
Assignment Part #3
This report describes the development of an ARM Assembly Language program for manipulating an

image by applying different effects.

The report is broken into three stages:

(i) Adjust

(ii) Motion blur

(iii)Bonus effect

1.1.1.1. AAAADJUSTDJUSTDJUSTDJUST

This section describes the approach taken for adjusting brightness and contrast to the TCD crest image

stored in memory. The concept behind the Adjust program was to access each pixel in the image and

adjust its brightness and contrast, sending the adjusted pixel value from subroutine back to the main to

be stored in R4(pic address).

Throughout the whole program I used various subroutines for problem decomposition, the idea with

was to have a neat and self-explanatory subroutines.

The subroutines were:

getRed gets the individual red value from the target pixel

getGreen gets the individual green value from the target pixel

getBlue gets the individual blue value from the target pixel

updatePixel takes in an individual color value and adjusts the contrast and brightness.

recombineColors takes in all the individual updated color values and shifts the colors values

accordingly into their original positions. ie shifting red by 16 bits since red is the MSB (most significant

byte)

When adjusting the brightness and contrast, error checking was important to avoid overflow of the

values. If the updated color value is greater than 255, set the updated color value to 255. Else if updated

color value is less than 0, set the updated color value to 0. When loading the individual color value, the

color value should be shifted to LSB to perform operations, when storing the updated color value, shift

the color values to their corresponding original positions.

The picture shows the adjusted TCD crest with the following values:

Brightness=20 brightness=200

Contrast=30 Contrast=20

The following pseudo code is the general approach taken for the adjust program.

Color[][]adjust

for (int i=0;i<adjust.length-1;i++)

 for(j=0;j<adjust.length-1;j++)

 int index = row*row_size + column

 int pixelValue=Memmory.word[pic adr.+ index]

 int updatedPixel = ((pixelValue*contrast)/16) + brightness

 if(updatedPixel>255)

{

 updatedPixel=255

}

else if(updatedPixel<0)

{

updatedPixel=0

}

 Memmory.word[pic adr. + index] = updatedPixel

2.2.2.2. MMMMOTION OTION OTION OTION BBBBLURLURLURLUR

This section describes the approach taken for applying motion blur to the image. Motion blur has a

There was a slight alteration as to how I defined the radius, in the documentation the radius was defined

as the TOTAL number of pixels to average. However, I defined it as the distance from the number of

pixels from the target pixel. For example if radius was 2, that would mean 2 pixels to the left of the

target pixel and 2 pixels to the right of the target pixel. Hence the total number of pixels would be 5.

Here is an image representation of how radius was defined, R is radius.

The diagram below represents how I obtained the diagonal pixel values.

The radius was parameterized hence the radius could have been easily changed by only changing the

value of the radius once in the main method and this would have been taken into account in the other

subroutines. I also programmed so the radius would increase automatically over time, giving an

increased blurring effect over time. For demonstration purposes I placed the BL put Pic after all the

pixels were updated for a given radius, I could have easily placed put Pic subroutine after each row was

updated to have a smoother blurring transition.

R=2

R=2

R=5

The approach taken here was to create a copy array of R4 (picture address) into

some other register which then we would access the array as a two dimensional

array by having two for loops one for row and another for column.

The approach taken here was to pass the row and column of the current target

pixel and also the radius to total Pixel subroutine.

In the total Pixel subroutine:

Keep subtracting row and column from the original row and column until the

leftmost row and column is reached. When the left extreme boundary is reached,

each pixel value is obtained by increasing row and column by 1 until the total

number of pixels is reached. By increasing row and column by 1, pixels are

obtained diagonally.

Color motionBlur[][] = image.clone()

for (int row=0;row<motion.length;row++)

 for(int col.=0;col<motionBlur.length;col.++)

 int counter=0

 index=(row*motionBlur.length) + col.

Store original row and column onto system stack

//get leftmost pixel

 while(counter<radius)

{

 column--

 row--

 counter++

 }

//while not reached end of desired distance continue to get diagonal pixels and add to total

 Store row and column onto system stack

 int otherCounter=0

 while (otherCounter<((radius*2))+1)

{

Total red = total red + image[row][col].getRed()

Total green = total green + image[row][col].getgreen()

Total blue = total blue + image[row][col].getblue()

row++

column++

othercounter++

}

totalColors.average()

load original row and column of target pixel

blurred image = new Color(average red, avg.green,average blue)

Memmory.Word[pic.adr + index] = blurred image.

Below is a general pseudo-code for the approach of motion blur effect.

3.3.3.3. BBBBONUS ONUS ONUS ONUS EEEEFFECTFFECTFFECTFFECT

This section describes the approach taken for the Bonus effect. For bonus effect I chose simple

blur, which has a stationary blurring effect on the image.

The approach taken here was to create a copy array of R4 (picture address) into some other

register which then we would access the array as a two dimensional array by having two for

loops one for row and another for column.

 The idea was to pass the row and column to subroutine which would total the horizontal pixel

values by increasing column by one each time, top pixel value by decreasing row and bottom

pixel value by increasing row.

As each word size pixel value was obtained, I performed bit clear operation to obtain RGB colour

separately and having a separate total colour value for each colour, and adding respective

colours into their respective total colour register for all the pixel values. Once the required pixel

values were taken into account, I would average each total colour value by the number of pixels.

For example: Average red = total red / number of pixels

Once the average of all the RGB colour was calculated, the colour was recombined by shifting

and OR’ing the updated colour values and then beingstored into R4 (picture address).

The diagram below shows how I obtained the horizontal pixels

Finding the leftmost

column

Iterating from leftmost

column until the rightmost

column (depending on the

radius how many pixels to

iterate through)

The diagram shows the pixels that were taken into account for blurring of the image, as you can see I am

taking into account the surrounding pixels and replacing the target pixels’s value with the average of all

the grey boxeed pixels. This would give a blurring effect on the crest.

Below are the original and blurred image for bonus effect. The effect of the blur could be

increased by changing the values of radius.

original image blurred image

The following pseudo-code is the general outline for the approach of bonus effect.

Color simpleBlur[][] = image.clone()

for (int row=0;row<simpleBlur.length;row++)

 for(int col.=0;col<simpleBlur.length;col.++)

 int counter=0

 index=(row*simpleBlur.length) + col.

 Store original row and column onto system stack

 //get leftmost column

 while(counter<radius){

 column--

 counter++

 }

 //while not reached end of desired distance get horizontal pixels and total

 Store row and column onto system stack

 int othercounter=0

 while(othercounter<((radius*2))+1){

Total red = total red + image[row][col].getRed()

Total green = total green + image[row][col].getgreen()

Total blue = total blue + image[row][col].getblue()

column++

}

Restore row and column from system stack

Store row and column onto system stack

Row++

Total red = total red + image[row][col].getRed();

Total green = total green + image[row][col].getGreen()

Total blue = total blue + image[row][col.].getBlue()

Restore row and column form the system stack

//get top pixel

Row - -

Total red = total red + image[row][col].getRed()

Total green = total green + image[row][col].getgreen()

Total blue = total blue + image[row][col].getblue()

//average colors

totalRed.average()

totalGreen.average()

totalBlue.average()

load original row and column of target pixel

blurred image = new Color(total red, total green,total blue)

Memmory.Word[pic.adr + index] = blurred image.

