Skip to content

Latest commit

 

History

History
119 lines (119 loc) · 78.7 KB

20201216.md

File metadata and controls

119 lines (119 loc) · 78.7 KB

ArXiv cs.CV --Wed, 16 Dec 2020

1.FLAVR: Flow-Agnostic Video Representations for Fast Frame Interpolation ⬇️

A majority of approaches solve the problem of video frame interpolation by computing bidirectional optical flow between adjacent frames of a video followed by a suitable warping algorithm to generate the output frames. However, methods relying on optical flow often fail to model occlusions and complex non-linear motions directly from the video and introduce additional bottlenecks unsuitable for real time deployment. To overcome these limitations, we propose a flexible and efficient architecture that makes use of 3D space-time convolutions to enable end to end learning and inference for the task of video frame interpolation. Our method efficiently learns to reason about non-linear motions, complex occlusions and temporal abstractions resulting in improved performance on video interpolation, while requiring no additional inputs in the form of optical flow or depth maps. Due to its simplicity, our proposed method improves the inference speed by 384x compared to the current most accurate method and 23x compared to the current fastest on 8x interpolation. In addition, we evaluate our model on a wide range of challenging settings and consistently demonstrate superior qualitative and quantitative results compared with current methods on various popular benchmarks including Vimeo-90K, UCF101, DAVIS, Adobe, and GoPro. Finally, we demonstrate that video frame interpolation can serve as a useful self-supervised pretext task for action recognition, optical flow estimation, and motion magnification.

2.GTA: Global Temporal Attention for Video Action Understanding ⬇️

Self-attention learns pairwise interactions via dot products to model long-range dependencies, yielding great improvements for video action recognition. In this paper, we seek a deeper understanding of self-attention for temporal modeling in videos. In particular, we demonstrate that the entangled modeling of spatial-temporal information by flattening all pixels is sub-optimal, failing to capture temporal relationships among frames explicitly. We introduce Global Temporal Attention (GTA), which performs global temporal attention on top of spatial attention in a decoupled manner. Unlike conventional self-attention that computes an instance-specific attention matrix, GTA randomly initializes a global attention matrix that is intended to learn stable temporal structures to generalize across different samples. GTA is further augmented with a cross-channel multi-head fashion to exploit feature interactions for better temporal modeling. We apply GTA not only on pixels but also on semantically similar regions identified automatically by a learned transformation matrix. Extensive experiments on 2D and 3D networks demonstrate that our approach consistently enhances the temporal modeling and provides state-of-the-art performance on three video action recognition datasets.

3.Object-based attention for spatio-temporal reasoning: Outperforming neuro-symbolic models with flexible distributed architectures ⬇️

Neural networks have achieved success in a wide array of perceptual tasks, but it is often stated that they are incapable of solving tasks that require higher-level reasoning. Two new task domains, CLEVRER and CATER, have recently been developed to focus on reasoning, as opposed to perception, in the context of spatio-temporal interactions between objects. Initial experiments on these domains found that neuro-symbolic approaches, which couple a logic engine and language parser with a neural perceptual front-end, substantially outperform fully-learned distributed networks, a finding that was taken to support the above thesis. Here, we show on the contrary that a fully-learned neural network with the right inductive biases can perform substantially better than all previous neural-symbolic models on both of these tasks, particularly on questions that most emphasize reasoning over perception. Our model makes critical use of both self-attention and learned "soft" object-centric representations, as well as BERT-style semi-supervised predictive losses. These flexible biases allow our model to surpass the previous neuro-symbolic state-of-the-art using less than 60% of available labelled data. Together, these results refute the neuro-symbolic thesis laid out by previous work involving these datasets, and they provide evidence that neural networks can indeed learn to reason effectively about the causal, dynamic structure of physical events.

4.Object-Centric Neural Scene Rendering ⬇️

We present a method for composing photorealistic scenes from captured images of objects. Our work builds upon neural radiance fields (NeRFs), which implicitly model the volumetric density and directionally-emitted radiance of a scene. While NeRFs synthesize realistic pictures, they only model static scenes and are closely tied to specific imaging conditions. This property makes NeRFs hard to generalize to new scenarios, including new lighting or new arrangements of objects. Instead of learning a scene radiance field as a NeRF does, we propose to learn object-centric neural scattering functions (OSFs), a representation that models per-object light transport implicitly using a lighting- and view-dependent neural network. This enables rendering scenes even when objects or lights move, without retraining. Combined with a volumetric path tracing procedure, our framework is capable of rendering both intra- and inter-object light transport effects including occlusions, specularities, shadows, and indirect illumination. We evaluate our approach on scene composition and show that it generalizes to novel illumination conditions, producing photorealistic, physically accurate renderings of multi-object scenes.

5.NAPA: Neural Art Human Pose Amplifier ⬇️

This is the project report for CSCI-GA.2271-001. We target human pose estimation in artistic images. For this goal, we design an end-to-end system that uses neural style transfer for pose regression. We collect a 277-style set for arbitrary style transfer and build an artistic 281-image test set. We directly run pose regression on the test set and show promising results. For pose regression, we propose a 2d-induced bone map from which pose is lifted. To help such a lifting, we additionally annotate the pseudo 3d labels of the full in-the-wild MPII dataset. Further, we append another style transfer as self supervision to improve 2d. We perform extensive ablation studies to analyze the introduced features. We also compare end-to-end with per-style training and allude to the tradeoff between style transfer and pose regression. Lastly, we generalize our model to the real-world human dataset and show its potentiality as a generic pose model. We explain the theoretical foundation in Appendix. We release code at this https URL, data, and video.

6.Geometric Surface Image Prediction for Image Recognition Enhancement ⬇️

This work presents a method to predict a geometric surface image from a photograph to assist in image recognition. To recognize objects, several images from different conditions are required for training a model or fine-tuning a pre-trained model. In this work, a geometric surface image is introduced as a better representation than its color image counterpart to overcome lighting conditions. The surface image is predicted from a color image. To do so, the geometric surface image together with its color photographs are firstly trained with Generative Adversarial Networks (GAN) model. The trained generator model is then used to predict the geometric surface image from the input color image. The evaluation on a case study of an amulet recognition shows that the predicted geometric surface images contain less ambiguity than their color images counterpart under different lighting conditions and can be used effectively for assisting in image recognition task.

7.Detecting Invisible People ⬇️

Monocular object detection and tracking have improved drastically in recent years, but rely on a key assumption: that objects are visible to the camera. Many offline tracking approaches reason about occluded objects post-hoc, by linking together tracklets after the object re-appears, making use of reidentification (ReID). However, online tracking in embodied robotic agents (such as a self-driving vehicle) fundamentally requires object permanence, which is the ability to reason about occluded objects before they re-appear. In this work, we re-purpose tracking benchmarks and propose new metrics for the task of detecting invisible objects, focusing on the illustrative case of people. We demonstrate that current detection and tracking systems perform dramatically worse on this task. We introduce two key innovations to recover much of this performance drop. We treat occluded object detection in temporal sequences as a short-term forecasting challenge, bringing to bear tools from dynamic sequence prediction. Second, we build dynamic models that explicitly reason in 3D, making use of observations produced by state-of-the-art monocular depth estimation networks. To our knowledge, ours is the first work to demonstrate the effectiveness of monocular depth estimation for the task of tracking and detecting occluded objects. Our approach strongly improves by 11.4% over the baseline in ablations and by 5.0% over the state-of-the-art in F1 score.

8.SPOC learner's final grade prediction based on a novel sampling batch normalization embedded neural network method ⬇️

Recent years have witnessed the rapid growth of Small Private Online Courses (SPOC) which is able to highly customized and personalized to adapt variable educational requests, in which machine learning techniques are explored to summarize and predict the learner's performance, mostly focus on the final grade. However, the problem is that the final grade of learners on SPOC is generally seriously imbalance which handicaps the training of prediction model. To solve this problem, a sampling batch normalization embedded deep neural network (SBNEDNN) method is developed in this paper. First, a combined indicator is defined to measure the distribution of the data, then a rule is established to guide the sampling process. Second, the batch normalization (BN) modified layers are embedded into full connected neural network to solve the data imbalanced problem. Experimental results with other three deep learning methods demonstrates the superiority of the proposed method.

9.FINED: Fast Inference Network for Edge Detection ⬇️

In this paper, we address the design of lightweight deep learning-based edge detection. The deep learning technology offers a significant improvement on the edge detection accuracy. However, typical neural network designs have very high model complexity, which prevents it from practical usage. In contrast, we propose a Fast Inference Network for Edge Detection (FINED), which is a lightweight neural net dedicated to edge detection. By carefully choosing proper components for edge detection purpose, we can achieve the state-of-the-art accuracy in edge detection while significantly reducing its complexity. Another key contribution in increasing the inferencing speed is introducing the training helper concept. The extra subnetworks (training helper) are employed in training but not used in inferencing. It can further reduce the model complexity and yet maintain the same level of accuracy. Our experiments show that our systems outperform all the current edge detectors at about the same model (parameter) size.

10.mDALU: Multi-Source Domain Adaptation and Label Unification with Partial Datasets ⬇️

Object recognition advances very rapidly these days. One challenge is to generalize existing methods to new domains, to more classes and/or to new data modalities. In order to avoid annotating one dataset for each of these new cases, one needs to combine and reuse existing datasets that may belong to different domains, have partial annotations, and/or have different data modalities. This paper treats this task as a multi-source domain adaptation and label unification (mDALU) problem and proposes a novel method for it. Our method consists of a partially-supervised adaptation stage and a fully-supervised adaptation stage. In the former, partial knowledge is transferred from multiple source domains to the target domain and fused therein. Negative transfer between unmatched label space is mitigated via three new modules: domain attention, uncertainty maximization and attention-guided adversarial alignment. In the latter, knowledge is transferred in the unified label space after a label completion process with pseudo-labels. We verify the method on three different tasks, image classification, 2D semantic image segmentation, and joint 2D-3D semantic segmentation. Extensive experiments show that our method outperforms all competing methods significantly.

11.Practical Auto-Calibration for Spatial Scene-Understanding from Crowdsourced Dashcamera Videos ⬇️

Spatial scene-understanding, including dense depth and ego-motion estimation, is an important problem in computer vision for autonomous vehicles and advanced driver assistance systems. Thus, it is beneficial to design perception modules that can utilize crowdsourced videos collected from arbitrary vehicular onboard or dashboard cameras. However, the intrinsic parameters corresponding to such cameras are often unknown or change over time. Typical manual calibration approaches require objects such as a chessboard or additional scene-specific information. On the other hand, automatic camera calibration does not have such requirements. Yet, the automatic calibration of dashboard cameras is challenging as forward and planar navigation results in critical motion sequences with reconstruction ambiguities. Structure reconstruction of complete visual-sequences that may contain tens of thousands of images is also computationally untenable. Here, we propose a system for practical monocular onboard camera auto-calibration from crowdsourced videos. We show the effectiveness of our proposed system on the KITTI raw, Oxford RobotCar, and the crowdsourced D$^2$-City datasets in varying conditions. Finally, we demonstrate its application for accurate monocular dense depth and ego-motion estimation on uncalibrated videos.

12.Improved Image Matting via Real-time User Clicks and Uncertainty Estimation ⬇️

Image matting is a fundamental and challenging problem in computer vision and graphics. Most existing matting methods leverage a user-supplied trimap as an auxiliary input to produce good alpha matte. However, obtaining high-quality trimap itself is arduous, thus restricting the application of these methods. Recently, some trimap-free methods have emerged, however, the matting quality is still far behind the trimap-based methods. The main reason is that, without the trimap guidance in some cases, the target network is ambiguous about which is the foreground target. In fact, choosing the foreground is a subjective procedure and depends on the user's intention. To this end, this paper proposes an improved deep image matting framework which is trimap-free and only needs several user click interactions to eliminate the ambiguity. Moreover, we introduce a new uncertainty estimation module that can predict which parts need polishing and a following local refinement module. Based on the computation budget, users can choose how many local parts to improve with the uncertainty guidance. Quantitative and qualitative results show that our method performs better than existing trimap-free methods and comparably to state-of-the-art trimap-based methods with minimal user effort.

13.Robots Understanding Contextual Information in Human-Centered Environments using Weakly Supervised Mask Data Distillation ⬇️

Contextual information in human environments, such as signs, symbols, and objects provide important information for robots to use for exploration and navigation. To identify and segment contextual information from complex images obtained in these environments, data-driven methods such as Convolutional Neural Networks (CNNs) are used. However, these methods require large amounts of human labeled data which are slow and time-consuming to obtain. Weakly supervised methods address this limitation by generating pseudo segmentation labels (PSLs). In this paper, we present the novel Weakly Supervised Mask Data Distillation (WeSuperMaDD) architecture for autonomously generating PSLs using CNNs not specifically trained for the task of context segmentation; i.e., CNNs trained for object classification, image captioning, etc. WeSuperMaDD uniquely generates PSLs using learned image features from sparse and limited diversity data; common in robot navigation tasks in human-centred environments (malls, grocery stores). Our proposed architecture uses a new mask refinement system which automatically searches for the PSL with the fewest foreground pixels that satisfies cost constraints. This removes the need for handcrafted heuristic rules. Extensive experiments successfully validated the performance of WeSuperMaDD in generating PSLs for datasets with text of various scales, fonts, and perspectives in multiple indoor/outdoor environments. A comparison with Naive, GrabCut, and Pyramid methods found a significant improvement in label and segmentation quality. Moreover, a context segmentation CNN trained using the WeSuperMaDD architecture achieved measurable improvements in accuracy compared to one trained with Naive PSLs. Our method also had comparable performance to existing state-of-the-art text detection and segmentation methods on real datasets without requiring segmentation labels for training.

14.Cluster, Split, Fuse, and Update: Meta-Learning for Open Compound Domain Adaptive Semantic Segmentation ⬇️

Open compound domain adaptation (OCDA) is a domain adaptation setting, where target domain is modeled as a compound of multiple unknown homogeneous domains, which brings the advantage of improved generalization to unseen domains. In this work, we propose a principled meta-learning based approach to OCDA for semantic segmentation, MOCDA, by modeling the unlabeled target domain continuously. Our approach consists of four key steps. First, we cluster target domain into multiple sub-target domains by image styles, extracted in an unsupervised manner. Then, different sub-target domains are split into independent branches, for which batch normalization parameters are learnt to treat them independently. A meta-learner is thereafter deployed to learn to fuse sub-target domain-specific predictions, conditioned upon the style code. Meanwhile, we learn to online update the model by model-agnostic meta-learning (MAML) algorithm, thus to further improve generalization. We validate the benefits of our approach by extensive experiments on synthetic-to-real knowledge transfer benchmark datasets, where we achieve the state-of-the-art performance in both compound and open domains.

15.Artificial Dummies for Urban Dataset Augmentation ⬇️

Existing datasets for training pedestrian detectors in images suffer from limited appearance and pose variation. The most challenging scenarios are rarely included because they are too difficult to capture due to safety reasons, or they are very unlikely to happen. The strict safety requirements in assisted and autonomous driving applications call for an extra high detection accuracy also in these rare situations. Having the ability to generate people images in arbitrary poses, with arbitrary appearances and embedded in different background scenes with varying illumination and weather conditions, is a crucial component for the development and testing of such applications. The contributions of this paper are three-fold. First, we describe an augmentation method for controlled synthesis of urban scenes containing people, thus producing rare or never-seen situations. This is achieved with a data generator (called DummyNet) with disentangled control of the pose, the appearance, and the target background scene. Second, the proposed generator relies on novel network architecture and associated loss that takes into account the segmentation of the foreground person and its composition into the background scene. Finally, we demonstrate that the data generated by our DummyNet improve performance of several existing person detectors across various datasets as well as in challenging situations, such as night-time conditions, where only a limited amount of training data is available. In the setup with only day-time data available, we improve the night-time detector by $17%$ log-average miss rate over the detector trained with the day-time data only.

16.FCFR-Net: Feature Fusion based Coarse-to-Fine Residual Learning for Monocular Depth Completion ⬇️

Depth completion aims to recover a dense depth map from a sparse depth map with the corresponding color image as input. Recent approaches mainly formulate the depth completion as a one-stage end-to-end learning task, which outputs dense depth maps directly. However, the feature extraction and supervision in one-stage frameworks are insufficient, limiting the performance of these approaches. To address this problem, we propose a novel end-to-end residual learning framework, which formulates the depth completion as a two-stage learning task, i.e., a sparse-to-coarse stage and a coarse-to-fine stage. First, a coarse dense depth map is obtained by a simple CNN framework. Then, a refined depth map is further obtained using a residual learning strategy in the coarse-to-fine stage with coarse depth map and color image as input. Specially, in the coarse-to-fine stage, a channel shuffle extraction operation is utilized to extract more representative features from color image and coarse depth map, and an energy based fusion operation is exploited to effectively fuse these features obtained by channel shuffle operation, thus leading to more accurate and refined depth maps. We achieve SoTA performance in RMSE on KITTI benchmark. Extensive experiments on other datasets future demonstrate the superiority of our approach over current state-of-the-art depth completion approaches.

17.HeadGAN: Video-and-Audio-Driven Talking Head Synthesis ⬇️

Recent attempts to solve the problem of talking head synthesis using a single reference image have shown promising results. However, most of them fail to meet the identity preservation problem, or perform poorly in terms of photo-realism, especially in extreme head poses. We propose HeadGAN, a novel reenactment approach that conditions synthesis on 3D face representations, which can be extracted from any driving video and adapted to the facial geometry of any source. We improve the plausibility of mouth movements, by utilising audio features as a complementary input to the Generator. Quantitative and qualitative experiments demonstrate the merits of our approach.

18.Geometry Enhancements from Visual Content: Going Beyond Ground Truth ⬇️

This work presents a new cyclic architecture that extracts high-frequency patterns from images and re-insert them as geometric features. This procedure allows us to enhance the resolution of low-cost depth sensors capturing fine details on the one hand and being loyal to the scanned ground truth on the other. We present state-of-the-art results for depth super-resolution tasks and as well as visually attractive, enhanced generated 3D models.

19.Robust Factorization Methods Using a Gaussian/Uniform Mixture Model ⬇️

In this paper we address the problem of building a class of robust factorization algorithms that solve for the shape and motion parameters with both affine (weak perspective) and perspective camera models. We introduce a Gaussian/uniform mixture model and its associated EM algorithm. This allows us to address robust parameter estimation within a data clustering approach. We propose a robust technique that works with any affine factorization method and makes it robust to outliers. In addition, we show how such a framework can be further embedded into an iterative perspective factorization scheme. We carry out a large number of experiments to validate our algorithms and to compare them with existing ones. We also compare our approach with factorization methods that use M-estimators.

20.Point-Level Temporal Action Localization: Bridging Fully-supervised Proposals to Weakly-supervised Losses ⬇️

Point-Level temporal action localization (PTAL) aims to localize actions in untrimmed videos with only one timestamp annotation for each action instance. Existing methods adopt the frame-level prediction paradigm to learn from the sparse single-frame labels. However, such a framework inevitably suffers from a large solution space. This paper attempts to explore the proposal-based prediction paradigm for point-level annotations, which has the advantage of more constrained solution space and consistent predictions among neighboring frames. The point-level annotations are first used as the keypoint supervision to train a keypoint detector. At the location prediction stage, a simple but effective mapper module, which enables back-propagation of training errors, is then introduced to bridge the fully-supervised framework with weak supervision. To our best of knowledge, this is the first work to leverage the fully-supervised paradigm for the point-level setting. Experiments on THUMOS14, BEOID, and GTEA verify the effectiveness of our proposed method both quantitatively and qualitatively, and demonstrate that our method outperforms state-of-the-art methods.

21.Canny-VO: Visual Odometry with RGB-D Cameras based on Geometric 3D-2D Edge Alignment ⬇️

The present paper reviews the classical problem of free-form curve registration and applies it to an efficient RGBD visual odometry system called Canny-VO, as it efficiently tracks all Canny edge features extracted from the images. Two replacements for the distance transformation commonly used in edge registration are proposed: Approximate Nearest Neighbour Fields and Oriented Nearest Neighbour Fields. 3D2D edge alignment benefits from these alternative formulations in terms of both efficiency and accuracy. It removes the need for the more computationally demanding paradigms of datato-model registration, bilinear interpolation, and sub-gradient computation. To ensure robustness of the system in the presence of outliers and sensor noise, the registration is formulated as a maximum a posteriori problem, and the resulting weighted least squares objective is solved by the iteratively re-weighted least squares method. A variety of robust weight functions are investigated and the optimal choice is made based on the statistics of the residual errors. Efficiency is furthermore boosted by an adaptively sampled definition of the nearest neighbour fields. Extensive evaluations on public SLAM benchmark sequences demonstrate state-of-the-art performance and an advantage over classical Euclidean distance fields.

22.Cross-Domain Grouping and Alignment for Domain Adaptive Semantic Segmentation ⬇️

Existing techniques to adapt semantic segmentation networks across the source and target domains within deep convolutional neural networks (CNNs) deal with all the samples from the two domains in a global or category-aware manner. They do not consider an inter-class variation within the target domain itself or estimated category, providing the limitation to encode the domains having a multi-modal data distribution. To overcome this limitation, we introduce a learnable clustering module, and a novel domain adaptation framework called cross-domain grouping and alignment. To cluster the samples across domains with an aim to maximize the domain alignment without forgetting precise segmentation ability on the source domain, we present two loss functions, in particular, for encouraging semantic consistency and orthogonality among the clusters. We also present a loss so as to solve a class imbalance problem, which is the other limitation of the previous methods. Our experiments show that our method consistently boosts the adaptation performance in semantic segmentation, outperforming the state-of-the-arts on various domain adaptation settings.

23.FMODetect: Robust Detection and Trajectory Estimation of Fast Moving Objects ⬇️

We propose the first learning-based approach for detection and trajectory estimation of fast moving objects. Such objects are highly blurred and move over large distances within one video frame. Fast moving objects are associated with a deblurring and matting problem, also called deblatting. Instead of solving the complex deblatting problem jointly, we split the problem into matting and deblurring and solve them separately. The proposed method first detects all fast moving objects as a truncated distance function to the trajectory. Subsequently, a matting and fitting network for each detected object estimates the object trajectory and its blurred appearance without background. For the sharp appearance estimation, we propose an energy minimization based deblurring. The state-of-the-art methods are outperformed in terms of trajectory estimation and sharp appearance reconstruction. Compared to other methods, such as deblatting, the inference is of several orders of magnitude faster and allows applications such as real-time fast moving object detection and retrieval in large video collections.

24.Unsupervised Domain Adaptation from Synthetic to Real Images for Anchorless Object Detection ⬇️

Synthetic images are one of the most promising solutions to avoid high costs associated with generating annotated datasets to train supervised convolutional neural networks (CNN). However, to allow networks to generalize knowledge from synthetic to real images, domain adaptation methods are necessary. This paper implements unsupervised domain adaptation (UDA) methods on an anchorless object detector. Given their good performance, anchorless detectors are increasingly attracting attention in the field of object detection. While their results are comparable to the well-established anchor-based methods, anchorless detectors are considerably faster. In our work, we use CenterNet, one of the most recent anchorless architectures, for a domain adaptation problem involving synthetic images. Taking advantage of the architecture of anchorless detectors, we propose to adjust two UDA methods, viz., entropy minimization and maximum squares loss, originally developed for segmentation, to object detection. Our results show that the proposed UDA methods can increase the mAPfrom61 %to69 %with respect to direct transfer on the considered anchorless detector. The code is available: this https URL.

25.Seeing Behind Objects for 3D Multi-Object Tracking in RGB-D Sequences ⬇️

Multi-object tracking from RGB-D video sequences is a challenging problem due to the combination of changing viewpoints, motion, and occlusions over time. We observe that having the complete geometry of objects aids in their tracking, and thus propose to jointly infer the complete geometry of objects as well as track them, for rigidly moving objects over time. Our key insight is that inferring the complete geometry of the objects significantly helps in tracking. By hallucinating unseen regions of objects, we can obtain additional correspondences between the same instance, thus providing robust tracking even under strong change of appearance. From a sequence of RGB-D frames, we detect objects in each frame and learn to predict their complete object geometry as well as a dense correspondence mapping into a canonical space. This allows us to derive 6DoF poses for the objects in each frame, along with their correspondence between frames, providing robust object tracking across the RGB-D sequence. Experiments on both synthetic and real-world RGB-D data demonstrate that we achieve state-of-the-art performance on dynamic object tracking. Furthermore, we show that our object completion significantly helps tracking, providing an improvement of $6.5%$ in mean MOTA.

26.Representing Ambiguity in Registration Problems with Conditional Invertible Neural Networks ⬇️

Image registration is the basis for many applications in the fields of medical image computing and computer assisted interventions. One example is the registration of 2D X-ray images with preoperative three-dimensional computed tomography (CT) images in intraoperative surgical guidance systems. Due to the high safety requirements in medical applications, estimating registration uncertainty is of a crucial importance in such a scenario. However, previously proposed methods, including classical iterative registration methods and deep learning-based methods have one characteristic in common: They lack the capacity to represent the fact that a registration problem may be inherently ambiguous, meaning that multiple (substantially different) plausible solutions exist. To tackle this limitation, we explore the application of invertible neural networks (INN) as core component of a registration methodology. In the proposed framework, INNs enable going beyond point estimates as network output by representing the possible solutions to a registration problem by a probability distribution that encodes different plausible solutions via multiple modes. In a first feasibility study, we test the approach for a 2D 3D registration setting by registering spinal CT volumes to X-ray images. To this end, we simulate the X-ray images taken by a C-Arm with multiple orientations using the principle of digitially reconstructed radiographs (DRRs). Due to the symmetry of human spine, there are potentially multiple substantially different poses of the C-Arm that can lead to similar projections. The hypothesis of this work is that the proposed approach is able to identify multiple solutions in such ambiguous registration problems.

27.docExtractor: An off-the-shelf historical document element extraction ⬇️

We present docExtractor, a generic approach for extracting visual elements such as text lines or illustrations from historical documents without requiring any real data annotation. We demonstrate it provides high-quality performances as an off-the-shelf system across a wide variety of datasets and leads to results on par with state-of-the-art when fine-tuned. We argue that the performance obtained without fine-tuning on a specific dataset is critical for applications, in particular in digital humanities, and that the line-level page segmentation we address is the most relevant for a general purpose element extraction engine. We rely on a fast generator of rich synthetic documents and design a fully convolutional network, which we show to generalize better than a detection-based approach. Furthermore, we introduce a new public dataset dubbed IlluHisDoc dedicated to the fine evaluation of illustration segmentation in historical documents.

28.Research on All-content Text Recognition Method for Financial Ticket Image ⬇️

With the development of the economy, the number of financial tickets increases rapidly. The traditional manual invoice reimbursement and financial accounting system bring more and more burden to financial accountants. Therefore, based on the research and analysis of a large number of real financial ticket data, we designed an accurate and efficient all contents text detection and recognition method based on deep learning. This method has higher recognition accuracy and recall rate and can meet the actual requirements of financial accounting work. In addition, we propose a Financial Ticket Character Recognition Framework (FTCRF). According to the characteristics of Chinese character recognition, this framework contains a two-step information extraction method, which can improve the speed of Chinese character recognition. The experimental results show that the average recognition accuracy of this method is 91.75% for character sequence and 87% for the whole ticket. The availability and effectiveness of this method are verified by a commercial application system, which significantly improves the efficiency of the financial accounting system.

29.Dilated-Scale-Aware Attention ConvNet For Multi-Class Object Counting ⬇️

Object counting aims to estimate the number of objects in images. The leading counting approaches focus on the single category counting task and achieve impressive performance. Note that there are multiple categories of objects in real scenes. Multi-class object counting expands the scope of application of object counting task. The multi-target detection task can achieve multi-class object counting in some scenarios. However, it requires the dataset annotated with bounding boxes. Compared with the point annotations in mainstream object counting issues, the coordinate box-level annotations are more difficult to obtain. In this paper, we propose a simple yet efficient counting network based on point-level annotations. Specifically, we first change the traditional output channel from one to the number of categories to achieve multiclass counting. Since all categories of objects use the same feature extractor in our proposed framework, their features will interfere mutually in the shared feature space. We further design a multi-mask structure to suppress harmful interaction among objects. Extensive experiments on the challenging benchmarks illustrate that the proposed method achieves state-of-the-art counting performance.

30.NeuralQAAD: An Efficient Differentiable Framework for High Resolution Point Cloud Compression ⬇️

In this paper, we propose NeuralQAAD, a differentiable point cloud compression framework that is fast, robust to sampling, and applicable to high resolutions. Previous work that is able to handle complex and non-smooth topologies is hardly scaleable to more than just a few thousand points. We tackle the task with a novel neural network architecture characterized by weight sharing and autodecoding. Our architecture uses parameters much more efficiently than previous work, allowing us to be deeper and scalable. Futhermore, we show that the currently only tractable training criterion for point cloud compression, the Chamfer distance, performances poorly for high resolutions. To overcome this issue, we pair our architecture with a new training procedure based upon a quadratic assignment problem (QAP) for which we state two approximation algorithms. We solve the QAP in parallel to gradient descent. This procedure acts as a surrogate loss and allows to implicitly minimize the more expressive Earth Movers Distance (EMD) even for point clouds with way more than $10^6$ points. As evaluating the EMD on high resolution point clouds is intractable, we propose a divide-and-conquer approach based on k-d trees, the EM-kD, as a scaleable and fast but still reliable upper bound for the EMD. NeuralQAAD is demonstrated on COMA, D-FAUST, and Skulls to significantly outperform the current state-of-the-art visually and in terms of the EM-kD. Skulls is a novel dataset of skull CT-scans which we will make publicly available together with our implementation of NeuralQAAD.

31.Deep Layout of Custom-size Furniture through Multiple-domain Learning ⬇️

In this paper, we propose a multiple-domain model for producing a custom-size furniture layout in the interior scene. This model is aimed to support professional interior designers to produce interior decoration solutions with custom-size furniture more quickly. The proposed model combines a deep layout module, a domain attention module, a dimensional domain transfer module, and a custom-size module in the end-end training. Compared with the prior work on scene synthesis, our proposed model enhances the ability of auto-layout of custom-size furniture in the interior room. We conduct our experiments on a real-world interior layout dataset that contains $710,700$ designs from professional designers. Our numerical results demonstrate that the proposed model yields higher-quality layouts of custom-size furniture in comparison with the state-of-art model.

32.Class-incremental Learning with Rectified Feature-Graph Preservation ⬇️

In this paper, we address the problem of distillation-based class-incremental learning with a single head. A central theme of this task is to learn new classes that arrive in sequential phases over time while keeping the model's capability of recognizing seen classes with only limited memory for preserving seen data samples. Many regularization strategies have been proposed to mitigate the phenomenon of catastrophic forgetting. To understand better the essence of these regularizations, we introduce a feature-graph preservation perspective. Insights into their merits and faults motivate our weighted-Euclidean regularization for old knowledge preservation. We further propose rectified cosine normalization and show how it can work with binary cross-entropy to increase class separation for effective learning of new classes. Experimental results on both CIFAR-100 and ImageNet datasets demonstrate that our method outperforms the state-of-the-art approaches in reducing classification error, easing catastrophic forgetting, and encouraging evenly balanced accuracy over different classes. Our project page is at : this https URL.

33.KOALAnet: Blind Super-Resolution using Kernel-Oriented Adaptive Local Adjustment ⬇️

Blind super-resolution (SR) methods aim to generate a high quality high resolution image from a low resolution image containing unknown degradations. However, natural images contain various types and amounts of blur: some may be due to the inherent degradation characteristics of the camera, but some may even be intentional, for aesthetic purposes (eg. Bokeh effect). In the case of the latter, it becomes highly difficult for SR methods to disentangle the blur to remove, and that to leave as is. In this paper, we propose a novel blind SR framework based on kernel-oriented adaptive local adjustment (KOALA) of SR features, called KOALAnet, which jointly learns spatially-variant degradation and restoration kernels in order to adapt to the spatially-variant blur characteristics in real images. Our KOALAnet outperforms recent blind SR methods for synthesized LR images obtained with randomized degradations, and we further show that the proposed KOALAnet produces the most natural results for artistic photographs with intentional blur, which are not over-sharpened, by effectively handling images mixed with in-focus and out-of-focus areas.

34.Fast 3D Image Moments ⬇️

An algorithm to efficiently compute the moments of volumetric images is disclosed. The approach demonstrates a reduction in processing time by reducing the computational complexity significantly. Specifically, the algorithm reduces multiplicative complexity from O(n^3) to O(n). Several 2D projection images of the 3D volume are generated. The algorithm computes a set of 2D moments from those 2D images. Those 2D moments are then used to derive the 3D volumetric moments. Examples of use in MRI or CT and related analysis demonstrates the benefit of the Discrete Projection Moment Algorithm. The approach is also useful in computing the moments of a 3D object using a small set of 2D tomographic images of that object.

35.Towards Improving Spatiotemporal Action Recognition in Videos ⬇️

Spatiotemporal action recognition deals with locating and classifying actions in videos. Motivated by the latest state-of-the-art real-time object detector You Only Watch Once (YOWO), we aim to modify its structure to increase action detection precision and reduce computational time. Specifically, we propose four novel approaches in attempts to improve YOWO and address the imbalanced class issue in videos by modifying the loss function. We consider two moderate-sized datasets to apply our modification of YOWO - the popular Joint-annotated Human Motion Data Base (J-HMDB-21) and a private dataset of restaurant video footage provided by a Carnegie Mellon University-based startup, this http URL. The latter involves fast-moving actions with small objects as well as unbalanced data classes, making the task of action localization more challenging. We implement our proposed methods in the GitHub repository this https URL.

36.FAWA: Fast Adversarial Watermark Attack on Optical Character Recognition (OCR) Systems ⬇️

Deep neural networks (DNNs) significantly improved the accuracy of optical character recognition (OCR) and inspired many important applications. Unfortunately, OCRs also inherit the vulnerabilities of DNNs under adversarial examples. Different from colorful vanilla images, text images usually have clear backgrounds. Adversarial examples generated by most existing adversarial attacks are unnatural and pollute the background severely. To address this issue, we propose the Fast Adversarial Watermark Attack (FAWA) against sequence-based OCR models in the white-box manner. By disguising the perturbations as watermarks, we can make the resulting adversarial images appear natural to human eyes and achieve a perfect attack success rate. FAWA works with either gradient-based or optimization-based perturbation generation. In both letter-level and word-level attacks, our experiments show that in addition to natural appearance, FAWA achieves a 100% attack success rate with 60% less perturbations and 78% fewer iterations on average. In addition, we further extend FAWA to support full-color watermarks, other languages, and even the OCR accuracy-enhancing mechanism.

37.Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data Augmentation ⬇️

Holistically understanding an object and its 3D movable parts through visual perception models is essential for enabling an autonomous agent to interact with the world. For autonomous driving, the dynamics and states of vehicle parts such as doors, the trunk, and the bonnet can provide meaningful semantic information and interaction states, which are essential to ensure the safety of the self-driving vehicle. Existing visual perception models mainly focus on coarse parsing such as object bounding box detection or pose estimation and rarely tackle these situations. In this paper, we address this important problem for autonomous driving by solving two critical issues using visual data augmentation. First, to deal with data scarcity, we propose an effective training data generation process by fitting a 3D car model with dynamic parts to vehicles in real images and then reconstructing human-vehicle interaction scenarios. This allows us to directly edit the real images using the aligned 3D parts, yielding effective training data generation for learning robust deep neural networks (DNNs). Second, to benchmark the quality of 3D part understanding, we collect a large dataset in real world driving scenarios with vehicles in uncommon states (VUS), i.e. with the door or trunk opened, etc. Experiments demonstrate our trained network with visual data augmentation largely outperforms other baselines in terms of 2D detection and instance segmentation accuracy. Our network yields large improvements in discovering and understanding these uncommon cases. Moreover, we plan to release all of the source code, the dataset, and the trained model on GitHub.

38.Image Inpainting Guided by Coherence Priors of Semantics and Textures ⬇️

Existing inpainting methods have achieved promising performance in recovering defected images of specific scenes. However, filling holes involving multiple semantic categories remains challenging due to the obscure semantic boundaries and the mixture of different semantic textures. In this paper, we introduce coherence priors between the semantics and textures which make it possible to concentrate on completing separate textures in a semantic-wise manner. Specifically, we adopt a multi-scale joint optimization framework to first model the coherence priors and then accordingly interleavingly optimize image inpainting and semantic segmentation in a coarse-to-fine manner. A Semantic-Wise Attention Propagation (SWAP) module is devised to refine completed image textures across scales by exploring non-local semantic coherence, which effectively mitigates mix-up of textures. We also propose two coherence losses to constrain the consistency between the semantics and the inpainted image in terms of the overall structure and detailed textures. Experimental results demonstrate the superiority of our proposed method for challenging cases with complex holes.

39.Teach me to segment with mixed supervision: Confident students become masters ⬇️

Deep segmentation neural networks require large training datasets with pixel-wise segmentations, which are expensive to obtain in practice. Mixed supervision could mitigate this difficulty, with a small fraction of the data containing complete pixel-wise annotations, while the rest being less supervised, e.g., only a handful of pixels are labeled. In this work, we propose a dual-branch architecture, where the upper branch (teacher) receives strong annotations, while the bottom one (student) is driven by limited supervision and guided by the upper branch. In conjunction with a standard cross-entropy over the labeled pixels, our novel formulation integrates two important terms: (i) a Shannon entropy loss defined over the less-supervised images, which encourages confident student predictions at the bottom branch; and (ii) a Kullback-Leibler (KL) divergence, which transfers the knowledge from the predictions generated by the strongly supervised branch to the less-supervised branch, and guides the entropy (student-confidence) term to avoid trivial solutions. Very interestingly, we show that the synergy between the entropy and KL divergence yields substantial improvements in performances. Furthermore, we discuss an interesting link between Shannon-entropy minimization and standard pseudo-mask generation and argue that the former should be preferred over the latter for leveraging information from unlabeled pixels. Through a series of quantitative and qualitative experiments, we show the effectiveness of the proposed formulation in segmenting the left-ventricle endocardium in MRI images. We demonstrate that our method significantly outperforms other strategies to tackle semantic segmentation within a mixed-supervision framework. More interestingly, and in line with recent observations in classification, we show that the branch trained with reduced supervision largely outperforms the teacher.

40.Semantic-Guided Representation Enhancement for Self-supervised Monocular Trained Depth Estimation ⬇️

Self-supervised depth estimation has shown its great effectiveness in producing high quality depth maps given only image sequences as input. However, its performance usually drops when estimating on border areas or objects with thin structures due to the limited depth representation ability. In this paper, we address this problem by proposing a semantic-guided depth representation enhancement method, which promotes both local and global depth feature representations by leveraging rich contextual information. In stead of a single depth network as used in conventional paradigms, we propose an extra semantic segmentation branch to offer extra contextual features for depth estimation. Based on this framework, we enhance the local feature representation by sampling and feeding the point-based features that locate on the semantic edges to an individual Semantic-guided Edge Enhancement module (SEEM), which is specifically designed for promoting depth estimation on the challenging semantic borders. Then, we improve the global feature representation by proposing a semantic-guided multi-level attention mechanism, which enhances the semantic and depth features by exploring pixel-wise correlations in the multi-level depth decoding scheme. Extensive experiments validate the distinct superiority of our method in capturing highly accurate depth on the challenging image areas such as semantic category borders and thin objects. Both quantitative and qualitative experiments on KITTI show that our method outperforms the state-of-the-art methods.

41.NUTA: Non-uniform Temporal Aggregation for Action Recognition ⬇️

In the world of action recognition research, one primary focus has been on how to construct and train networks to model the spatial-temporal volume of an input video. These methods typically uniformly sample a segment of an input clip (along the temporal dimension). However, not all parts of a video are equally important to determine the action in the clip. In this work, we focus instead on learning where to extract features, so as to focus on the most informative parts of the video. We propose a method called the non-uniform temporal aggregation (NUTA), which aggregates features only from informative temporal segments. We also introduce a synchronization method that allows our NUTA features to be temporally aligned with traditional uniformly sampled video features, so that both local and clip-level features can be combined. Our model has achieved state-of-the-art performance on four widely used large-scale action-recognition datasets (Kinetics400, Kinetics700, Something-something V2 and Charades). In addition, we have created a visualization to illustrate how the proposed NUTA method selects only the most relevant parts of a video clip.

42.Classification of Smoking and Calling using Deep Learning ⬇️

Since 2014, very deep convolutional neural networks have been proposed and become the must-have weapon for champions in all kinds of competition. In this report, a pipeline is introduced to perform the classification of smoking and calling by modifying the pretrained inception V3. Brightness enhancing based on deep learning is implemented to improve the classification of this classification task along with other useful training tricks. Based on the quality and quantity results, it can be concluded that this pipeline with small biased samples is practical and useful with high accuracy.

43.DeepGamble: Towards unlocking real-time player intelligence using multi-layer instance segmentation and attribute detection ⬇️

Annually the gaming industry spends approximately $15 billion in marketing reinvestment. However, this amount is spent without any consideration for the skill and luck of the player. For a casino, an unskilled player could fetch ~4 times more revenue than a skilled player. This paper describes a video recognition system that is based on an extension of the Mask R-CNN model. Our system digitizes the game of blackjack by detecting cards and player bets in real-time and processes decisions they took in order to create accurate player personas. Our proposed supervised learning approach consists of a specialized three-stage pipeline that takes images from two viewpoints of the casino table and does instance segmentation to generate masks on proposed regions of interest. These predicted masks along with derivative features are used to classify image attributes that are passed onto the next stage to assimilate the gameplay understanding. Our end-to-end model yields an accuracy of ~95% for the main bet detection and ~97% for card detection in a controlled environment trained using transfer learning approach with 900 training examples. Our approach is generalizable and scalable and shows promising results in varied gaming scenarios and test data. Such granular level gathered data, helped in understanding player's deviation from optimum strategy and thereby separate the skill of the player from the luck of the game. Our system also assesses the likelihood of card counting by correlating the player's betting pattern to the deck's scaled count. Such a system lets casinos flag fraudulent activity and calculate expected personalized profitability for each player and tailor their marketing reinvestment decisions.

44.FaceDet3D: Facial Expressions with 3D Geometric Detail Prediction ⬇️

Facial Expressions induce a variety of high-level details on the 3D face geometry. For example, a smile causes the wrinkling of cheeks or the formation of dimples, while being angry often causes wrinkling of the forehead. Morphable Models (3DMMs) of the human face fail to capture such fine details in their PCA-based representations and consequently cannot generate such details when used to edit expressions. In this work, we introduce FaceDet3D, a first-of-its-kind method that generates - from a single image - geometric facial details that are consistent with any desired target expression. The facial details are represented as a vertex displacement map and used then by a Neural Renderer to photo-realistically render novel images of any single image in any desired expression and view. The Project website is: this http URL

45.FasteNet: A Fast Railway Fastener Detector ⬇️

In this work, a novel high-speed railway fastener detector is introduced. This fully convolutional network, dubbed FasteNet, foregoes the notion of bounding boxes and performs detection directly on a predicted saliency map. Fastenet uses transposed convolutions and skip connections, the effective receptive field of the network is 1.5$\times$ larger than the average size of a fastener, enabling the network to make predictions with high confidence, without sacrificing output resolution. In addition, due to the saliency map approach, the network is able to vote for the presence of a fastener up to 30 times per fastener, boosting prediction accuracy. Fastenet is capable of running at 110 FPS on an Nvidia GTX 1080, while taking in inputs of 1600$\times$512 with an average of 14 fasteners per image. Our source is open here: this https URL_FasteNet.git

46.Automatic Vertebra Localization and Identification in CT by Spine Rectification and Anatomically-constrained Optimization ⬇️

Accurate vertebra localization and identification are required in many clinical applications of spine disorder diagnosis and surgery planning. However, significant challenges are posed in this task by highly varying pathologies (such as vertebral compression fracture, scoliosis, and vertebral fixation) and imaging conditions (such as limited field of view and metal streak artifacts). This paper proposes a robust and accurate method that effectively exploits the anatomical knowledge of the spine to facilitate vertebra localization and identification. A key point localization model is trained to produce activation maps of vertebra centers. They are then re-sampled along the spine centerline to produce spine-rectified activation maps, which are further aggregated into 1-D activation signals. Following this, an anatomically-constrained optimization module is introduced to jointly search for the optimal vertebra centers under a soft constraint that regulates the distance between vertebrae and a hard constraint on the consecutive vertebra indices. When being evaluated on a major public benchmark of 302 highly pathological CT images, the proposed method reports the state of the art identification (id.) rate of 97.4%, and outperforms the best competing method of 94.7% id. rate by reducing the relative id. error rate by half.

47.Robust One Shot Audio to Video Generation ⬇️

Audio to Video generation is an interesting problem that has numerous applications across industry verticals including film making, multi-media, marketing, education and others. High-quality video generation with expressive facial movements is a challenging problem that involves complex learning steps for generative adversarial networks. Further, enabling one-shot learning for an unseen single image increases the complexity of the problem while simultaneously making it more applicable to practical scenarios. In the paper, we propose a novel approach OneShotA2V to synthesize a talking person video of arbitrary length using as input: an audio signal and a single unseen image of a person. OneShotA2V leverages curriculum learning to learn movements of expressive facial components and hence generates a high-quality talking-head video of the given person. Further, it feeds the features generated from the audio input directly into a generative adversarial network and it adapts to any given unseen selfie by applying fewshot learning with only a few output updation epochs. OneShotA2V leverages spatially adaptive normalization based multi-level generator and multiple multi-level discriminators based architecture. The input audio clip is not restricted to any specific language, which gives the method multilingual applicability. Experimental evaluation demonstrates superior performance of OneShotA2V as compared to Realistic Speech-Driven Facial Animation with GANs(RSDGAN) [43], Speech2Vid [8], and other approaches, on multiple quantitative metrics including: SSIM (structural similarity index), PSNR (peak signal to noise ratio) and CPBD (image sharpness). Further, qualitative evaluation and Online Turing tests demonstrate the efficacy of our approach.

48.Exploring Vicinal Risk Minimization for Lightweight Out-of-Distribution Detection ⬇️

Deep neural networks have found widespread adoption in solving complex tasks ranging from image recognition to natural language processing. However, these networks make confident mispredictions when presented with data that does not belong to the training distribution, i.e. out-of-distribution (OoD) samples. In this paper we explore whether the property of Vicinal Risk Minimization (VRM) to smoothly interpolate between different class boundaries helps to train better OoD detectors. We apply VRM to existing OoD detection techniques and show their improved performance. We observe that existing OoD detectors have significant memory and compute overhead, hence we leverage VRM to develop an OoD detector with minimal overheard. Our detection method introduces an auxiliary class for classifying OoD samples. We utilize mixup in two ways to implement Vicinal Risk Minimization. First, we perform mixup within the same class and second, we perform mixup with Gaussian noise when training the auxiliary class. Our method achieves near competitive performance with significantly less compute and memory overhead when compared to existing OoD detection techniques. This facilitates the deployment of OoD detection on edge devices and expands our understanding of Vicinal Risk Minimization for use in training OoD detectors.

49.Masksembles for Uncertainty Estimation ⬇️

Deep neural networks have amply demonstrated their prowess but estimating the reliability of their predictions remains challenging. Deep Ensembles are widely considered as being one of the best methods for generating uncertainty estimates but are very expensive to train and evaluate. MC-Dropout is another popular alternative, which is less expensive, but also less reliable. Our central intuition is that there is a continuous spectrum of ensemble-like models of which MC-Dropout and Deep Ensembles are extreme examples. The first uses an effectively infinite number of highly correlated models while the second relies on a finite number of independent models.
To combine the benefits of both, we introduce Masksembles. Instead of randomly dropping parts of the network as in MC-dropout, Masksemble relies on a fixed number of binary masks, which are parameterized in a way that allows to change correlations between individual models. Namely, by controlling the overlap between the masks and their density one can choose the optimal configuration for the task at hand. This leads to a simple and easy to implement method with performance on par with Ensembles at a fraction of the cost. We experimentally validate Masksembles on two widely used datasets, CIFAR10 and ImageNet.

50.Do not repeat these mistakes -- a critical appraisal of applications of explainable artificial intelligence for image based COVID-19 detection ⬇️

The sudden outbreak and uncontrolled spread of COVID-19 disease is one of the most important global problems today. In a short period of time, it has led to the development of many deep neural network models for COVID-19 detection with modules for explainability. In this work, we carry out a systematic analysis of various aspects of proposed models. Our analysis revealed numerous mistakes made at different stages of data acquisition, model development, and explanation construction. In this work, we overview the approaches proposed in the surveyed ML articles and indicate typical errors emerging from the lack of deep understanding of the radiography domain. We present the perspective of both: experts in the field - radiologists, and deep learning engineers dealing with model explanations. The final result is a proposed a checklist with the minimum conditions to be met by a reliable COVID-19 diagnostic model.

51.Multiple Sclerosis Lesion Segmentation -- A Survey of Supervised CNN-Based Methods ⬇️

Lesion segmentation is a core task for quantitative analysis of MRI scans of Multiple Sclerosis patients. The recent success of deep learning techniques in a variety of medical image analysis applications has renewed community interest in this challenging problem and led to a burst of activity for new algorithm development. In this survey, we investigate the supervised CNN-based methods for MS lesion segmentation. We decouple these reviewed works into their algorithmic components and discuss each separately. For methods that provide evaluations on public benchmark datasets, we report comparisons between their results.

52.Enhance Multimodal Transformer With External Label And In-Domain Pretrain: Hateful Meme Challenge Winning Solution ⬇️

Hateful meme detection is a new research area recently brought out that requires both visual, linguistic understanding of the meme and some background knowledge to performing well on the task. This technical report summarises the first place solution of the Hateful Meme Detection Challenge 2020, which extending state-of-the-art visual-linguistic transformers to tackle this problem. At the end of the report, we also point out the shortcomings and possible directions for improving the current methodology.

53.CosSGD: Nonlinear Quantization for Communication-efficient Federated Learning ⬇️

Federated learning facilitates learning across clients without transferring local data on these clients to a central server. Despite the success of the federated learning method, it remains to improve further w.r.t communicating the most critical information to update a model under limited communication conditions, which can benefit this learning scheme into a wide range of application scenarios. In this work, we propose a nonlinear quantization for compressed stochastic gradient descent, which can be easily utilized in federated learning. Based on the proposed quantization, our system significantly reduces the communication cost by up to three orders of magnitude, while maintaining convergence and accuracy of the training process to a large extent. Extensive experiments are conducted on image classification and brain tumor semantic segmentation using the MNIST, CIFAR-10 and BraTS datasets where we show state-of-the-art effectiveness and impressive communication efficiency.

54.Frozen-to-Paraffin: Categorization of Histological Frozen Sections by the Aid of Paraffin Sections and Generative Adversarial Networks ⬇️

In contrast to paraffin sections, frozen sections can be quickly generated during surgical interventions. This procedure allows surgeons to wait for histological findings during the intervention to base intra-operative decisions on the outcome of the histology. However, compared to paraffin sections, the quality of frozen sections is typically lower, leading to a higher ratio of miss-classification. In this work, we investigated the effect of the section type on automated decision support approaches for classification of thyroid cancer. This was enabled by a data set consisting of pairs of sections for individual patients. Moreover, we investigated, whether a frozen-to-paraffin translation could help to optimize classification scores. Finally, we propose a specific data augmentation strategy to deal with a small amount of training data and to increase classification accuracy even further.

55.Hypothesis Disparity Regularized Mutual Information Maximization ⬇️

We propose a hypothesis disparity regularized mutual information maximization~(HDMI) approach to tackle unsupervised hypothesis transfer -- as an effort towards unifying hypothesis transfer learning (HTL) and unsupervised domain adaptation (UDA) -- where the knowledge from a source domain is transferred solely through hypotheses and adapted to the target domain in an unsupervised manner. In contrast to the prevalent HTL and UDA approaches that typically use a single hypothesis, HDMI employs multiple hypotheses to leverage the underlying distributions of the source and target hypotheses. To better utilize the crucial relationship among different hypotheses -- as opposed to unconstrained optimization of each hypothesis independently -- while adapting to the unlabeled target domain through mutual information maximization, HDMI incorporates a hypothesis disparity regularization that coordinates the target hypotheses jointly learn better target representations while preserving more transferable source knowledge with better-calibrated prediction uncertainty. HDMI achieves state-of-the-art adaptation performance on benchmark datasets for UDA in the context of HTL, without the need to access the source data during the adaptation.

56.Iterative label cleaning for transductive and semi-supervised few-shot learning ⬇️

Few-shot learning amounts to learning representations and acquiring knowledge such that novel tasks may be solved with both supervision and data being limited. Improved performance is possible by transductive inference, where the entire test set is available concurrently, and semi-supervised learning, where more unlabeled data is available. These problems are closely related because there is little or no adaptation of the representation in novel tasks.
Focusing on these two settings, we introduce a new algorithm that leverages the manifold structure of the labeled and unlabeled data distribution to predict pseudo-labels, while balancing over classes and using the loss value distribution of a limited-capacity classifier to select the cleanest labels, iterately improving the quality of pseudo-labels. Our solution sets new state of the art on four benchmark datasets, namely \emph{mini}ImageNet, \emph{tiered}ImageNet, CUB and CIFAR-FS, while being robust over feature space pre-processing and the quantity of available data.

57.Towards broader generalization of deep learning methods for multiple sclerosis lesion segmentation ⬇️

Recently, segmentation methods based on Convolutional Neural Networks (CNNs) showed promising performance in automatic Multiple Sclerosis (MS) lesions segmentation. These techniques have even outperformed human experts in controlled evaluation condition. However state-of-the-art approaches trained to perform well on highly-controlled datasets fail to generalize on clinical data from unseen datasets. Instead of proposing another improvement of the segmentation accuracy, we propose a novel method robust to domain shift and performing well on unseen datasets, called DeepLesionBrain (DLB). This generalization property results from three main contributions. First, DLB is based on a large ensemble of compact 3D CNNs. This ensemble strategy ensures a robust prediction despite the risk of generalization failure of some individual networks. Second, DLB includes a new image quality data augmentation to reduce dependency to training data specificity (e.g., acquisition protocol). Finally, to learn a more generalizable representation of MS lesions, we propose a hierarchical specialization learning (HSL). HSL is performed by pre-training a generic network over the whole brain, before using its weights as initialization to locally specialized networks. By this end, DLB learns both generic features extracted at global image level and specific features extracted at local image level. At the time of publishing this paper, DLB is among the Top 3 performing published methods on ISBI Challenge while using only half of the available modalities. DLB generalization has also been compared to other state-of-the-art approaches, during cross-dataset experiments on MSSEG'16, ISBI challenge, and in-house datasets. DLB improves the segmentation performance and generalization over classical techniques, and thus proposes a robust approach better suited for clinical practice.

58.When Physical Unclonable Function Meets Biometrics ⬇️

As the Covid-19 pandemic grips the world, healthcare systems are being reshaped, where the e-health concepts become more likely to be accepted. Wearable devices often carry sensitive information from users which are exposed to security and privacy risks. Moreover, users have always had the concern of being counterfeited between the fabrication process and vendors' storage. Hence, not only securing personal data is becoming a crucial obligation, but also device verification is another challenge. To address biometrics authentication and physically unclonable functions (PUFs) need to be put in place to mitigate the security and privacy of the users. Among biometrics modalities, Electrocardiogram (ECG) based biometric has become popular as it can authenticate patients and monitor the patient's vital signs. However, researchers have recently started to study the vulnerabilities of the ECG biometric systems and tried to address the issues of spoofing. Moreover, most of the wearable is enabled with CPU and memories. Thus, volatile memory-based (NVM) PUF can be easily placed in the device to avoid counterfeit. However, many research challenged the unclonability characteristics of PUFs. Thus, a careful study on these attacks should be sufficient to address the need. In this paper, our aim is to provide a comprehensive study on the state-of-the-art developments papers based on biometrics enabled hardware security.

59.Learning Collision-Free Space Detection from Stereo Images: Homography Matrix Brings Better Data Augmentation ⬇️

Collision-free space detection is a critical component of autonomous vehicle perception. The state-of-the-art algorithms are typically based on supervised learning. The performance of such approaches is always dependent on the quality and amount of labeled training data. Additionally, it remains an open challenge to train deep convolutional neural networks (DCNNs) using only a small quantity of training samples. Therefore, this paper mainly explores an effective training data augmentation approach that can be employed to improve the overall DCNN performance, when additional images captured from different views are available. Due to the fact that the pixels of the collision-free space (generally regarded as a planar surface) between two images captured from different views can be associated by a homography matrix, the scenario of the target image can be transformed into the reference view. This provides a simple but effective way of generating training data from additional multi-view images. Extensive experimental results, conducted with six state-of-the-art semantic segmentation DCNNs on three datasets, demonstrate the effectiveness of our proposed training data augmentation algorithm for enhancing collision-free space detection performance. When validated on the KITTI road benchmark, our approach provides the best results for stereo vision-based collision-free space detection.