val in cross-process shared memory

(4) Yes, use placement new and manual destructors

15 May 2013 C++ Now! 2013 29

| Rincon

- Research Overloading Construct

#y. Corporation

« Has to be overloaded on all primitive types, or compiler complains
— If you forget real 8, whatdoes val v = 1.0 do?

Class Val {
public:
// Constructors on Val overloaded on all primitive types
Val (int ul a)

Val (int 1 a)
Val (int u2 a)
Val (int 4 a)
Val (int u8 a)
Val (int 8 a)
Val (real 4 a)
Val (real 8 a)
(

Val (const stringé& s)

15 May 2013 C++ Now! 2013 30

<
—

Rincon o
Research Why nOt use&) .

5, Corporation Templatized Constru

 Answer;

(1) We don't control it as well, and we have to control all primitive type
conversions to avoid compiler ambiguities

(2) Some backwards compatibility issues:
users back at RedHat 3 and 4!

15 May 2013 C++ Now! 2013 31

jRincon Overloading on,@@

> Research

Corporation Platform Dependen% |

* Result of many STL operationsis a size t. Whatisa size t?
Answer: Some unsigned int. Depends.

« May or may not be same as int u8 or int u4. May be platform
defined int

— more likely, GNU quantity: like int, but considered a different type
by C++ type system.
* On some platforms, will be a int u8/int u4; on others, not.

15 May 2013 C++ Now! 2013 32

| Rincon

- Research Val and size t Inter

. Corporation

« Want Val to work well with size t:
Val v=sizeof (Blach);

« But above will NOT work on platforms where size_tis not an int_u4 or
int_u8. We can work around it:

Val v=int u8(sizeof (Blach));
 But this subverts the "simplicity” for the users

15 May 2013 C++ Now! 2013 33

| Rincon

& Researc . Y- & ™
Corporr;tion Old days. #lfdeﬂ “ >

* In old C days, we would add a #1ifdef and add a new constructor for
machines where size t is a new type:

class Val {

#ifdef SIZE T NOT INT U8
Val (size t)

#endif

}

Problem: manually check if size t is available or not, have to manage
macros

15 May 2013 C++ Now! 2013 34

Rincon

- Research New Days: Type Selec

|

zy. Corporation

» Use type selection technigue from Modern C++ Design
— Introduce a new dummy type called OC UNUSED SIZE T

— Introduce a new constructor Val (ALLOW SIZE T)

— If the compiler notices that size t is a unique int type
« ALLOW SIZE T becomes typedeffedto size t

—else size t ISNOT aunique int (i.e., itis an int u4), then
« ALLOW SIZE T istypedeffedto OC UNUSED SIZE T

15 May 2013 C++ Now! 2013 35

| Rincon

= Research i S .
. Type Selection (I s “

class OC UNUSED SIZE T { };
template <class T> struct FindSizeT {

typedef size t Result;

I

template <> struct FindSizeT<int u4> {
typedef OC UNUSED SIZE T Result;

}
typedef FindSizeT<size t>::Result ALLOW SIZE T;

Class Val {

Val (ALLOW SIZE T a)

// all other overloads ..

15 May 2013 C++ Now! 2013 36

| Rincon

. Research By the way ... also overlo

s Corporation

Val V = 1; // constructor
V = 2.2; // operator=
V = "three"; // operator=
V = None;

V = Tab () ;

15 May 2013 C++ Now! 2013 37

| Rincon

- Research User-Defined Conv.

. Corporation

« C++ has a unique feature called user-defined conversions which
allow a type to export itself as a different type.

class IntRange { // restricted to 0..99

operator int () {..} // allow IntRange
// to be used as int
i
int f(int 1i); // prototype for f:

//f only takes an int argument

IntRange m;
f(m) ; // ERROR?? No!! IntRange is allowed

// to export itself as an int

15 May 2013 C++ Now! 2013 38

<
<

&

pRincon Syntactic Sugar. ¢

= Research
s Corporation

IntRange m;
f(m);

// Above form is syntactic sugar for:
IntRange m;

int outcasted temp = m.operator 1int();
f (_outcasted temp); // Legal C++!

15 May 2013 C++ Now! 2013 39

>
4‘ -

Rincon

. Reseach User-Defined Conversioﬁ V% ,,
el Corporation = :

* Allows us to extract all types from Val with minimal typing. Val
has user-defined conversions for all basic types as well as
Tabs, Arrs and strings:

Val v = 3.141592;
double d = v; // syntactic sugar

// same as
Val v = 3.141592;
double d = v.operator double();

Type of the variable INFORMS the conversion so you don't have to
state explicitly which conversion is being used!

15 May 2013 C++ Now! 2013 40

| Rincon

.. Research Val type and conversion-

zy. Corporation

« What if type in Val and outcast mismatch?
Val v = 3.141592;

int 1 = v; // What happens?
* Principle of Least Surprise:
— Do what C++ would do if you explicitly cast.

— If not allowed, throw an exception (like a dynamic language would)
int i = static cast<int>(3.141592); // cast to 3

15 May 2013 C++ Now! 2013 41

.Rincon
= Research

ou. Corporation

Val v = 3.141;

float £ = v; // As CH++:f=float (3.141);
int 1 = v; // As C++:i=int (3.141);
Tab t = v;

// NOT a table, throw exception!

15 May 2013 C++ Now! 2013 42

—4‘ -

| Ri’nacon &
i;;.;::;_. esearch Val Implementat"' ’ = " i “

41, Corporation

* Like Val constructor, the outcasts have to overload on all primitive
types (and strings, Tab, Arr) or will run into massive compiler
warnings:

class Val {

operator 1int ul();
operator 1int 1();
operator 1nt uZ();
operator 1int 4();
operator 1nt u4();
operator 1int 8();
operator 1nt u8();
operator ALLOW SIZE T(); // size t different?
operator real 4 ();
operator real 8();

Y

15 May 2013 C++ Now! 2013 43

| Rincon

& yResearch Val Implementation.

zy. Corporation

Archaic implementation:
but we control all conversions

operator int 4 () { // tag tells which union field
switch (tag) {

case 's': return int 4(u.s); // int 1 union field
case 'S': return int 4(u.S); // int ul union field
case 'i': return int 4(u.i); // int 2 field

case 'I': return int 4(u.I); // int u2 field

case 'l': return int 4(u.l); // int 4 field

case 'L': return int 4(u.L); // int ud4 field

case 'x': return int 4(u.x); // int 8 field

case 'X': return int 4(u.X); // int u8 field

case 'f': return int 4(u.f); // real 4 field

case 'd': return int 4(u.d); // real 8 field

15 May 2013 C++ Now! 2013 44

| Rincon

=<
b.\» <

> Research 1Imi i .
Corporation Lim |tat|0n$: .’ “

Val v = 1;
string s = v; // Works: operator string() on Val
s = Vv; // FAILS! Overloaded operator=

* Problem: STL string has its own operator= and user-defined outcast
iInterferes (confuses compiler)

— All these signatures interfere with each other

string& operator=(const stringé& str);
stringé& operator=(const char* s);
stringé& operator=(char c);

Val::operator string();// Which one to use?

15 May 2013 C++ Now! 2013 45

’Ri’nacon Work d &
. Research orkaround. 2 s e

w2 Corporation

string s;
Val v = 1;
s = string(v);

// forces user-defined conversion

It breaks the idea that the variable chooses the right user-defined
conversion, but at least it's simple and not too much more typing

ldea is useful in longer code snippets:

Val freqg, bw = .. something ..
real 8 lim = real 8(freq) + real 8(bw) * 2.0 + 1000;

15 May 2013 C++ Now! 2013 46

.Rincon
= Research

s Corporation

// C++

Val v = "hello";
v = 17;

v = 1.0;
float d = v;
string s = d;
Python

v = 'hello'

v = 17

v = 1.0

d = float (v)
s = str(d)

15 May 2013

// Val is dynamic container

// easy to put values in

// easy to take values out

// easy way to stringize

Python

C++ Now! 2013 47

=

Rincon —
= Research H » N /S ”
B Corporation Composite Typgg F I’

* Like Python dict
eclass Tab : public OCAVLHashT<Val, Val, 8> { }
— AVL Tree where keys at nodes are hashed values
» No hash information lost to modulo operations
» So integer compares to find place in tree
 Values at nodes are (key, value) pairs
— Still have to keep key in case of hash collisions
— Bounded hash table with no rehashing necessary
» M2k was a soft realtime system, incremental data structures
A Tab is like an incremental hash table of key-values pairs
— Lookups happen by keys
 Strings or ints (Val)
— Values are any val (including nested Tabs!)

15 May 2013 C++ Now! 2013 48

Rincon
I

= Research i - Are . |
“';':..,":_Corporation composrte Type J “

* Like Python list
— (Python list is really implemented as a resizing array)
« Arr IS an array of Val
— Array is an OpenContainers concept (picklingtools.com)
— Array has been optimized to fit into 32 bytes
* (so can do placement new into Val)
— Backwards compatibility (before STL was ubiquitous)

15 May 2013 C++ Now! 2013 49

Rincon /\ﬁ '
'i;;.,-__ Research H H - ol /.
B Corporaton Dictionary thg’r&y "

>> d = { 'a':1l, 'b':2.2,
'c':[1,2.2, 'three'] }
e C++:
Tab t = "{'a':1, 'b':2.2, 'c':[1,2.2, 'three'l }";

Use string literal (since C++ doesn't support Python syntax)
Can cut-and-paste dictionaries between Python and C++ AS-IS

Note: single quote strings of Python makes string literal much easier
to type in C++:

Tab t = "{\"a\":1, \"b\":2.2,
\"c\":[1,2.2,\"three\"]}";

15 May 2013 C++ Now! 2013 50

| Rincon

41, Corporation

5 Research Dictionary Literﬂé}-‘*’ 1 F {

» Easy to express large dictionary in C++:

Tab t = "{"
"ootar:l, ™
"'p': 2.2, "
" 'c':[1, 2.2, 'three']"

"}".
4

(String continuation across lines makes this work)

15 May 2013 C++ Now! 2013 51

.Rincon
= Research

‘:':‘;;3';-“:Corporation Python: GOId Stan 2 ““

* Python:

>>> d = {'a':1l, 'b':2.2, 'c¢':[1,2.2, 'three']}

>>> print d['a'] # lookup
1
>>> d['c'] = 555; # insert

>>> print d
{ 'a':1l, '"b':2.2, 'c':555}

15 May 2013 C++ Now! 2013 52

Rincon

|

zy. Corporation

ii‘:ﬁ;,-, Research C++ Lookup x‘& “ .

 Val overloads operator[] and returns Val& and can be used in both
Insertion and lookup contexts. What user types:

Tab 4 = "{'a':1, 'b':2.2, 'c':[1,2.2, " 'three']}";
cerr << d["a"]; // lookup, note double quotes

* Lots of extra work happening for this to look nice: this is equivalent to
the following (legal!) C++:

Tab t = "{'a':1, 'b':2.2, 'c':[1,2.2, " "'three']}";
val key = "a"; // Create a Val for the key
Val& valref = d.operator[] (key);

operator<<(cerr, valref);

15 May 2013 C++ Now! 2013 53

| Rincon

= Research o o= i , 2 .
A Corporation c I nserthn»l “

 Using the Val&, can insert directly into a table

d["c"] = 555; // what user types

* Long form (what C++ does for us ... legal C++!):

Val key = "c";

Val& valref = d.operator[](key);
// Not there:creates Val inside d

Val newthing = 555;

~valref = newthing ;

15 May 2013 C++ Now! 2013 54

4,

Rincon y — ‘
'i:;..-, Research H _ okl /N
Corporation Insertion vs LOO@ “

« Can't distinguish between lookup and insertion in C++ via constness
(Meyers, "More Effective C++", Item 30)

» Overload both [] and ():
— Both do same thing: return (some) reference to a Val&
— EXCEPT: if key not there!
* [] creates a new (empty) Val and returns reference to it
* () throws an exception

cerr << t("not there"); // throws exception

t ["not there"] = 100; // allows insertion

15 May 2013 C++ Now! 2013 55

Y

jRincon Python Gold Standard: \@ed

= Research

"::3';-‘,:7Corporation Insertion and Lo

>>> d={'a':1l, 'b':2.2, 'c':[1,2.2, 'three']}
>>> print d['c'][1] # nested lookup

>>> d['c'][0] = 'one'; # nested insertion

15 May 2013 C++ Now! 2013

56

<&
P —

| Rincon

& Research e o] &) .
Corporation c Nested Loo%’ “

 User C++ Code:

Tab d="{'a':1, 'b':2.2, 'c¢':[1,2.2, "'three']}";
cout << d("c") (1); // nested lookup

* This translates to:

Tab d="{'a':1, 'b':2.2, 'c¢':[1,2.2, 'three']}";

Val keyl = "c";

const Val& subc =d.operator() (_keyl);

Val key2 = 1;

const Val& subcl = subc .operator() (_key2);

operator<<(cout, subcl);

15 May 2013 C++ Now! 2013 57

<&
P —

s Corporation

| Rilnacon c @P
- Research ++ Nested Insert™ e e

* User C++ code:

d["c"][0] = "one"; // nested insert

« What's happening behind the scenes:

Val keyl = "c";

Val& subc = d.operator[] (keyl);
Val key2 = 0;

Val& subcO = subc .operator[] (key2);

subcO = "one'";

15 May 2013 C++ Now! 2013 58

| Rincon

= Research i er .
s Putting It All Togg e

// C++

Tab d="{'a':1, 'b':2.2,"'c':[1,2.2, "three']}";
int v = d("c") (0) ;

v += 3;

d{"c"][2] = v;

Python

d ={'a"1, 'b":2.2,'c":[1,2.2,'three']}
v = int(d['c'][0])

v+=3

d['c'][2] = Vv

15 May 2013 C++ Now! 2013 59

| Rincon

41, Corporation

Research speed | A\%&J i “

* How does C++ dynamic Val compare to other dynamic languages?

— No current benchmark comparing dictionaries of other languages
(perfect for "Programming Language Shootout")

— We compare C Python vs. C++ Val
» C Python very stable, hand optimized over 10s of years

15 May 2013 C++ Now! 2013 60

<5
Rincon

& Research - =g o ‘ ’
B Cormoration Pickle Test Sqlw "

* Pickle: How fast can we iterate over a complex Table and extract
dynamic information?

» Python C version: raw C code extracting dynamic info and
iterating over Python dicts at the speed of C

« C++ Val version: raw C++ code extracting dynamic info and
iterating over Tabs at the speed of C++

» UnPickle: How fast can we create dynamic objects and insert into
tables?

« Python C version: raw C unpickling and creating Python objects
« C++ Val version: raw C++ unpickling and creating Vals

» Table is about 10000 keys of varying types of keys and lengths
— Relatively shallow table (but a few nested dicts)

15 May 2013 C++ Now! 2013 61

)

Rincon —
= Research b .
*“%;;-.‘__Corporation speed TeSt§ y _ ; ‘

PicklingTools 1.3.1 C Python Version 2.7
C++ Val Object PyObject
PickleText 5.90 seconds 4.82 seconds
Pickle Protocol 0 12.23 seconds 12.65 seconds
Pickle Protocol 2 1.30 seconds 3.41 seconds
Unpickle Text 23.40 seconds 38.19 seconds
Unpickle Protocol O 7.24 seconds 7.13 seconds
Unpickle Protocol 2 4.34 seconds 3.66 seconds

15 May 2013 C++ Now! 2013 62

Rincon

5 Research Speed Tests Resul&} " "

.. Corporation

* Roughly comparable
— C++ Val faster at pickling:
* Much faster at iterating over complex table
— Python C PyObject faster at unpickling

» C Python does an optimization to cache recently used
PyObjects (which speeds up caching, at the cost of thread
neutrality)

— Python GIL enables this optimization, not an option for Val

 This test tells us that C++ dynamic Val is on par with the Cpython's
dynamic PyObijects

15 May 2013 C++ Now! 2013 63

>
4‘ -

| Rincon _ Qﬁ : ,,
. Research User-Defined Tyw .
i Corporation - “

» Drawback: Val can't hold arbitrary datatypes
— Only Tab, Arr, string, and primitive types

» Rather than force Val to try to adapt to other types, let other types
become Vals!

— Similar policy to XML.: all types can be expressed as a composite
of primitive types, string, and composite tables/lists:i.e., some
combo of Vals

» SO! To work with user-defined types, make your class...
— Construct from Val
— Export to Val

15 May 2013 C++ Now! 2013 64

| Rincon

Research User-Defined Types W

s Corporation

class MyType {
// Construct a MyType directly from a Val
MyType (const Val& v) // import from Val

// Create a Val from MyType
operator Val () // export to a Val

by

15 May 2013 C++ Now! 2013 65

,Rincon g S ’
= R h '
“*"‘xf:sfrifrauon Related Wor"” % “

JSON: JavaScript Object Notation
representing dicts and lists in all languages
XML:
many people use for key-value dicts, lists
Environments have massive tools for handling XML
(netbeans, Eclipse)

...If only key-values were easier to deal with in statically typed
languages

15 May 2013 C++ Now! 2013 66

| Rincon

5 Research val vs. Boost aw) "

41, Corporation

» Boost has any type
— More general than val, as it can hold any type

— Suffers from clumsier interface because it is more general
 Val has been designed to look like dynamic languages

15 May 2013 C++ Now! 2013 67

<
.

.Rincon \&
& Research i a ' .
 Jl Corporaton Cascades W|th j\gﬂ»,y o

« Cascading inserts/lookups with Val are simple:
Tab t = "{'a':{'nest':1}}";

cout << t["a"]["nest"] << endl;
t("a"] ["nest"] = 17;

15 May 2013 C++ Now! 2013 68

.Rincon
= Research

s Corporation

* Much more complex, with many more casts

// Boost any approach: no literals,
// create table explicitly
map<string, any> t;

map<string, any> subtable;
subtable["nest"] = 1;

t["a"] = subtable;

15 May 2013 C++ Now! 2013 69

Rincon

- Research Cascades with an

s Corporation

// Cascade lookup

any& 1lnner = t["a"];

map<string, any>& inner table =
any cast<map<string,any>&>(inner);

int r = any cast<int>(inner table["nest"]);
cout << r << endl;

15 May 2013 C++ Now! 2013 70

.Rincon
= Research

s Corporation

// Cascade insert
any& i1nneri = t["a"];
map<string, any>& 1nnerli table =
any cast<map<string, any>& >(inneri);
any& nest = inner table["nest"];
nest = 17;

15 May 2013 C++ Now! 2013 71

';_Ri Inacon ’\& |
i (e:S:r?)r(;:r’;tion Lonclust o“s» “

» Work done to support Python dictionaries in C++:
— All work available at http://www.picklingtools.com
— Open Source (BSD license)

« Allows using dictionaries in both C++ and Python

— Information can flow between front-end scripting languages and
back-end optimization languages

— Dictionary becomes currency of system

15 May 2013 C++ Now! 2013 72

http://www.picklingtools.com/

