Skip to content

Latest commit

 

History

History
223 lines (223 loc) · 154 KB

20201124.md

File metadata and controls

223 lines (223 loc) · 154 KB

ArXiv cs.CV --Tue, 24 Nov 2020

1.Betrayed by Motion: Camouflaged Object Discovery via Motion Segmentation ⬇️

The objective of this paper is to design a computational architecture that discovers camouflaged objects in videos, specifically by exploiting motion information to perform object segmentation. We make the following three contributions: (i) We propose a novel architecture that consists of two essential components for breaking camouflage, namely, a differentiable registration module to align consecutive frames based on the background, which effectively emphasises the object boundary in the difference image, and a motion segmentation module with memory that discovers the moving objects, while maintaining the object permanence even when motion is absent at some point. (ii) We collect the first large-scale Moving Camouflaged Animals (MoCA) video dataset, which consists of over 140 clips across a diverse range of animals (67 categories). (iii) We demonstrate the effectiveness of the proposed model on MoCA, and achieve competitive performance on the unsupervised segmentation protocol on DAVIS2016 by only relying on motion.

2.Cycle-consistent Generative Adversarial Networks for Neural Style Transfer using data from Chang'E-4 ⬇️

Generative Adversarial Networks (GANs) have had tremendous applications in Computer Vision. Yet, in the context of space science and planetary exploration the door is open for major advances. We introduce tools to handle planetary data from the mission Chang'E-4 and present a framework for Neural Style Transfer using Cycle-consistency from rendered images. The experiments are conducted in the context of the Iris Lunar Rover, a nano-rover that will be deployed in lunar terrain in 2021 as the flagship of Carnegie Mellon, being the first unmanned rover of America to be on the Moon.

3.Transfer Learning for Oral Cancer Detection using Microscopic Images ⬇️

Oral cancer has more than 83% survival rate if detected in its early stages, however, only 29% of cases are currently detected early. Deep learning techniques can detect patterns of oral cancer cells and can aid in its early detection. In this work, we present the first results of neural networks for oral cancer detection using microscopic images. We compare numerous state-of-the-art models via transfer learning approach and collect and release an augmented dataset of high-quality microscopic images of oral cancer. We present a comprehensive study of different models and report their performance on this type of data. Overall, we obtain a 10-15% absolute improvement with transfer learning methods compared to a simple Convolutional Neural Network baseline. Ablation studies show the added benefit of data augmentation techniques with finetuning for this task.

4.Interpretable Visual Reasoning via Induced Symbolic Space ⬇️

We study the problem of concept induction in visual reasoning, i.e., identifying concepts and their hierarchical relationships from question-answer pairs associated with images; and achieve an interpretable model via working on the induced symbolic concept space. To this end, we first design a new framework named object-centric compositional attention model (OCCAM) to perform the visual reasoning task with object-level visual features. Then, we come up with a method to induce concepts of objects and relations using clues from the attention patterns between objects' visual features and question words. Finally, we achieve a higher level of interpretability by imposing OCCAM on the objects represented in the induced symbolic concept space. Experiments on the CLEVR dataset demonstrate: 1) our OCCAM achieves a new state of the art without human-annotated functional programs; 2) our induced concepts are both accurate and sufficient as OCCAM achieves an on-par performance on objects represented either in visual features or in the induced symbolic concept space.

5.High Fidelity Interactive Video Segmentation Using Tensor Decomposition Boundary Loss Convolutional Tessellations and Context Aware Skip Connections ⬇️

We provide a high fidelity deep learning algorithm (HyperSeg) for interactive video segmentation tasks using a convolutional network with context-aware skip connections, and compressed, hypercolumn image features combined with a convolutional tessellation procedure. In order to maintain high output fidelity, our model crucially processes and renders all image features in high resolution, without utilizing downsampling or pooling procedures. We maintain this consistent, high grade fidelity efficiently in our model chiefly through two means: (1) We use a statistically-principled tensor decomposition procedure to modulate the number of hypercolumn features and (2) We render these features in their native resolution using a convolutional tessellation technique. For improved pixel level segmentation results, we introduce a boundary loss function; for improved temporal coherence in video data, we include temporal image information in our model. Through experiments, we demonstrate the improved accuracy of our model against baseline models for interactive segmentation tasks using high resolution video data. We also introduce a benchmark video segmentation dataset, the VFX Segmentation Dataset, which contains over 27,046 high resolution video frames, including greenscreen and various composited scenes with corresponding, hand crafted, pixel level segmentations. Our work presents an extension to improvement to state of the art segmentation fidelity with high resolution data and can be used across a broad range of application domains, including VFX pipelines and medical imaging disciplines.

6.Abiotic Stress Prediction from RGB-T Images of Banana Plantlets ⬇️

Prediction of stress conditions is important for monitoring plant growth stages, disease detection, and assessment of crop yields. Multi-modal data, acquired from a variety of sensors, offers diverse perspectives and is expected to benefit the prediction process. We present several methods and strategies for abiotic stress prediction in banana plantlets, on a dataset acquired during a two and a half weeks period, of plantlets subject to four separate water and fertilizer treatments. The dataset consists of RGB and thermal images, taken once daily of each plant. Results are encouraging, in the sense that neural networks exhibit high prediction rates (over $90%$ amongst four classes), in cases where there are hardly any noticeable features distinguishing the treatments, much higher than field experts can supply.

7.Scattering Transform Based Image Clustering using Projection onto Orthogonal Complement ⬇️

In the last few years, large improvements in image clustering have been driven by the recent advances in deep learning. However, due to the architectural complexity of deep neural networks, there is no mathematical theory that explains the success of deep clustering techniques. In this work we introduce Projected-Scattering Spectral Clustering (PSSC), a state-of-the-art, stable, and fast algorithm for image clustering, which is also mathematically interpretable. PSSC includes a novel method to exploit the geometric structure of the scattering transform of small images. This method is inspired by the observation that, in the scattering transform domain, the subspaces formed by the eigenvectors corresponding to the few largest eigenvalues of the data matrices of individual classes are nearly shared among different classes. Therefore, projecting out those shared subspaces reduces the intra-class variability, substantially increasing the clustering performance. We call this method Projection onto Orthogonal Complement (POC). Our experiments demonstrate that PSSC obtains the best results among all shallow clustering algorithms. Moreover, it achieves comparable clustering performance to that of recent state-of-the-art clustering techniques, while reducing the execution time by more than one order of magnitude. In the spirit of reproducible research, we publish a high quality code repository along with the paper.

8.RobustPointSet: A Dataset for Benchmarking Robustness of Point Cloud Classifiers ⬇️

The 3D deep learning community has seen significant strides in pointcloud processing over the last few years. However, the datasets on which deep models have been trained have largely remained the same. Most datasets comprise clean, clutter-free pointclouds canonicalized for pose. Models trained on these datasets fail in uninterpretible and unintuitive ways when presented with data that contains transformations "unseen" at train time. While data augmentation enables models to be robust to "previously seen" input transformations, 1) we show that this does not work for unseen transformations during inference, and 2) data augmentation makes it difficult to analyze a model's inherent robustness to transformations. To this end, we create a publicly available dataset for robustness analysis of point cloud classification models (independent of data augmentation) to input transformations, called \textbf{RobustPointSet}. Our experiments indicate that despite all the progress in the point cloud classification, PointNet (the very first multi-layered perceptron-based approach) outperforms other methods (e.g., graph and neighbor based methods) when evaluated on transformed test sets. We also find that most of the current point cloud models are not robust to unseen transformations even if they are trained with extensive data augmentation. RobustPointSet can be accessed through this https URL.

9.A Closed-Form Solution to Local Non-Rigid Structure-from-Motion ⬇️

A recent trend in Non-Rigid Structure-from-Motion (NRSfM) is to express local, differential constraints between pairs of images, from which the surface normal at any point can be obtained by solving a system of polynomial equations. The systems of equations derived in previous work, however, are of high degree, having up to five real solutions, thus requiring a computationally expensive strategy to select a unique solution. Furthermore, they suffer from degeneracies that make the resulting estimates unreliable, without any mechanism to identify this situation.
In this paper, we show that, under widely applicable assumptions, we can derive a new system of equation in terms of the surface normals whose two solutions can be obtained in closed-form and can easily be disambiguated locally. Our formalism further allows us to assess how reliable the estimated local normals are and, hence, to discard them if they are not. Our experiments show that our reconstructions, obtained from two or more views, are significantly more accurate than those of state-of-the-art methods, while also being faster.

10.Comparing Normalization Methods for Limited Batch Size Segmentation Neural Networks ⬇️

The widespread use of Batch Normalization has enabled training deeper neural networks with more stable and faster results. However, the Batch Normalization works best using large batch size during training and as the state-of-the-art segmentation convolutional neural network architectures are very memory demanding, large batch size is often impossible to achieve on current hardware. We evaluate the alternative normalization methods proposed to solve this issue on a problem of binary spine segmentation from 3D CT scan. Our results show the effectiveness of Instance Normalization in the limited batch size neural network training environment. Out of all the compared methods the Instance Normalization achieved the highest result with Dice coefficient = 0.96 which is comparable to our previous results achieved by deeper network with longer training time. We also show that the Instance Normalization implementation used in this experiment is computational time efficient when compared to the network without any normalization method.

11.Planar 3D Transfer Learning for End to End Unimodal MRI Unbalanced Data Segmentation ⬇️

We present a novel approach of 2D to 3D transfer learning based on mapping pre-trained 2D convolutional neural network weights into planar 3D kernels. The method is validated by the proposed planar 3D res-u-net network with encoder transferred from the 2D VGG-16, which is applied for a single-stage unbalanced 3D image data segmentation. In particular, we evaluate the method on the MICCAI 2016 MS lesion segmentation challenge dataset utilizing solely fluid-attenuated inversion recovery (FLAIR) sequence without brain extraction for training and inference to simulate real medical praxis. The planar 3D res-u-net network performed the best both in sensitivity and Dice score amongst end to end methods processing raw MRI scans and achieved comparable Dice score to a state-of-the-art unimodal not end to end approach. Complete source code was released under the open-source license, and this paper complies with the Machine learning reproducibility checklist. By implementing practical transfer learning for 3D data representation, we could segment heavily unbalanced data without selective sampling and achieved more reliable results using less training data in a single modality. From a medical perspective, the unimodal approach gives an advantage in real praxis as it does not require co-registration nor additional scanning time during an examination. Although modern medical imaging methods capture high-resolution 3D anatomy scans suitable for computer-aided detection system processing, deployment of automatic systems for interpretation of radiology imaging is still rather theoretical in many medical areas. Our work aims to bridge the gap by offering a solution for partial research questions.

12.Pose2Pose: 3D Positional Pose-Guided 3D Rotational Pose Prediction for Expressive 3D Human Pose and Mesh Estimation ⬇️

Previous 3D human pose and mesh estimation methods mostly rely on only global image feature to predict 3D rotations of human joints (i.e., 3D rotational pose) from an input image. However, local features on the position of human joints (i.e., positional pose) can provide joint-specific information, which is essential to understand human articulation. To effectively utilize both local and global features, we present Pose2Pose, a 3D positional pose-guided 3D rotational pose prediction network, along with a positional pose-guided pooling and joint-specific graph convolution. The positional pose-guided pooling extracts useful joint-specific local and global features. Also, the joint-specific graph convolution effectively processes the joint-specific features by learning joint-specific characteristics and different relationships between different joints. We use Pose2Pose for expressive 3D human pose and mesh estimation and show that it outperforms all previous part-specific and expressive methods by a large margin. The codes will be publicly available.

13.Re-identification = Retrieval + Verification: Back to Essence and Forward with a New Metric ⬇️

Re-identification (re-ID) is currently investigated as a closed-world image retrieval task, and evaluated by retrieval based metrics. The algorithms return ranking lists to users, but cannot tell which images are the true target. In essence, current re-ID overemphasizes the importance of retrieval but underemphasizes that of verification, \textit{i.e.}, all returned images are considered as the target. On the other hand, re-ID should also include the scenario that the query identity does not appear in the gallery. To this end, we go back to the essence of re-ID, \textit{i.e.}, a combination of retrieval and verification in an open-set setting, and put forward a new metric, namely, Genuine Open-set re-ID Metric (GOM).
GOM explicitly balances the effect of performing retrieval and verification into a single unified metric. It can also be decomposed into a family of sub-metrics, enabling a clear analysis of re-ID performance. We evaluate the effectiveness of GOM on the re-ID benchmarks, showing its ability to capture important aspects of re-ID performance that have not been taken into account by established metrics so far. Furthermore, we show GOM scores excellent in aligning with human visual evaluation of re-ID performance. Related codes are available at this https URL

14.HoHoNet: 360 Indoor Holistic Understanding with Latent Horizontal Features ⬇️

We present HoHoNet, a versatile and efficient framework for holistic understanding of an indoor 360-degree panorama using a Latent Horizontal Feature (LHFeat). The compact LHFeat flattens the features along the vertical direction and has shown success in modeling per-column modality for room layout reconstruction. HoHoNet advances in two important aspects. First, the deep architecture is redesigned to run faster with improved accuracy. Second, we propose a novel horizon-to-dense module, which relaxes the per-column output shape constraint, allowing per-pixel dense prediction from LHFeat. HoHoNet is fast: It runs at 52 FPS and 110 FPS with ResNet-50 and ResNet-34 backbones respectively, for modeling dense modalities from a high-resolution $512 \times 1024$ panorama. HoHoNet is also accurate. On the tasks of layout estimation and semantic segmentation, HoHoNet achieves results on par with current state-of-the-art. On dense depth estimation, HoHoNet outperforms all the prior arts by a large margin.

15.TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks ⬇️

Understanding videos is challenging in computer vision. In particular, the large memory footprint of an untrimmed video makes most tasks infeasible to train end-to-end without dropping part of the input data. To cope with the memory limitation of commodity GPUs, current video localization models encode videos in an offline fashion. Even though these encoders are learned, they are typically trained for action classification tasks at the frame- or clip-level. Since it is difficult to finetune these encoders for other video tasks, they might be sub-optimal for temporal localization tasks. In this work, we propose a novel, supervised pretraining paradigm for clip-level video representation that does not only train to classify activities, but also considers background clips and global video information to gain temporal sensitivity. Extensive experiments show that features extracted by clip-level encoders trained with our novel pretraining task are more discriminative for several temporal localization tasks. Specifically, we show that using our newly trained features with state-of-the-art methods significantly improves performance on three tasks: Temporal Action Localization (+1.72% in average mAP on ActivityNet and +4.4% in mAP@0.5 on THUMOS14), Action Proposal Generation (+1.94% in AUC on ActivityNet), and Dense Video Captioning (+0.31% in average METEOR on ActivityNet Captions). We believe video feature encoding is an important building block for many video algorithms, and extracting meaningful features should be of paramount importance in the effort to build more accurate models.

16.Multi-task Learning for Human Settlement Extent Regression and Local Climate Zone Classification ⬇️

Human Settlement Extent (HSE) and Local Climate Zone (LCZ) maps are both essential sources, e.g., for sustainable urban development and Urban Heat Island (UHI) studies. Remote sensing (RS)- and deep learning (DL)-based classification approaches play a significant role by providing the potential for global mapping. However, most of the efforts only focus on one of the two schemes, usually on a specific scale. This leads to unnecessary redundancies, since the learned features could be leveraged for both of these related tasks. In this letter, the concept of multi-task learning (MTL) is introduced to HSE regression and LCZ classification for the first time. We propose a MTL framework and develop an end-to-end Convolutional Neural Network (CNN), which consists of a backbone network for shared feature learning, attention modules for task-specific feature learning, and a weighting strategy for balancing the two tasks. We additionally propose to exploit HSE predictions as a prior for LCZ classification to enhance the accuracy. The MTL approach was extensively tested with Sentinel-2 data of 13 cities across the world. The results demonstrate that the framework is able to provide a competitive solution for both tasks.

17.PLOP: Learning without Forgetting for Continual Semantic Segmentation ⬇️

Deep learning approaches are nowadays ubiquitously used to tackle computer vision tasks such as semantic segmentation, requiring large datasets and substantial computational power. Continual learning for semantic segmentation (CSS) is an emerging trend that consists in updating an old model by sequentially adding new classes. However, continual learning methods are usually prone to catastrophic forgetting. This issue is further aggravated in CSS where, at each step, old classes from previous iterations are collapsed into the background. In this paper, we propose Local POD, a multi-scale pooling distillation scheme that preserves long- and short-range spatial relationships at feature level. Furthermore, we design an entropy-based pseudo-labelling of the background w.r.t. classes predicted by the old model to deal with background shift and avoid catastrophic forgetting of the old classes. Our approach, called PLOP, significantly outperforms state-of-the-art methods in existing CSS scenarios, as well as in newly proposed challenging benchmarks.

18.Deep Learning for Automatic Quality Grading of Mangoes: Methods and Insights ⬇️

The quality grading of mangoes is a crucial task for mango growers as it vastly affects their profit. However, until today, this process still relies on laborious efforts of humans, who are prone to fatigue and errors. To remedy this, the paper approaches the grading task with various convolutional neural networks (CNN), a tried-and-tested deep learning technology in computer vision. The models involved include Mask R-CNN (for background removal), the numerous past winners of the ImageNet challenge, namely AlexNet, VGGs, and ResNets; and, a family of self-defined convolutional autoencoder-classifiers (ConvAE-Clfs) inspired by the claimed benefit of multi-task learning in classification tasks. Transfer learning is also adopted in this work via utilizing the ImageNet pretrained weights. Besides elaborating on the preprocessing techniques, training details, and the resulting performance, we go one step further to provide explainable insights into the model's working with the help of saliency maps and principal component analysis (PCA). These insights provide a succinct, meaningful glimpse into the intricate deep learning black box, fostering trust, and can also be presented to humans in real-world use cases for reviewing the grading results.

19.SCGAN: Saliency Map-guided Colorization with Generative Adversarial Network ⬇️

Given a grayscale photograph, the colorization system estimates a visually plausible colorful image. Conventional methods often use semantics to colorize grayscale images. However, in these methods, only classification semantic information is embedded, resulting in semantic confusion and color bleeding in the final colorized image. To address these issues, we propose a fully automatic Saliency Map-guided Colorization with Generative Adversarial Network (SCGAN) framework. It jointly predicts the colorization and saliency map to minimize semantic confusion and color bleeding in the colorized image. Since the global features from pre-trained VGG-16-Gray network are embedded to the colorization encoder, the proposed SCGAN can be trained with much less data than state-of-the-art methods to achieve perceptually reasonable colorization. In addition, we propose a novel saliency map-based guidance method. Branches of the colorization decoder are used to predict the saliency map as a proxy target. Moreover, two hierarchical discriminators are utilized for the generated colorization and saliency map, respectively, in order to strengthen visual perception performance. The proposed system is evaluated on ImageNet validation set. Experimental results show that SCGAN can generate more reasonable colorized images than state-of-the-art techniques.

20.A Learning-based Optimization Algorithm:Image Registration Optimizer Network ⬇️

Remote sensing image registration is valuable for image-based navigation system despite posing many challenges. As the search space of registration is usually non-convex, the optimization algorithm, which aims to search the best transformation parameters, is a challenging step. Conventional optimization algorithms can hardly reconcile the contradiction of simultaneous rapid convergence and the global optimization. In this paper, a novel learning-based optimization algorithm named Image Registration Optimizer Network (IRON) is proposed, which can predict the global optimum after single iteration. The IRON is trained by a 3D tensor (9x9x9), which consists of similar metric values. The elements of the 3D tensor correspond to the 9x9x9 neighbors of the initial parameters in the search space. Then, the tensor's label is a vector that points to the global optimal parameters from the initial parameters. Because of the special architecture, the IRON could predict the global optimum directly for any initialization. The experimental results demonstrate that the proposed algorithm performs better than other classical optimization algorithms as it has higher accuracy, lower root of mean square error (RMSE), and more efficiency. Our IRON codes are available for further study.this https URL

21.Characterization of Industrial Smoke Plumes from Remote Sensing Data ⬇️

The major driver of global warming has been identified as the anthropogenic release of greenhouse gas (GHG) emissions from industrial activities. The quantitative monitoring of these emissions is mandatory to fully understand their effect on the Earth's climate and to enforce emission regulations on a large scale. In this work, we investigate the possibility to detect and quantify industrial smoke plumes from globally and freely available multi-band image data from ESA's Sentinel-2 satellites. Using a modified ResNet-50, we can detect smoke plumes of different sizes with an accuracy of 94.3%. The model correctly ignores natural clouds and focuses on those imaging channels that are related to the spectral absorption from aerosols and water vapor, enabling the localization of smoke. We exploit this localization ability and train a U-Net segmentation model on a labeled sub-sample of our data, resulting in an Intersection-over-Union (IoU) metric of 0.608 and an overall accuracy for the detection of any smoke plume of 94.0%; on average, our model can reproduce the area covered by smoke in an image to within 5.6%. The performance of our model is mostly limited by occasional confusion with surface objects, the inability to identify semi-transparent smoke, and human limitations to properly identify smoke based on RGB-only images. Nevertheless, our results enable us to reliably detect and qualitatively estimate the level of smoke activity in order to monitor activity in industrial plants across the globe. Our data set and code base are publicly available.

22.Building a Parallel Universe Image Synthesis from Land Cover Maps and Auxiliary Raster Data ⬇️

We synthesize both optical RGB and SAR remote sensing images from land cover maps and auxiliary raster data using GANs. In remote sensing many types of data, such as digital elevation models or precipitation maps, are often not reflected in land cover maps but still influence image content or structure. Including such data in the synthesis process increases the quality of the generated images and exerts more control on their characteristics. Our method fuses both inputs by spatially adaptive normalization layers, previously published as SPADE semantic image synthesis. In contrast to SPADE, these normalization layers are applied to a full-blown generator architecture consisting of encoder and decoder, to take full advantage of the information content in the auxiliary raster data. Our method successfully synthesizes medium (10m) and high (1m) resolution images, when trained with the corresponding dataset. We show the advantage of data fusion of land cover maps and auxiliary information using mean intersection over union, pixel accuracy and FID using pre-trained U-Net segmentation models. Handpicked images exemplify how fusing information avoids ambiguities in the synthesized images. By slightly editing the input our method can be used to synthesize realistic changes, i.e., raising the water levels. The source code is available at this https URL and we published the newly created high-resolution dataset at this https URL.

23.Uncovering the Bias in Facial Expressions ⬇️

Over the past decades the machine and deep learning community has celebrated great achievements in challenging tasks such as image classification. The deep architecture of artificial neural networks together with the plenitude of available data makes it possible to describe highly complex relations. Yet, it is still impossible to fully capture what the deep learning model has learned and to verify that it operates fairly and without creating bias, especially in critical tasks, for instance those arising in the medical field. One example for such a task is the detection of distinct facial expressions, called Action Units, in facial images. Considering this specific task, our research aims to provide transparency regarding bias, specifically in relation to gender and skin color. We train a neural network for Action Unit classification and analyze its performance quantitatively based on its accuracy and qualitatively based on heatmaps. A structured review of our results indicates that we are able to detect bias. Even though we cannot conclude from our results that lower classification performance emerged solely from gender and skin color bias, these biases must be addressed, which is why we end by giving suggestions on how the detected bias can be avoided.

24.Legacy Photo Editing with Learned Noise Prior ⬇️

There are quite a number of photographs captured under undesirable conditions in the last century. Thus, they are often noisy, regionally incomplete, and grayscale formatted. Conventional approaches mainly focus on one point so that those restoration results are not perceptually sharp or clean enough. To solve these problems, we propose a noise prior learner NEGAN to simulate the noise distribution of real legacy photos using unpaired images. It mainly focuses on matching high-frequency parts of noisy images through discrete wavelet transform (DWT) since they include most of noise statistics. We also create a large legacy photo dataset for learning noise prior. Using learned noise prior, we can easily build valid training pairs by degrading clean images. Then, we propose an IEGAN framework performing image editing including joint denoising, inpainting and colorization based on the estimated noise prior. We evaluate the proposed system and compare it with state-of-the-art image enhancement methods. The experimental results demonstrate that it achieves the best perceptual quality. Please see the webpage \href{this https URL}{this https URL} for the codes and the proposed LP dataset.

25.Industrial object, machine part and defect recognition towards fully automated industrial monitoring employing deep learning. The case of multilevel VGG19 ⬇️

Modern industry requires modern solutions for monitoring the automatic production of goods. Smart monitoring of the functionality of the mechanical parts of technology systems or machines is mandatory for a fully automatic production process. Although Deep Learning has been advancing, allowing for real-time object detection and other tasks, little has been investigated about the effectiveness of specially designed Convolutional Neural Networks for defect detection and industrial object recognition. In the particular study, we employed six publically available industrial-related datasets containing defect materials and industrial tools or engine parts, aiming to develop a specialized model for pattern recognition. Motivated by the recent success of the Virtual Geometry Group (VGG) network, we propose a modified version of it, called Multipath VGG19, which allows for more local and global feature extraction, while the extra features are fused via concatenation. The experiments verified the effectiveness of MVGG19 over the traditional VGG19. Specifically, top classification performance was achieved in five of the six image datasets, while the average classification improvement was 6.95%.

26.Hierarchically Decoupled Spatial-Temporal Contrast for Self-supervised Video Representation Learning ⬇️

We present a novel way for self-supervised video representation learning by: (a) decoupling the learning objective into two contrastive subtasks respectively emphasizing spatial and temporal features, and (b) performing it hierarchically to encourage multi-scale understanding. Motivated by their effectiveness in supervised learning, we first introduce spatial-temporal feature learning decoupling and hierarchical learning to the context of unsupervised video learning. In particular, our method directs the network to separately capture spatial and temporal features on the basis of contrastive learning via manipulating augmentations as regularization, and further solve such proxy tasks hierarchically by optimizing towards a compound contrastive loss. Experiments show that our proposed Hierarchically Decoupled Spatial-Temporal Contrast (HDC) achieves substantial gains over directly learning spatial-temporal features as a whole and significantly outperforms other state-of-the-art unsupervised methods on downstream action recognition benchmarks on UCF101 and HMDB51. We will release our code and pretrained weights.

27.3D Registration for Self-Occluded Objects in Context ⬇️

While much progress has been made on the task of 3D point cloud registration, there still exists no learning-based method able to estimate the 6D pose of an object observed by a 2.5D sensor in a scene. The challenges of this scenario include the fact that most measurements are outliers depicting the object's surrounding context, and the mismatch between the complete 3D object model and its self-occluded observations.
We introduce the first deep learning framework capable of effectively handling this scenario. Our method consists of an instance segmentation module followed by a pose estimation one. It allows us to perform 3D registration in a one-shot manner, without requiring an expensive iterative procedure. We further develop an on-the-fly rendering-based training strategy that is both time- and memory-efficient. Our experiments evidence the superiority of our approach over the state-of-the-art traditional and learning-based 3D registration methods.

28.Application of Facial Recognition using Convolutional Neural Networks for Entry Access Control ⬇️

The purpose of this paper is to design a solution to the problem of facial recognition by use of convolutional neural networks, with the intention of applying the solution in a camera-based home-entry access control system. More specifically, the paper focuses on solving the supervised classification problem of taking images of people as input and classifying the person in the image as one of the authors or not. Two approaches are proposed: (1) building and training a neural network called WoodNet from scratch and (2) leveraging transfer learning by utilizing a network pre-trained on the ImageNet database and adapting it to this project's data and classes. In order to train the models to recognize the authors, a dataset containing more than 150 000 images has been created, balanced over the authors and others. Image extraction from videos and image augmentation techniques were instrumental for dataset creation. The results are two models classifying the individuals in the dataset with high accuracy, achieving over 99% accuracy on held-out test data. The pre-trained model fitted significantly faster than WoodNet, and seems to generalize better. However, these results come with a few caveats. Because of the way the dataset was compiled, as well as the high accuracy, one has reason to believe the models over-fitted to the data to some degree. An added consequence of the data compilation method is that the test dataset may not be sufficiently different from the training data, limiting its ability to validate generalization of the models. However, utilizing the models in a web-cam based system, classifying faces in real-time, shows promising results and indicates that the models generalized fairly well for at least some of the classes (see the accompanying video).

29.BiOpt: Bi-Level Optimization for Few-Shot Segmentation ⬇️

Few-shot segmentation is a challenging task that aims to segment objects of new classes given scarce support images. In the inductive setting, existing prototype-based methods focus on extracting prototypes from the support images; however, they fail to utilize semantic information of the query images. In this paper, we propose Bi-level Optimization (BiOpt), which succeeds to compute class prototypes from the query images under inductive setting. The learning procedure of BiOpt is decomposed into two nested loops: inner and outer loop. On each task, the inner loop aims to learn optimized prototypes from the query images. An init step is conducted to fully exploit knowledge from both support and query features, so as to give reasonable initialized prototypes into the inner loop. The outer loop aims to learn a discriminative embedding space across different tasks. Extensive experiments on two benchmarks verify the superiority of our proposed BiOpt algorithm. In particular, we consistently achieve the state-of-the-art performance on 5-shot PASCAL-$5^i$ and 1-shot COCO-$20^i$.

30.NeuralAnnot: Neural Annotator for in-the-wild Expressive 3D Human Pose and Mesh Training Sets ⬇️

Recovering expressive 3D human pose and mesh from in-the-wild images is greatly challenging due to the absence of the training data. Several optimization-based methods have been used to obtain pseudo-groundtruth (GT) 3D poses and meshes from GT 2D poses. However, they often produce bad ones with long running time because their frameworks are optimized on each sample only using 2D supervisions in a sequential way. To overcome the limitations, we present NeuralAnnot, a neural annotator that learns to construct in-the-wild expressive 3D human pose and mesh training sets. Our NeuralAnnot is trained on a large number of samples by 2D supervisions from a target in-the-wild dataset and 3D supervisions from auxiliary datasets with GT 3D poses in a parallel way. We show that our NeuralAnnot produces far better 3D pseudo-GTs with much shorter running time than the optimization-based methods, and the newly obtained training set brings great performance gain. The newly obtained training sets and codes will be publicly available.

31.Adversarial Refinement Network for Human Motion Prediction ⬇️

Human motion prediction aims to predict future 3D skeletal sequences by giving a limited human motion as inputs. Two popular methods, recurrent neural networks and feed-forward deep networks, are able to predict rough motion trend, but motion details such as limb movement may be lost. To predict more accurate future human motion, we propose an Adversarial Refinement Network (ARNet) following a simple yet effective coarse-to-fine mechanism with novel adversarial error augmentation. Specifically, we take both the historical motion sequences and coarse prediction as input of our cascaded refinement network to predict refined human motion and strengthen the refinement network with adversarial error augmentation. During training, we deliberately introduce the error distribution by learning through the adversarial mechanism among different subjects. In testing, our cascaded refinement network alleviates the prediction error from the coarse predictor resulting in a finer prediction robustly. This adversarial error augmentation provides rich error cases as input to our refinement network, leading to better generalization performance on the testing dataset. We conduct extensive experiments on three standard benchmark datasets and show that our proposed ARNet outperforms other state-of-the-art methods, especially on challenging aperiodic actions in both short-term and long-term predictions.

32.Structure-Aware Completion of Photogrammetric Meshes in Urban Road Environment ⬇️

Photogrammetric mesh models obtained from aerial oblique images have been widely used for urban reconstruction. However, the photogrammetric meshes also suffer from severe texture problems, especially on the road areas due to occlusion. This paper proposes a structure-aware completion approach to improve the quality of meshes by removing undesired vehicles on the road seamlessly. Specifically, the discontinuous texture atlas is first integrated to a continuous screen space through rendering by the graphics pipeline; the rendering also records necessary mapping for deintegration to the original texture atlas after editing. Vehicle regions are masked by a standard object detection approach, e.g. Faster RCNN. Then, the masked regions are completed guided by the linear structures and regularities in the road region, which is implemented based on Patch Match. Finally, the completed rendered image is deintegrated to the original texture atlas and the triangles for the vehicles are also flattened for improved meshes. Experimental evaluations and analyses are conducted against three datasets, which are captured with different sensors and ground sample distances. The results reveal that the proposed method can quite realistic meshes after removing the vehicles. The structure-aware completion approach for road regions outperforms popular image completion methods and ablation study further confirms the effectiveness of the linear guidance. It should be noted that the proposed method is also capable to handle tiled mesh models for large-scale scenes. Dataset and code are available at this http URL.

33.Graph Attention Tracking ⬇️

Siamese network based trackers formulate the visual tracking task as a similarity matching problem. Almost all popular Siamese trackers realize the similarity learning via convolutional feature cross-correlation between a target branch and a search branch. However, since the size of target feature region needs to be pre-fixed, these cross-correlation base methods suffer from either reserving much adverse background information or missing a great deal of foreground information. Moreover, the global matching between the target and search region also largely neglects the target structure and part-level information.
In this paper, to solve the above issues, we propose a simple target-aware Siamese graph attention network for general object tracking. We propose to establish part-to-part correspondence between the target and the search region with a complete bipartite graph, and apply the graph attention mechanism to propagate target information from the template feature to the search feature. Further, instead of using the pre-fixed region cropping for template-feature-area selection, we investigate a target-aware area selection mechanism to fit the size and aspect ratio variations of different objects. Experiments on challenging benchmarks including GOT-10k, UAV123, OTB-100 and LaSOT demonstrate that the proposed SiamGAT outperforms many state-of-the-art trackers and achieves leading performance. Code is available at: this https URL

34.Action Concept Grounding Network for Semantically-Consistent Video Generation ⬇️

Recent works in self-supervised video prediction have mainly focused on passive forecasting and low-level action-conditional prediction, which sidesteps the problem of semantic learning. We introduce the task of semantic action-conditional video prediction, which can be regarded as an inverse problem of action recognition. The challenge of this new task primarily lies in how to effectively inform the model of semantic action information. To bridge vision and language, we utilize the idea of capsule and propose a novel video prediction model Action Concept Grounding Network (AGCN). Our method is evaluated on two newly designed synthetic datasets, CLEVR-Building-Blocks and Sapien-Kitchen, and experiments show that given different action labels, our ACGN can correctly condition on instructions and generate corresponding future frames without need of bounding boxes. We further demonstrate our trained model can make out-of-distribution predictions for concurrent actions, be quickly adapted to new object categories and exploit its learnt features for object detection. Additional visualizations can be found at this https URL.

35.Complex-valued Iris Recognition Network ⬇️

In this work, we design a complex-valued neural network for the task of iris recognition. Unlike the problem of general object recognition, where real-valued neural networks can be used to extract pertinent features, iris recognition depends on the extraction of both phase and amplitude information from the input iris texture in order to better represent its stochastic content. This necessitates the extraction and processing of phase information that cannot be effectively handled by a real-valued neural network. In this regard, we design a complex-valued neural network that can better capture the multi-scale, multi-resolution, and multi-orientation phase and amplitude features of the iris texture. We show a strong correspondence of the proposed complex-valued iris recognition network with Gabor wavelets that are used to generate the classical IrisCode; however, the proposed method enables automatic complex-valued feature learning that is tailored for iris recognition. Experiments conducted on three benchmark datasets - ND-CrossSensor-2013, CASIA-Iris-Thousand and UBIRIS.v2 - show the benefit of the proposed network for the task of iris recognition. Further, the generalization capability of the proposed network is demonstrated by training and testing it across different datasets. Finally, visualization schemes are used to convey the type of features being extracted by the complex-valued network in comparison to classical real-valued networks. The results of this work are likely to be applicable in other domains, where complex Gabor filters are used for texture modeling.

36.An off-the-grid approach to multi-compartment magnetic resonance fingerprinting ⬇️

We propose a novel numerical approach to separate multiple tissue compartments in image voxels and to estimate quantitatively their nuclear magnetic resonance (NMR) properties and mixture fractions, given magnetic resonance fingerprinting (MRF) measurements. The number of tissues, their types or quantitative properties are not a-priori known, but the image is assumed to be composed of sparse compartments with linearly mixed Bloch magnetisation responses within voxels. Fine-grid discretisation of the multi-dimensional NMR properties creates large and highly coherent MRF dictionaries that can challenge scalability and precision of the numerical methods for (discrete) sparse approximation. To overcome these issues, we propose an off-the-grid approach equipped with an extended notion of the sparse group lasso regularisation for sparse approximation using continuous (non-discretised) Bloch response models. Further, the nonlinear and non-analytical Bloch responses are approximated by a neural network, enabling efficient back-propagation of the gradients through the proposed algorithm. Tested on simulated and in-vivo healthy brain MRF data, we demonstrate effectiveness of the proposed scheme compared to the baseline multicompartment MRF methods.

37.Attentional-GCNN: Adaptive Pedestrian Trajectory Prediction towards Generic Autonomous Vehicle Use Cases ⬇️

Autonomous vehicle navigation in shared pedestrian environments requires the ability to predict future crowd motion both accurately and with minimal delay. Understanding the uncertainty of the prediction is also crucial. Most existing approaches however can only estimate uncertainty through repeated sampling of generative models. Additionally, most current predictive models are trained on datasets that assume complete observability of the crowd using an aerial view. These are generally not representative of real-world usage from a vehicle perspective, and can lead to the underestimation of uncertainty bounds when the on-board sensors are occluded. Inspired by prior work in motion prediction using spatio-temporal graphs, we propose a novel Graph Convolutional Neural Network (GCNN)-based approach, Attentional-GCNN, which aggregates information of implicit interaction between pedestrians in a crowd by assigning attention weight in edges of the graph. Our model can be trained to either output a probabilistic distribution or faster deterministic prediction, demonstrating applicability to autonomous vehicle use cases where either speed or accuracy with uncertainty bounds are required. To further improve the training of predictive models, we propose an automatically labelled pedestrian dataset collected from an intelligent vehicle platform representative of real-world use. Through experiments on a number of datasets, we show our proposed method achieves an improvement over the state of art by 10% Average Displacement Error (ADE) and 12% Final Displacement Error (FDE) with fast inference speeds.

38.Cancer image classification based on DenseNet model ⬇️

Computer-aided diagnosis establishes methods for robust assessment of medical image-based examination. Image processing introduced a promising strategy to facilitate disease classification and detection while diminishing unnecessary expenses. In this paper, we propose a novel metastatic cancer image classification model based on DenseNet Block, which can effectively identify metastatic cancer in small image patches taken from larger digital pathology scans. We evaluate the proposed approach to the slightly modified version of the PatchCamelyon (PCam) benchmark dataset. The dataset is the slightly modified version of the PatchCamelyon (PCam) benchmark dataset provided by Kaggle competition, which packs the clinically-relevant task of metastasis detection into a straight-forward binary image classification task. The experiments indicated that our model outperformed other classical methods like Resnet34, Vgg19. Moreover, we also conducted data augmentation experiment and study the relationship between Batches processed and loss value during the training and validation process.

39.The Selectivity and Competition of the Mind's Eye in Visual Perception ⬇️

Research has shown that neurons within the brain are selective to certain stimuli. For example, the fusiform face area (FFA) region is known by neuroscientists to selectively activate when people see faces over non-face objects. However, the mechanisms by which the primary visual system directs information to the correct higher levels of the brain are currently unknown. In our work, we advance the understanding of the neural mechanisms of perception by creating a novel computational model that incorporates lateral and top down feedback in the form of hierarchical competition. We show that these elements can help explain the information flow and selectivity of high level areas within the brain. Additionally, we present both quantitative and qualitative results that demonstrate consistency with general themes and specific responses observed in the visual system. Finally, we show that our generative framework enables a wide range of applications in computer vision, including overcoming issues of bias that have been discovered in standard deep learning models.

40.Learnable Boundary Guided Adversarial Training ⬇️

Previous adversarial training raises model robustness under the compromise of accuracy on natural data. In this paper, our target is to reduce natural accuracy degradation. We use the model logits from one clean model $\mathcal{M}^{natural}$ to guide learning of the robust model $\mathcal{M}^{robust}$, taking into consideration that logits from the well trained clean model $\mathcal{M}^{natural}$ embed the most discriminative features of natural data, {\it e.g.}, generalizable classifier boundary. Our solution is to constrain logits from the robust model $\mathcal{M}^{robust}$ that takes adversarial examples as input and make it similar to those from a clean model $\mathcal{M}^{natural}$ fed with corresponding natural data. It lets $\mathcal{M}^{robust}$ inherit the classifier boundary of $\mathcal{M}^{natural}$. Thus, we name our method Boundary Guided Adversarial Training (BGAT). Moreover, we generalize BGAT to Learnable Boundary Guided Adversarial Training (LBGAT) by training $\mathcal{M}^{natural}$ and $\mathcal{M}^{robust}$ simultaneously and collaboratively to learn one most robustness-friendly classifier boundary for the strongest robustness. Extensive experiments are conducted on CIFAR-10, CIFAR-100, and challenging Tiny ImageNet datasets. Along with other state-of-the-art adversarial training approaches, {\it e.g.}, Adversarial Logit Pairing (ALP) and TRADES, the performance is further enhanced.

41.When and Why Test-Time Augmentation Works ⬇️

Test-time augmentation (TTA)---the aggregation of predictions across transformed versions of a test input---is a common practice in image classification. In this paper, we present theoretical and experimental analyses that shed light on 1) when test time augmentation is likely to be helpful and 2) when to use various test-time augmentation policies. A key finding is that even when TTA produces a net improvement in accuracy, it can change many correct predictions into incorrect predictions. We delve into when and why test-time augmentation changes a prediction from being correct to incorrect and vice versa. Our analysis suggests that the nature and amount of training data, the model architecture, and the augmentation policy all matter. Building on these insights, we present a learning-based method for aggregating test-time augmentations. Experiments across a diverse set of models, datasets, and augmentations show that our method delivers consistent improvements over existing approaches.

42.Imbalance Robust Softmax for Deep Embeeding Learning ⬇️

Deep embedding learning is expected to learn a metric space in which features have smaller maximal intra-class distance than minimal inter-class distance. In recent years, one research focus is to solve the open-set problem by discriminative deep embedding learning in the field of face recognition (FR) and person re-identification (re-ID). Apart from open-set problem, we find that imbalanced training data is another main factor causing the performance degradation of FR and re-ID, and data imbalance widely exists in the real applications. However, very little research explores why and how data imbalance influences the performance of FR and re-ID with softmax or its variants. In this work, we deeply investigate data imbalance in the perspective of neural network optimisation and feature distribution about softmax. We find one main reason of performance degradation caused by data imbalance is that the weights (from the penultimate fully-connected layer) are far from their class centers in feature space. Based on this investigation, we propose a unified framework, Imbalance-Robust Softmax (IR-Softmax), which can simultaneously solve the open-set problem and reduce the influence of data imbalance. IR-Softmax can generalise to any softmax and its variants (which are discriminative for open-set problem) by directly setting the weights as their class centers, naturally solving the data imbalance problem. In this work, we explicitly re-formulate two discriminative softmax (A-Softmax and AM-Softmax) under the framework of IR-Softmax. We conduct extensive experiments on FR databases (LFW, MegaFace) and re-ID database (Market-1501, Duke), and IR-Softmax outperforms many state-of-the-art methods.

43.Multiresolution Knowledge Distillation for Anomaly Detection ⬇️

Unsupervised representation learning has proved to be a critical component of anomaly detection/localization in images. The challenges to learn such a representation are two-fold. Firstly, the sample size is not often large enough to learn a rich generalizable representation through conventional techniques. Secondly, while only normal samples are available at training, the learned features should be discriminative of normal and anomalous samples. Here, we propose to use the "distillation" of features at various layers of an expert network, pre-trained on ImageNet, into a simpler cloner network to tackle both issues. We detect and localize anomalies using the discrepancy between the expert and cloner networks' intermediate activation values given the input data. We show that considering multiple intermediate hints in distillation leads to better exploiting the expert's knowledge and more distinctive discrepancy compared to solely utilizing the last layer activation values. Notably, previous methods either fail in precise anomaly localization or need expensive region-based training. In contrast, with no need for any special or intensive training procedure, we incorporate interpretability algorithms in our novel framework for the localization of anomalous regions. Despite the striking contrast between some test datasets and ImageNet, we achieve competitive or significantly superior results compared to the SOTA methods on MNIST, F-MNIST, CIFAR-10, MVTecAD, Retinal-OCT, and two Medical datasets on both anomaly detection and localization.

44.Dense open-set recognition with synthetic outliers generated by Real NVP ⬇️

Today's deep models are often unable to detect inputs which do not belong to the training distribution. This gives rise to confident incorrect predictions which could lead to devastating consequences in many important application fields such as healthcare and autonomous driving. Interestingly, both discriminative and generative models appear to be equally affected. Consequently, this vulnerability represents an important research challenge. We consider an outlier detection approach based on discriminative training with jointly learned synthetic outliers. We obtain the synthetic outliers by sampling an RNVP model which is jointly trained to generate datapoints at the border of the training distribution. We show that this approach can be adapted for simultaneous semantic segmentation and dense outlier detection. We present image classification experiments on CIFAR-10, as well as semantic segmentation experiments on three existing datasets (StreetHazards, WD-Pascal, Fishyscapes Lost & Found), and one contributed dataset. Our models perform competitively with respect to the state of the art despite producing predictions with only one forward pass.

45.Deep learning model trained on mobile phone-acquired frozen section images effectively detects basal cell carcinoma ⬇️

Background: Margin assessment of basal cell carcinoma using the frozen section is a common task of pathology intraoperative consultation. Although frequently straight-forward, the determination of the presence or absence of basal cell carcinoma on the tissue sections can sometimes be challenging. We explore if a deep learning model trained on mobile phone-acquired frozen section images can have adequate performance for future deployment. Materials and Methods: One thousand two hundred and forty-one (1241) images of frozen sections performed for basal cell carcinoma margin status were acquired using mobile phones. The photos were taken at 100x magnification (10x objective). The images were downscaled from a 4032 x 3024 pixel resolution to 576 x 432 pixel resolution. Semantic segmentation algorithm Deeplab V3 with Xception backbone was used for model training. Results: The model uses an image as input and produces a 2-dimensional black and white output of prediction of the same dimension; the areas determined to be basal cell carcinoma were displayed with white color, in a black background. Any output with the number of white pixels exceeding 0.5% of the total number of pixels is deemed positive for basal cell carcinoma. On the test set, the model achieves area under curve of 0.99 for receiver operator curve and 0.97 for precision-recall curve at the pixel level. The accuracy of classification at the slide level is 96%. Conclusions: The deep learning model trained with mobile phone images shows satisfactory performance characteristics, and thus demonstrates the potential for deploying as a mobile phone app to assist in frozen section interpretation in real time.

46.End-to-End Differentiable 6DoF Object Pose Estimation with Local and Global Constraints ⬇️

Inferring the 6DoF pose of an object from a single RGB image is an important but challenging task, especially under heavy occlusion. While recent approaches improve upon the two stage approaches by training an end-to-end pipeline, they do not leverage local and global constraints. In this paper, we propose pairwise feature extraction to integrate local constraints, and triplet regularization to integrate global constraints for improved 6DoF object pose estimation. Coupled with better augmentation, our approach achieves state of the art results on the challenging Occlusion Linemod dataset, with a 9% improvement over the previous state of the art, and achieves competitive results on the Linemod dataset.

47.QuerYD: A video dataset with high-quality textual and audio narrations ⬇️

We introduce QuerYD, a new large-scale dataset for retrieval and event localisation in video. A unique feature of our dataset is the availability of two audio tracks for each video: the original audio, and a high-quality spoken description of the visual content. The dataset is based on YouDescribe, a volunteer project that assists visually-impaired people by attaching voiced narrations to existing YouTube videos. This ever-growing collection of videos contains highly detailed, temporally aligned audio and text annotations. The content descriptions are more relevant than dialogue, and more detailed than previous description attempts, which can be observed to contain many superficial or uninformative descriptions. To demonstrate the utility of the QuerYD dataset, we show that it can be used to train and benchmark strong models for retrieval and event localisation. All data, code and models will be made available, and we hope that QuerYD inspires further research on video understanding with written and spoken natural language.

48.RNNP: A Robust Few-Shot Learning Approach ⬇️

Learning from a few examples is an important practical aspect of training classifiers. Various works have examined this aspect quite well. However, all existing approaches assume that the few examples provided are always correctly labeled. This is a strong assumption, especially if one considers the current techniques for labeling using crowd-based labeling services. We address this issue by proposing a novel robust few-shot learning approach. Our method relies on generating robust prototypes from a set of few examples. Specifically, our method refines the class prototypes by producing hybrid features from the support examples of each class. The refined prototypes help to classify the query images better. Our method can replace the evaluation phase of any few-shot learning method that uses a nearest neighbor prototype-based evaluation procedure to make them robust. We evaluate our method on standard mini-ImageNet and tiered-ImageNet datasets. We perform experiments with various label corruption rates in the support examples of the few-shot classes. We obtain significant improvement over widely used few-shot learning methods that suffer significant performance degeneration in the presence of label noise. We finally provide extensive ablation experiments to validate our method.

49.Registration of serial sections: An evaluation method based on distortions of the ground truths ⬇️

Registration of histological serial sections is a challenging task. Serial sections exhibit distortions from sectioning. Missing information on how the tissue looked before cutting makes a realistic validation of 2D registrations impossible.
This work proposes methods for more realistic evaluation of registrations. Firstly, we survey existing registration and validation efforts. Secondly, we present a methodology to generate test data for registrations. We distort an innately registered image stack in the manner similar to the cutting distortion of serial sections. Test cases are generated from existing 3D data sets, thus the ground truth is known. Thirdly, our test case generation premises evaluation of the registrations with known ground truths. Our methodology for such an evaluation technique distinguishes this work from other approaches.
We present a full-series evaluation across six different registration methods applied to our distorted 3D data sets of animal lungs. Our distorted and ground truth data sets are made publicly available.

50.Efficient embedding network for 3D brain tumor segmentation ⬇️

3D medical image processing with deep learning greatly suffers from a lack of data. Thus, studies carried out in this field are limited compared to works related to 2D natural image analysis, where very large datasets exist. As a result, powerful and efficient 2D convolutional neural networks have been developed and trained. In this paper, we investigate a way to transfer the performance of a two-dimensional classiffication network for the purpose of three-dimensional semantic segmentation of brain tumors. We propose an asymmetric U-Net network by incorporating the EfficientNet model as part of the encoding branch. As the input data is in 3D, the first layers of the encoder are devoted to the reduction of the third dimension in order to fit the input of the EfficientNet network. Experimental results on validation and test data from the BraTS 2020 challenge demonstrate that the proposed method achieve promising performance.

51.Interpreting Super-Resolution Networks with Local Attribution Maps ⬇️

Image super-resolution (SR) techniques have been developing rapidly, benefiting from the invention of deep networks and its successive breakthroughs. However, it is acknowledged that deep learning and deep neural networks are difficult to interpret. SR networks inherit this mysterious nature and little works make attempt to understand them. In this paper, we perform attribution analysis of SR networks, which aims at finding the input pixels that strongly influence the SR results. We propose a novel attribution approach called local attribution map (LAM), which inherits the integral gradient method yet with two unique features. One is to use the blurred image as the baseline input, and the other is to adopt the progressive blurring function as the path function. Based on LAM, we show that: (1) SR networks with a wider range of involved input pixels could achieve better performance. (2) Attention networks and non-local networks extract features from a wider range of input pixels. (3) Comparing with the range that actually contributes, the receptive field is large enough for most deep networks. (4) For SR networks, textures with regular stripes or grids are more likely to be noticed, while complex semantics are difficult to utilize. Our work opens new directions for designing SR networks and interpreting low-level vision deep models.

52.Enriching ImageNet with Human Similarity Judgments and Psychological Embeddings ⬇️

Advances in object recognition flourished in part because of the availability of high-quality datasets and associated benchmarks. However, these benchmarks---such as ILSVRC---are relatively task-specific, focusing predominately on predicting class labels. We introduce a publicly-available dataset that embodies the task-general capabilities of human perception and reasoning. The Human Similarity Judgments extension to ImageNet (ImageNet-HSJ) is composed of human similarity judgments that supplement the ILSVRC validation set. The new dataset supports a range of task and performance metrics, including the evaluation of unsupervised learning algorithms. We demonstrate two methods of assessment: using the similarity judgments directly and using a psychological embedding trained on the similarity judgments. This embedding space contains an order of magnitude more points (i.e., images) than previous efforts based on human judgments. Scaling to the full 50,000 image set was made possible through a selective sampling process that used variational Bayesian inference and model ensembles to sample aspects of the embedding space that were most uncertain. This methodological innovation not only enables scaling, but should also improve the quality of solutions by focusing sampling where it is needed. To demonstrate the utility of ImageNet-HSJ, we used the similarity ratings and the embedding space to evaluate how well several popular models conform to human similarity judgments. One finding is that more complex models that perform better on task-specific benchmarks do not better conform to human semantic judgments. In addition to the human similarity judgments, pre-trained psychological embeddings and code for inferring variational embeddings are made publicly available. Collectively, ImageNet-HSJ assets support the appraisal of internal representations and the development of more human-like models.

53.SAMA-VTOL: A new unmanned aircraft system for remotely sensed data collection ⬇️

In recent years, unmanned aircraft systems (UASs) are frequently used in many different applications of photogrammetry such as building damage monitoring, archaeological mapping and vegetation monitoring. In this paper, a new state-of-the-art vertical take-off and landing fixed-wing UAS is proposed to robust photogrammetry missions, called SAMA-VTOL. In this study, the capability of SAMA-VTOL is investigated for generating orthophoto. The major stages are including designing, building and experimental scenario. First, a brief description of design and build is introduced. Next, an experiment was done to generate accurate orthophoto with minimum ground control points requirements. The processing step, which includes automatic aerial triangulation with camera calibration and model generation. In this regard, the Pix4Dmapper software was used to orientate the images, produce point clouds, creating digital surface model and generating orthophoto mosaic. Experimental results based on the test area covering 26.3 hectares indicate that our SAMA-VTOL performs well in the orthophoto mosaic task.

54.Robust Unsupervised Small Area Change Detection from SAR Imagery Using Deep Learning ⬇️

Small area change detection from synthetic aperture radar (SAR) is a highly challenging task. In this paper, a robust unsupervised approach is proposed for small area change detection from multi-temporal SAR images using deep learning. First, a multi-scale superpixel reconstruction method is developed to generate a difference image (DI), which can suppress the speckle noise effectively and enhance edges by exploiting local, spatially homogeneous information. Second, a two-stage centre-constrained fuzzy c-means clustering algorithm is proposed to divide the pixels of the DI into changed, unchanged and intermediate classes with a parallel clustering strategy. Image patches belonging to the first two classes are then constructed as pseudo-label training samples, and image patches of the intermediate class are treated as testing samples. Finally, a convolutional wavelet neural network (CWNN) is designed and trained to classify testing samples into changed or unchanged classes, coupled with a deep convolutional generative adversarial network (DCGAN) to increase the number of changed class within the pseudo-label training samples. Numerical experiments on four real SAR datasets demonstrate the validity and robustness of the proposed approach, achieving up to 99.61% accuracy for small area change detection.

55.Learnable Sampling 3D Convolution for Video Enhancement and Action Recognition ⬇️

A key challenge in video enhancement and action recognition is to fuse useful information from neighboring frames. Recent works suggest establishing accurate correspondences between neighboring frames before fusing temporal information. However, the generated results heavily depend on the quality of correspondence estimation. In this paper, we propose a more robust solution: \emph{sampling and fusing multi-level features} across neighborhood frames to generate the results. Based on this idea, we introduce a new module to improve the capability of 3D convolution, namely, learnable sampling 3D convolution (\emph{LS3D-Conv}). We add learnable 2D offsets to 3D convolution which aims to sample locations on spatial feature maps across frames. The offsets can be learned for specific tasks. The \emph{LS3D-Conv} can flexibly replace 3D convolution layers in existing 3D networks and get new architectures, which learns the sampling at multiple feature levels. The experiments on video interpolation, video super-resolution, video denoising, and action recognition demonstrate the effectiveness of our approach.

56.Language-guided Navigation via Cross-Modal Grounding and Alternate Adversarial Learning ⬇️

The emerging vision-and-language navigation (VLN) problem aims at learning to navigate an agent to the target location in unseen photo-realistic environments according to the given language instruction. The main challenges of VLN arise mainly from two aspects: first, the agent needs to attend to the meaningful paragraphs of the language instruction corresponding to the dynamically-varying visual environments; second, during the training process, the agent usually imitate the shortest-path to the target location. Due to the discrepancy of action selection between training and inference, the agent solely on the basis of imitation learning does not perform well. Sampling the next action from its predicted probability distribution during the training process allows the agent to explore diverse routes from the environments, yielding higher success rates. Nevertheless, without being presented with the shortest navigation paths during the training process, the agent may arrive at the target location through an unexpected longer route. To overcome these challenges, we design a cross-modal grounding module, which is composed of two complementary attention mechanisms, to equip the agent with a better ability to track the correspondence between the textual and visual modalities. We then propose to recursively alternate the learning schemes of imitation and exploration to narrow the discrepancy between training and inference. We further exploit the advantages of both these two learning schemes via adversarial learning. Extensive experimental results on the Room-to-Room (R2R) benchmark dataset demonstrate that the proposed learning scheme is generalized and complementary to prior arts. Our method performs well against state-of-the-art approaches in terms of effectiveness and efficiency.

57.FP-NAS: Fast Probabilistic Neural Architecture Search ⬇️

Differential Neural Architecture Search (NAS) requires all layer choices to be held in memory simultaneously; this limits the size of both search space and final architecture. In contrast, Probabilistic NAS, such as PARSEC, learns a distribution over high-performing architectures, and uses only as much memory as needed to train a single model. Nevertheless, it needs to sample many architectures, making it computationally expensive for searching in an extensive space. To solve these problems, we propose a sampling method adaptive to the distribution entropy, drawing more samples to encourage explorations at the beginning, and reducing samples as learning proceeds. Furthermore, to search fast in the multi-variate space, we propose a coarse-to-fine strategy by using a factorized distribution at the beginning which can reduce the number of architecture parameters by over an order of magnitude.We call this method Fast Probabilistic NAS (FP-NAS). Compared with PARSEC, it can sample 64% fewer architectures and search 2.1x faster. Compared with FBNetV2, FP-NAS is 1.9x - 3.6x faster, and the searched models outperform FBNetV2 models on ImageNet. FP-NAS allows us to expand the giant FBNetV2 space to be wider (i.e. larger channel choices) and deeper (i.e. more blocks), while adding Split-Attention block and enabling the search over the number of splits. When searching a model of size 0.4G FLOPS, FP-NAS is 132x faster than EfficientNet, and the searched FP-NAS-L0 model outperforms EfficientNet-B0 by 0.6% accuracy. Without using any architecture surrogate or scaling tricks, we directly search large models up to 1.0G FLOPS. Our FP-NAS-L2 model with simple distillation outperforms BigNAS-XL with advanced inplace distillation by 0.7% accuracy with less FLOPS.

58.CORAL: Colored structural representation for bi-modal place recognition ⬇️

Place recognition is indispensable for drift-free localization system. Due to the variations of the environment, place recognition using single modality has limitations. In this paper, we propose a bi-modal place recognition method, which can extract compound global descriptor from the two modalities, vision and LiDAR. Specifically, we build elevation image generated from point cloud modality as a discriminative structural representation. Based on the 3D information, we derive the correspondences between 3D points and image pixels, by which the pixel-wise visual features can be inserted into the elevation map grids. In this way, we fuse the structural features and visual features in the consistent bird-eye view frame, yielding a semantic feature representation with sensible geometry, namely CORAL. Comparisons on the Oxford RobotCar show that CORAL has superior performance against other state-of-the-art methods. We also demonstrate that our network can be generalized to other scenes and sensor configurations using cross-city datasets.

59.We don't Need Thousand Proposals$\colon$ Single Shot Actor-Action Detection in Videos ⬇️

We propose SSA2D, a simple yet effective end-to-end deep network for actor-action detection in videos. The existing methods take a top-down approach based on region-proposals (RPN), where the action is estimated based on the detected proposals followed by post-processing such as non-maximal suppression. While effective in terms of performance, these methods pose limitations in scalability for dense video scenes with a high memory requirement for thousands of proposals. We propose to solve this problem from a different perspective where we don't need any proposals. SSA2D is a unified network, which performs pixel level joint actor-action detection in a single-shot, where every pixel of the detected actor is assigned an action label. SSA2D has two main advantages: 1) It is a fully convolutional network which does not require any proposals and post-processing making it memory as well as time efficient, 2) It is easily scalable to dense video scenes as its memory requirement is independent of the number of actors present in the scene. We evaluate the proposed method on the Actor-Action dataset (A2D) and Video Object Relation (VidOR) dataset, demonstrating its effectiveness in multiple actors and action detection in a video. SSA2D is 11x faster during inference with comparable (sometimes better) performance and fewer network parameters when compared with the prior works.

60.Hierachical Delta-Attention Method for Multimodal Fusion ⬇️

In vision and linguistics; the main input modalities are facial expressions, speech patterns, and the words uttered. The issue with analysis of any one mode of expression (Visual, Verbal or Vocal) is that lot of contextual information can get lost. This asks researchers to inspect multiple modalities to get a thorough understanding of the cross-modal dependencies and temporal context of the situation to analyze the expression. This work attempts at preserving the long-range dependencies within and across different modalities, which would be bottle-necked by the use of recurrent networks and adds the concept of delta-attention to focus on local differences per modality to capture the idiosyncrasy of different people. We explore a cross-attention fusion technique to get the global view of the emotion expressed through these delta-self-attended modalities, in order to fuse all the local nuances and global context together. The addition of attention is new to the multi-modal fusion field and currently being scrutinized for on what stage the attention mechanism should be used, this work achieves competitive accuracy for overall and per-class classification which is close to the current state-of-the-art with almost half number of parameters.

61.Video SemNet: Memory-Augmented Video Semantic Network ⬇️

Stories are a very compelling medium to convey ideas, experiences, social and cultural values. Narrative is a specific manifestation of the story that turns it into knowledge for the audience. In this paper, we propose a machine learning approach to capture the narrative elements in movies by bridging the gap between the low-level data representations and semantic aspects of the visual medium. We present a Memory-Augmented Video Semantic Network, called Video SemNet, to encode the semantic descriptors and learn an embedding for the video. The model employs two main components: (i) a neural semantic learner that learns latent embeddings of semantic descriptors and (ii) a memory module that retains and memorizes specific semantic patterns from the video. We evaluate the video representations obtained from variants of our model on two tasks: (a) genre prediction and (b) IMDB Rating prediction. We demonstrate that our model is able to predict genres and IMDB ratings with a weighted F-1 score of 0.72 and 0.63 respectively. The results are indicative of the representational power of our model and the ability of such representations to measure audience engagement.

62.Evolving Search Space for Neural Architecture Search ⬇️

The automation of neural architecture design has been a coveted alternative to human experts. Recent works have small search space, which is easier to optimize but has a limited upper bound of the optimal solution. Extra human design is needed for those methods to propose a more suitable space with respect to the specific task and algorithm capacity. To further enhance the degree of automation for neural architecture search, we present a Neural Search-space Evolution (NSE) scheme that iteratively amplifies the results from the previous effort by maintaining an optimized search space subset. This design minimizes the necessity of a well-designed search space. We further extend the flexibility of obtainable architectures by introducing a learnable multi-branch setting. By employing the proposed method, a consistent performance gain is achieved during a progressive search over upcoming search spaces. We achieve 77.3% top-1 retrain accuracy on ImageNet with 333M FLOPs, which yielded a state-of-the-art performance among previous auto-generated architectures that do not involve knowledge distillation or weight pruning. When the latency constraint is adopted, our result also performs better than the previous best-performing mobile models with a 77.9% Top-1 retrain accuracy.

63.Rank-smoothed Pairwise Learning In Perceptual Quality Assessment ⬇️

Conducting pairwise comparisons is a widely used approach in curating human perceptual preference data. Typically raters are instructed to make their choices according to a specific set of rules that address certain dimensions of image quality and aesthetics. The outcome of this process is a dataset of sampled image pairs with their associated empirical preference probabilities. Training a model on these pairwise preferences is a common deep learning approach. However, optimizing by gradient descent through mini-batch learning means that the "global" ranking of the images is not explicitly taken into account. In other words, each step of the gradient descent relies only on a limited number of pairwise comparisons. In this work, we demonstrate that regularizing the pairwise empirical probabilities with aggregated rankwise probabilities leads to a more reliable training loss. We show that training a deep image quality assessment model with our rank-smoothed loss consistently improves the accuracy of predicting human preferences.

64.Zero-Shot Learning with Knowledge Enhanced Visual Semantic Embeddings ⬇️

We improve zero-shot learning (ZSL) by incorporating common-sense knowledge in DNNs. We propose Common-Sense based Neuro-Symbolic Loss (CSNL) that formulates prior knowledge as novel neuro-symbolic loss functions that regularize visual-semantic embedding. CSNL forces visual features in the VSE to obey common-sense rules relating to hypernyms and attributes. We introduce two key novelties for improved learning: (1) enforcement of rules for a group instead of a single concept to take into account class-wise relationships, and (2) confidence margins inside logical operators that enable implicit curriculum learning and prevent premature overfitting. We evaluate the advantages of incorporating each knowledge source and show consistent gains over prior state-of-art methods in both conventional and generalized ZSL e.g. 11.5%, 5.5%, and 11.6% improvements on AWA2, CUB, and Kinetics respectively.

65.Rethinking Transformer-based Set Prediction for Object Detection ⬇️

DETR is a recently proposed Transformer-based method which views object detection as a set prediction problem and achieves state-of-the-art performance but demands extra-long training time to converge. In this paper, we investigate the causes of the optimization difficulty in the training of DETR. Our examinations reveal several factors contributing to the slow convergence of DETR, primarily the issues with the Hungarian loss and the Transformer cross attention mechanism. To overcome these issues we propose two solutions, namely, TSP-FCOS (Transformer-based Set Prediction with FCOS) and TSP-RCNN (Transformer-based Set Prediction with RCNN). Experimental results show that the proposed methods not only converge much faster than the original DETR, but also significantly outperform DETR and other baselines in terms of detection accuracy.

66.Transparent Object Tracking Benchmark ⬇️

Visual tracking has achieved considerable progress in recent years. However, current research in the field mainly focuses on tracking of opaque objects, while little attention is paid to transparent object tracking. In this paper, we make the first attempt in exploring this problem by proposing a Transparent Object Tracking Benchmark (TOTB). Specifically, TOTB consists of 225 videos (86K frames) from 15 diverse transparent object categories. Each sequence is manually labeled with axis-aligned bounding boxes. To the best of our knowledge, TOTB is the first benchmark dedicated to transparent object tracking. In order to understand how existing trackers perform and to provide comparison for future research on TOTB, we extensively evaluate 25 state-of-the-art tracking algorithms. The evaluation results exhibit that more efforts are needed to improve transparent object tracking. Besides, we observe some nontrivial findings from the evaluation that are discrepant with some common beliefs in opaque object tracking. For example, we find that deep(er) features are not always good for improvements. Moreover, to encourage future research, we introduce a novel tracker, named TransATOM, which leverages transparency features for tracking and surpasses all 25 evaluated approaches by a large margin. By releasing TOTB, we expect to facilitate future research and application of transparent object tracking in both the academia and industry. The TOTB and evaluation results as well as TransATOM will be made available at this https URL.

67.Contextual Interference Reduction by Selective Fine-Tuning of Neural Networks ⬇️

Feature disentanglement of the foreground target objects and the background surrounding context has not been yet fully accomplished. The lack of network interpretability prevents advancing for feature disentanglement and better generalization robustness. We study the role of the context on interfering with a disentangled foreground target object representation in this work. We hypothesize that the representation of the surrounding context is heavily tied with the foreground object due to the dense hierarchical parametrization of convolutional networks with under-constrained learning algorithms. Working on a framework that benefits from the bottom-up and top-down processing paradigms, we investigate a systematic approach to shift learned representations in feedforward networks from the emphasis on the irrelevant context to the foreground objects. The top-down processing provides importance maps as the means of the network internal self-interpretation that will guide the learning algorithm to focus on the relevant foreground regions towards achieving a more robust representations. We define an experimental evaluation setup with the role of context emphasized using the MNIST dataset. The experimental results reveal not only that the label prediction accuracy is improved but also a higher degree of robustness to the background perturbation using various noise generation methods is obtained.

68.Robust Watermarking Using Inverse Gradient Attention ⬇️

Watermarking is the procedure of encoding desired information into an image to resist potential noises while ensuring the embedded image has little perceptual perturbations from the original image. Recently, with the tremendous successes gained by deep neural networks in various fields, digital watermarking has attracted increasing number of attentions. The neglect of considering the pixel importance within the cover image of deep neural models will inevitably affect the model robustness for information hiding. Targeting at the problem, in this paper, we propose a novel deep watermarking scheme with Inverse Gradient Attention (IGA), combing the ideas of adversarial learning and attention mechanism to endow different importance to different pixels. With the proposed method, the model is able to spotlight pixels with more robustness for embedding data. Besides, from an orthogonal point of view, in order to increase the model embedding capacity, we propose a complementary message coding module. Empirically, extensive experiments show that the proposed model outperforms the state-of-the-art methods on two prevalent datasets under multiple settings.

69.Deep Learning-Based Computer Vision for Real Time Intravenous Drip Infusion Monitoring ⬇️

This paper explores the use of deep learning-based computer vision for real-time monitoring of the flow in intravenous (IV) infusions. IV infusions are among the most common therapies in hospitalized patients and, given that both over-infusion and under-infusion can cause severe damages, monitoring the flow rate of the fluid being administered to patients is very important for their safety. The proposed system uses a camera to film the IV drip infusion kit and a deep learning-based algorithm to classify acquired frames into two different states: frames with a drop that has just begun to take shape and frames with a well-formed drop. The alternation of these two states is used to count drops and derive a measurement of the flow rate of the drip. The usage of a camera as sensing element makes the proposed system safe in medical environments and easier to be integrated into current health facilities. Experimental results are reported in the paper that confirm the accuracy of the system and its capability to produce real-time estimates. The proposed method can be therefore effectively adopted to implement IV infusion monitoring and control systems.

70.Boundary-sensitive Pre-training for Temporal Localization in Videos ⬇️

Many video analysis tasks require temporal localization thus detection of content changes. However, most existing models developed for these tasks are pre-trained on general video action classification tasks. This is because large scale annotation of temporal boundaries in untrimmed videos is expensive. Therefore no suitable datasets exist for temporal boundary-sensitive pre-training. In this paper for the first time, we investigate model pre-training for temporal localization by introducing a novel boundary-sensitive pretext (BSP) task. Instead of relying on costly manual annotations of temporal boundaries, we propose to synthesize temporal boundaries in existing video action classification datasets. With the synthesized boundaries, BSP can be simply conducted via classifying the boundary types. This enables the learning of video representations that are much more transferable to downstream temporal localization tasks. Extensive experiments show that the proposed BSP is superior and complementary to the existing action classification based pre-training counterpart, and achieves new state-of-the-art performance on several temporal localization tasks.

71.MoNet: Motion-based Point Cloud Prediction Network ⬇️

Predicting the future can significantly improve the safety of intelligent vehicles, which is a key component in autonomous driving. 3D point clouds accurately model 3D information of surrounding environment and are crucial for intelligent vehicles to perceive the scene. Therefore, prediction of 3D point clouds has great significance for intelligent vehicles, which can be utilized for numerous further applications. However, due to point clouds are unordered and unstructured, point cloud prediction is challenging and has not been deeply explored in current literature. In this paper, we propose a novel motion-based neural network named MoNet. The key idea of the proposed MoNet is to integrate motion features between two consecutive point clouds into the prediction pipeline. The introduction of motion features enables the model to more accurately capture the variations of motion information across frames and thus make better predictions for future motion. In addition, content features are introduced to model the spatial content of individual point clouds. A recurrent neural network named MotionRNN is proposed to capture the temporal correlations of both features. Besides, we propose an attention-based motion align module to address the problem of missing motion features in the inference pipeline. Extensive experiments on two large scale outdoor LiDAR datasets demonstrate the performance of the proposed MoNet. Moreover, we perform experiments on applications using the predicted point clouds and the results indicate the great application potential of the proposed method.

72.DmifNet:3D Shape Reconstruction Based on Dynamic Multi-Branch Information Fusion ⬇️

3D object reconstruction from a single-view image is a long-standing challenging problem. Previous work was difficult to accurately reconstruct 3D shapes with a complex topology which has rich details at the edges and corners. Moreover, previous works used synthetic data to train their network, but domain adaptation problems occurred when tested on real data. In this paper, we propose a Dynamic Multi-branch Information Fusion Network (DmifNet) which can recover a high-fidelity 3D shape of arbitrary topology from a 2D image. Specifically, we design several side branches from the intermediate layers to make the network produce more diverse representations to improve the generalization ability of network. In addition, we utilize DoG (Difference of Gaussians) to extract edge geometry and corners information from input images. Then, we use a separate side branch network to process the extracted data to better capture edge geometry and corners feature information. Finally, we dynamically fuse the information of all branches to gain final predicted probability. Extensive qualitative and quantitative experiments on a large-scale publicly available dataset demonstrate the validity and efficiency of our method. Code and models are publicly available at this https URL.

73.One Metric to Measure them All: Localisation Recall Precision (LRP) for Evaluating Visual Detection Tasks ⬇️

Despite being widely used as a performance measure for visual detection tasks, Average Precision (AP) is limited in (i) including localisation quality, (ii) interpretability and (iii) applicability to outputs without confidence scores. Panoptic Quality (PQ), a measure proposed for evaluating panoptic segmentation (Kirillov et al., 2019), does not suffer from these limitations but is limited to panoptic segmentation. In this paper, we propose Localisation Recall Precision (LRP) Error as the performance measure for all visual detection tasks. LRP Error, initially proposed only for object detection by Oksuz et al. (2018), does not suffer from the aforementioned limitations and is applicable to all visual detection tasks. We also introduce Optimal LRP (oLRP) Error as the minimum LRP error obtained over confidence scores to evaluate visual detectors and obtain optimal thresholds for deployment. We provide a detailed comparative analysis of LRP with AP and PQ, and use 35 state-of-the-art visual detectors from four common visual detection tasks (i.e. object detection, keypoint detection, instance segmentation and panoptic segmentation) to empirically show that LRP provides richer and more discriminative information than its counterparts. Code available at: this https URL

74.Visual Recognition of Great Ape Behaviours in the Wild ⬇️

We propose a first great ape-specific visual behaviour recognition system utilising deep learning that is capable of detecting nine core ape behaviours.

75.Stochastic Talking Face Generation Using Latent Distribution Matching ⬇️

The ability to envisage the visual of a talking face based just on hearing a voice is a unique human capability. There have been a number of works that have solved for this ability recently. We differ from these approaches by enabling a variety of talking face generations based on single audio input. Indeed, just having the ability to generate a single talking face would make a system almost robotic in nature. In contrast, our unsupervised stochastic audio-to-video generation model allows for diverse generations from a single audio input. Particularly, we present an unsupervised stochastic audio-to-video generation model that can capture multiple modes of the video distribution. We ensure that all the diverse generations are plausible. We do so through a principled multi-modal variational autoencoder framework. We demonstrate its efficacy on the challenging LRW and GRID datasets and demonstrate performance better than the baseline, while having the ability to generate multiple diverse lip synchronized videos.

76.CancerNet-SCa: Tailored Deep Neural Network Designs for Detection of Skin Cancer from Dermoscopy Images ⬇️

Skin cancer continues to be the most frequently diagnosed form of cancer in the U.S., with not only significant effects on health and well-being but also significant economic costs associated with treatment. A crucial step to the treatment and management of skin cancer is effective skin cancer detection due to strong prognosis when treated at an early stage, with one of the key screening approaches being dermoscopy examination. Motivated by the advances of deep learning and inspired by the open source initiatives in the research community, in this study we introduce CancerNet-SCa, a suite of deep neural network designs tailored for the detection of skin cancer from dermoscopy images that is open source and available to the general public as part of the Cancer-Net initiative. To the best of the authors' knowledge, CancerNet-SCa comprises of the first machine-designed deep neural network architecture designs tailored specifically for skin cancer detection, one of which possessing a self-attention architecture design with attention condensers. Furthermore, we investigate and audit the behaviour of CancerNet-SCa in a responsible and transparent manner via explainability-driven model auditing. While CancerNet-SCa is not a production-ready screening solution, the hope is that the release of CancerNet-SCa in open source, open access form will encourage researchers, clinicians, and citizen data scientists alike to leverage and build upon them.

77.Height Prediction and Refinement from Aerial Images with Semantic and Geometric Guidance ⬇️

Deep learning provides a powerful new approach to many computer vision tasks. Height prediction from aerial images is one of those tasks that benefited greatly from the deployment of deep learning which replaced old multi-view geometry techniques. This letter proposes a two-stage approach, where first a multi-task neural network is used to predict the height map resulting from a single RGB aerial input image. We also include a second refinement step, where a denoising autoencoder is used to produce higher quality height maps. Experiments on two publicly available datasets show that our method is capable of producing state-of-the-art results

78.Iterative Text-based Editing of Talking-heads Using Neural Retargeting ⬇️

We present a text-based tool for editing talking-head video that enables an iterative editing workflow. On each iteration users can edit the wording of the speech, further refine mouth motions if necessary to reduce artifacts and manipulate non-verbal aspects of the performance by inserting mouth gestures (e.g. a smile) or changing the overall performance style (e.g. energetic, mumble). Our tool requires only 2-3 minutes of the target actor video and it synthesizes the video for each iteration in about 40 seconds, allowing users to quickly explore many editing possibilities as they iterate. Our approach is based on two key ideas. (1) We develop a fast phoneme search algorithm that can quickly identify phoneme-level subsequences of the source repository video that best match a desired edit. This enables our fast iteration loop. (2) We leverage a large repository of video of a source actor and develop a new self-supervised neural retargeting technique for transferring the mouth motions of the source actor to the target actor. This allows us to work with relatively short target actor videos, making our approach applicable in many real-world editing scenarios. Finally, our refinement and performance controls give users the ability to further fine-tune the synthesized results.

79.HDR Environment Map Estimation for Real-Time Augmented Reality ⬇️

We present a method to estimate an HDR environment map from a narrow field-of-view LDR camera image in real-time. This enables perceptually appealing reflections and shading on virtual objects of any material finish, from mirror to diffuse, rendered into a real physical environment using augmented reality. Our method is based on our efficient convolutional neural network architecture, EnvMapNet, trained end-to-end with two novel losses, ProjectionLoss for the generated image, and ClusterLoss for adversarial training. Through qualitative and quantitative comparison to state-of-the-art methods, we demonstrate that our algorithm reduces the directional error of estimated light sources by more than 50%, and achieves 3.7 times lower Frechet Inception Distance (FID). We further showcase a mobile application that is able to run our neural network model in under 9 ms on an iPhone XS, and render in real-time, visually coherent virtual objects in previously unseen real-world environments.

80.HAWQV3: Dyadic Neural Network Quantization ⬇️

Quantization is one of the key techniques used to make Neural Networks (NNs) faster and more energy efficient. However, current low precision quantization algorithms often have the hidden cost of conversion back and forth from floating point to quantized integer values. This hidden cost limits the latency improvement realized by quantizing NNs. To address this, we present HAWQV3, a novel dyadic quantization framework. The contributions of HAWQV3 are the following. (i) The entire inference process consists of only integer multiplication, addition, and bit shifting in INT4/8 mixed precision, without any floating point operations/casting or even integer division. (ii) We pose the mixed-precision quantization as an integer linear programming problem, where the bit precision setting is computed to minimize model perturbation, while observing application specific constraints on memory footprint, latency, and BOPS. (iii) To verify our approach, we develop the first open source 4-bit mixed-precision quantization in TVM, and we directly deploy the quantized models to T4 GPUs using only the Turing Tensor Cores. We observe an average speed up of $1.45\times$ for uniform 4-bit, as compared to uniform 8-bit, precision for ResNet50. (iv) We extensively test the proposed dyadic quantization approach on multiple different NNs, including ResNet18/50 and InceptionV3, for various model compression levels with/without mixed precision. For instance, we achieve an accuracy of $78.50%$ with dyadic INT8 quantization, which is more than $4%$ higher than prior integer-only work for InceptionV3. Furthermore, we show that mixed-precision INT4/8 quantization can be used to achieve higher speed ups, as compared to INT8 inference, with minimal impact on accuracy. For example, for ResNet50 we can reduce INT8 latency by $23%$ with mixed precision and still achieve $76.73%$ accuracy.

81.Open-Vocabulary Object Detection Using Captions ⬇️

Despite the remarkable accuracy of deep neural networks in object detection, they are costly to train and scale due to supervision requirements. Particularly, learning more object categories typically requires proportionally more bounding box annotations. Weakly supervised and zero-shot learning techniques have been explored to scale object detectors to more categories with less supervision, but they have not been as successful and widely adopted as supervised models. In this paper, we put forth a novel formulation of the object detection problem, namely open-vocabulary object detection, which is more general, more practical, and more effective than weakly supervised and zero-shot approaches. We propose a new method to train object detectors using bounding box annotations for a limited set of object categories, as well as image-caption pairs that cover a larger variety of objects at a significantly lower cost. We show that the proposed method can detect and localize objects for which no bounding box annotation is provided during training, at a significantly higher accuracy than zero-shot approaches. Meanwhile, objects with bounding box annotation can be detected almost as accurately as supervised methods, which is significantly better than weakly supervised baselines. Accordingly, we establish a new state of the art for scalable object detection.

82.An Effective Anti-Aliasing Approach for Residual Networks ⬇️

Image pre-processing in the frequency domain has traditionally played a vital role in computer vision and was even part of the standard pipeline in the early days of deep learning. However, with the advent of large datasets, many practitioners concluded that this was unnecessary due to the belief that these priors can be learned from the data itself. Frequency aliasing is a phenomenon that may occur when sub-sampling any signal, such as an image or feature map, causing distortion in the sub-sampled output. We show that we can mitigate this effect by placing non-trainable blur filters and using smooth activation functions at key locations, particularly where networks lack the capacity to learn them. These simple architectural changes lead to substantial improvements in out-of-distribution generalization on both image classification under natural corruptions on ImageNet-C [10] and few-shot learning on Meta-Dataset [17], without introducing additional trainable parameters and using the default hyper-parameters of open source codebases.

83.A Review and Comparative Study on Probabilistic Object Detection in Autonomous Driving ⬇️

Capturing uncertainty in object detection is indispensable for safe autonomous driving. In recent years, deep learning has become the de-facto approach for object detection, and many probabilistic object detectors have been proposed. However, there is no summary on uncertainty estimation in deep object detection, and existing methods are not only built with different network architectures and uncertainty estimation methods, but also evaluated on different datasets with a wide range of evaluation metrics. As a result, a comparison among methods remains challenging, as does the selection of a model that best suits a particular application. This paper aims to alleviate this problem by providing a review and comparative study on existing probabilistic object detection methods for autonomous driving applications. First, we provide an overview of generic uncertainty estimation in deep learning, and then systematically survey existing methods and evaluation metrics for probabilistic object detection. Next, we present a strict comparative study for probabilistic object detection based on an image detector and three public autonomous driving datasets. Finally, we present a discussion of the remaining challenges and future works. Code has been made available at this https URL

84.Joint Analysis and Prediction of Human Actions and Paths in Video ⬇️

With the advancement in computer vision deep learning, systems now are able to analyze an unprecedented amount of rich visual information from videos to enable applications such as autonomous driving, socially-aware robot assistant and public safety monitoring. Deciphering human behaviors to predict their future paths/trajectories and what they would do from videos is important in these applications. However, modern vision systems in self-driving applications usually perform the detection (perception) and prediction task in separate components, which leads to error propagation and sub-optimal performance. More importantly, these systems do not provide high-level semantic attributes to reason about pedestrian future. This design hinders prediction performance in video data from diverse domains and unseen scenarios. To enable optimal future human behavioral forecasting, it is crucial for the system to be able to detect and analyze human activities leading up to the prediction period, passing informative features to the subsequent prediction module for context understanding. In this thesis, with the goal of improving the performance and generalization ability of future trajectory and action prediction models, we conduct human action analysis and jointly optimize models for action detection, prediction and trajectory prediction.

85.Viability of Optical Coherence Tomography for Iris Presentation Attack Detection ⬇️

In this paper, we propose the use of Optical Coherence Tomography (OCT) imaging for the problem of iris presentation attack (PA) detection. We assess its viability by comparing its performance with respect to traditional iris imaging modalities, viz., near-infrared (NIR) and visible spectrum. OCT imaging provides a cross-sectional view of an eye, whereas traditional imaging provides 2D iris textural information. PA detection is performed using three state-of-the-art deep architectures (VGG19, ResNet50 and DenseNet121) to differentiate between bonafide and PA samples for each of the three imaging modalities. Experiments are performed on a dataset of 2,169 bonafide, 177 Van Dyke eyes and 360 cosmetic contact images acquired using all three imaging modalities under intra-attack (known PAs) and cross-attack (unknown PAs) scenarios. We observe promising results demonstrating OCT as a viable solution for iris presentation attack detection.

86.Large Scale Neural Architecture Search with Polyharmonic Splines ⬇️

Neural Architecture Search (NAS) is a powerful tool to automatically design deep neural networks for many tasks, including image classification. Due to the significant computational burden of the search phase, most NAS methods have focused so far on small, balanced datasets. All attempts at conducting NAS at large scale have employed small proxy sets, and then transferred the learned architectures to larger datasets by replicating or stacking the searched cells. We propose a NAS method based on polyharmonic splines that can perform search directly on large scale, imbalanced target datasets. We demonstrate the effectiveness of our method on the ImageNet22K benchmark[16], which contains 14 million images distributed in a highly imbalanced manner over 21,841 categories. By exploring the search space of the ResNet [23] and Big-Little Net ResNext [11] architectures directly on ImageNet22K, our polyharmonic splines NAS method designed a model which achieved a top-1 accuracy of 40.03% on ImageNet22K, an absolute improvement of 3.13% over the state of the art with similar global batch size [15].

87.ATSal: An Attention Based Architecture for Saliency Prediction in 360 Videos ⬇️

The spherical domain representation of 360 video/image presents many challenges related to the storage, processing, transmission and rendering of omnidirectional videos (ODV). Models of human visual attention can be used so that only a single viewport is rendered at a time, which is important when developing systems that allow users to explore ODV with head mounted displays (HMD). Accordingly, researchers have proposed various saliency models for 360 video/images. This paper proposes ATSal, a novel attention based (head-eye) saliency model for 360\degree videos. The attention mechanism explicitly encodes global static visual attention allowing expert models to focus on learning the saliency on local patches throughout consecutive frames. We compare the proposed approach to other state-of-the-art saliency models on two datasets: Salient360! and VR-EyeTracking. Experimental results on over 80 ODV videos (75K+ frames) show that the proposed method outperforms the existing state-of-the-art.

88.Yet it moves: Learning from Generic Motions to Generate IMU data from YouTube videos ⬇️

Human activity recognition (HAR) using wearable sensors has benefited much less from recent advances in Machine Learning than fields such as computer vision and natural language processing. This is to a large extent due to the lack of large scale repositories of labeled training data. In our research we aim to facilitate the use of online videos, which exists in ample quantity for most activities and are much easier to label than sensor data, to simulate labeled wearable motion sensor data. In previous work we already demonstrate some preliminary results in this direction focusing on very simple, activity specific simulation models and a single sensor modality (acceleration norm)\cite{10.1145/3341162.3345590}. In this paper we show how we can train a regression model on generic motions for both accelerometer and gyro signals and then apply it to videos of the target activities to generate synthetic IMU data (acceleration and gyro norms) that can be used to train and/or improve HAR models. We demonstrate that systems trained on simulated data generated by our regression model can come to within around 10% of the mean F1 score of a system trained on real sensor data. Furthermore we show that by either including a small amount of real sensor data for model calibration or simply leveraging the fact that (in general) we can easily generate much more simulated data from video than we can collect in terms of real sensor data the advantage of real sensor data can be eventually equalized.

89.Elastic Interaction of Particles for Robotic Tactile Simulation ⬇️

Tactile sensing plays an important role in robotic perception and manipulation. To overcome the real-world limitations of data collection, simulating tactile response in virtual environment comes as a desire direction of robotic research. Most existing works model the tactile sensor as a rigid multi-body, which is incapable of reflecting the elastic property of the tactile sensor as well as characterizing the fine-grained physical interaction between two objects. In this paper, we propose Elastic Interaction of Particles (EIP), a novel framework for tactile emulation. At its core, EIP models the tactile sensor as a group of coordinated particles, and the elastic theory is applied to regulate the deformation of particles during the contact process. The implementation of EIP is conducted from scratch, without resorting to any existing physics engine. Experiments to verify the effectiveness of our method have been carried out on two applications: robotic perception with tactile data and 3D geometric reconstruction by tactile-visual fusion. It is possible to open up a new vein for robotic tactile simulation, and contribute to various downstream robotic tasks.

90.Unsupervised Difficulty Estimation with Action Scores ⬇️

Evaluating difficulty and biases in machine learning models has become of extreme importance as current models are now being applied in real-world situations. In this paper we present a simple method for calculating a difficulty score based on the accumulation of losses for each sample during training. We call this the action score. Our proposed method does not require any modification of the model neither any external supervision, as it can be implemented as callback that gathers information from the training process. We test and analyze our approach in two different settings: image classification, and object detection, and we show that in both settings the action score can provide insights about model and dataset biases.

91.Automatic Detection and Classification of Tick-borne Skin Lesions using Deep Learning ⬇️

Around the globe, ticks are the culprit of transmitting a variety of bacterial, viral and parasitic diseases. The incidence of tick-borne diseases has drastically increased within the last decade, with annual cases of Lyme disease soaring to an estimated 300,000 in the United States alone. As a result, more efforts in improving lesion identification approaches and diagnostics for tick-borne illnesses is critical. The objective for this study is to build upon the approach used by Burlina et al. by using a variety of convolutional neural network models to detect tick-borne skin lesions. We expanded the data inputs by acquiring images from Google in seven different languages to test if this would diversify training data and improve the accuracy of skin lesion detection. The final dataset included nearly 6,080 images and was trained on a combination of architectures (ResNet 34, ResNet 50, VGG 19, and Dense Net 121). We obtained an accuracy of 80.72% with our model trained on the DenseNet 121 architecture.

92.Robust super-resolution depth imaging via a multi-feature fusion deep network ⬇️

Three-dimensional imaging plays an important role in imaging applications where it is necessary to record depth. The number of applications that use depth imaging is increasing rapidly, and examples include self-driving autonomous vehicles and auto-focus assist on smartphone cameras. Light detection and ranging (LIDAR) via single-photon sensitive detector (SPAD) arrays is an emerging technology that enables the acquisition of depth images at high frame rates. However, the spatial resolution of this technology is typically low in comparison to the intensity images recorded by conventional cameras. To increase the native resolution of depth images from a SPAD camera, we develop a deep network built specifically to take advantage of the multiple features that can be extracted from a camera's histogram data. The network is designed for a SPAD camera operating in a dual-mode such that it captures alternate low resolution depth and high resolution intensity images at high frame rates, thus the system does not require any additional sensor to provide intensity images. The network then uses the intensity images and multiple features extracted from downsampled histograms to guide the upsampling of the depth. Our network provides significant image resolution enhancement and image denoising across a wide range of signal-to-noise ratios and photon levels. We apply the network to a range of 3D data, demonstrating denoising and a four-fold resolution enhancement of depth.

93.Automated Quality Assessment of Hand Washing Using Deep Learning ⬇️

Washing hands is one of the most important ways to prevent infectious diseases, including COVID-19. Unfortunately, medical staff does not always follow the World Health Organization (WHO) hand washing guidelines in their everyday work. To this end, we present neural networks for automatically recognizing the different washing movements defined by the WHO. We train the neural network on a part of a large (2000+ videos) real-world labeled dataset with the different washing movements. The preliminary results show that using pre-trained neural network models such as MobileNetV2 and Xception for the task, it is possible to achieve >64 % accuracy in recognizing the different washing movements. We also describe the collection and the structure of the above open-access dataset created as part of this work. Finally, we describe how the neural network can be used to construct a mobile phone application for automatic quality control and real-time feedback for medical professionals.

94.MEG: Multi-Evidence GNN for Multimodal Semantic Forensics ⬇️

Fake news often involves semantic manipulations across modalities such as image, text, location etc and requires the development of multimodal semantic forensics for its detection. Recent research has centered the problem around images, calling it image repurposing -- where a digitally unmanipulated image is semantically misrepresented by means of its accompanying multimodal metadata such as captions, location, etc. The image and metadata together comprise a multimedia package. The problem setup requires algorithms to perform multimodal semantic forensics to authenticate a query multimedia package using a reference dataset of potentially related packages as evidences. Existing methods are limited to using a single evidence (retrieved package), which ignores potential performance improvement from the use of multiple evidences. In this work, we introduce a novel graph neural network based model for multimodal semantic forensics, which effectively utilizes multiple retrieved packages as evidences and is scalable with the number of evidences. We compare the scalability and performance of our model against existing methods. Experimental results show that the proposed model outperforms existing state-of-the-art algorithms with an error reduction of up to 25%.

95.ROME: Robustifying Memory-Efficient NAS via Topology Disentanglement and Gradients Accumulation ⬇️

Single-path based differentiable neural architecture search has great strengths for its low computational cost and memory-friendly nature. However, we surprisingly discover that it suffers from severe searching instability which has been primarily ignored, posing a potential weakness for a wider application. In this paper, we delve into its performance collapse issue and propose a new algorithm called RObustifying Memory-Efficient NAS (ROME). Specifically, 1) for consistent topology in the search and evaluation stage, we involve separate parameters to disentangle the topology from the operations of the architecture. In such a way, we can independently sample connections and operations without interference; 2) to discount sampling unfairness and variance, we enforce fair sampling for weight update and apply a gradient accumulation mechanism for architecture parameters. Extensive experiments demonstrate that our proposed method has strong performance and robustness, where it mostly achieves state-of-the-art results on a large number of standard benchmarks.

96.Ranking Neural Checkpoints ⬇️

This paper is concerned with ranking many pre-trained deep neural networks (DNNs), called checkpoints, for the transfer learning to a downstream task. Thanks to the broad use of DNNs, we may easily collect hundreds of checkpoints from various sources. Which of them transfers the best to our downstream task of interest? Striving to answer this question thoroughly, we establish a neural checkpoint ranking benchmark (NeuCRaB) and study some intuitive ranking measures. These measures are generic, applying to the checkpoints of different output types without knowing how the checkpoints are pre-trained on which dataset. They also incur low computation cost, making them practically meaningful. Our results suggest that the linear separability of the features extracted by the checkpoints is a strong indicator of transferability. We also arrive at a new ranking measure, NLEEP, which gives rise to the best performance in the experiments.

97.V3H: Incomplete Multi-view Clustering via View Variation and View Heredity ⬇️

Real data often appear in the form of multiple incomplete views, and incomplete multi-view clustering is an effective method to integrate these incomplete views. Previous methods only learn the consistent information between different views and ignore the unique information of each view, which limits their clustering performance and generalizations. To overcome this limitation, we propose a novel View Variation and View Heredity approach (V 3 H). Inspired by the variation and the heredity in genetics, V 3 H first decomposes each subspace into a variation matrix for the corresponding view and a heredity matrix for all the views to represent the unique information and the consistent information respectively. Then, by aligning different views based on their cluster indicator matrices, V3H integrates the unique information from different views to improve the clustering performance. Finally, with the help of the adjustable low-rank representation based on the heredity matrix, V3H recovers the underlying true data structure to reduce the influence of the large incompleteness. More importantly, V3H presents possibly the first work to introduce genetics to clustering algorithms for learning simultaneously the consistent information and the unique information from incomplete multi-view data. Extensive experimental results on fifteen benchmark datasets validate its superiority over other state-of-the-arts.

98.CoMatch: Semi-supervised Learning with Contrastive Graph Regularization ⬇️

Semi-supervised learning has been an effective paradigm for leveraging unlabeled data to reduce the reliance on labeled data. We propose CoMatch, a new semi-supervised learning method that unifies dominant approaches and addresses their limitations. CoMatch jointly learns two representations of the training data, their class probabilities and low-dimensional embeddings. The two representations interact with each other to jointly evolve. The embeddings impose a smoothness constraint on the class probabilities to improve the pseudo-labels, whereas the pseudo-labels regularize the structure of the embeddings through graph-based contrastive learning. CoMatch achieves state-of-the-art performance on multiple datasets. It achieves ~20% accuracy improvement on the label-scarce CIFAR-10 and STL-10. On ImageNet with 1% labels, CoMatch achieves a top-1 accuracy of 66.0%, outperforming FixMatch by 12.6%. The accuracy further increases to 67.1% with self-supervised pre-training. Furthermore, CoMatch achieves better representation learning performance on downstream tasks, outperforming both supervised learning and self-supervised learning.

99.Investigating Emotion-Color Association in Deep Neural Networks ⬇️

It has been found that representations learned by Deep Neural Networks (DNNs) correlate very well to neural responses measured in primates' brains and psychological representations exhibited by human similarity judgment. On another hand, past studies have shown that particular colors can be associated with specific emotion arousal in humans. Do deep neural networks also learn this behavior? In this study, we investigate if DNNs can learn implicit associations in stimuli, particularly, an emotion-color association between image stimuli. Our study was conducted in two parts. First, we collected human responses on a forced-choice decision task in which subjects were asked to select a color for a specified emotion-inducing image. Next, we modeled this decision task on neural networks using the similarity between deep representation (extracted using DNNs trained on object classification tasks) of the images and images of colors used in the task. We found that our model showed a fuzzy linear relationship between the two decision probabilities. This results in two interesting findings, 1. The representations learned by deep neural networks can indeed show an emotion-color association 2. The emotion-color association is not just random but involves some cognitive phenomena. Finally, we also show that this method can help us in the emotion classification task, specifically when there are very few examples to train the model. This analysis can be relevant to psychologists studying emotion-color associations and artificial intelligence researchers modeling emotional intelligence in machines or studying representations learned by deep neural networks.

100.Cryo-ZSSR: multiple-image super-resolution based on deep internal learning ⬇️

Single-particle cryo-electron microscopy (cryo-EM) is an emerging imaging modality capable of visualizing proteins and macro-molecular complexes at near-atomic resolution. The low electron-doses used to prevent sample radiation damage, result in images where the power of the noise is 100 times greater than the power of the signal. To overcome the low-SNRs, hundreds of thousands of particle projections acquired over several days of data collection are averaged in 3D to determine the structure of interest. Meanwhile, recent image super-resolution (SR) techniques based on neural networks have shown state of the art performance on natural images. Building on these advances, we present a multiple-image SR algorithm based on deep internal learning designed specifically to work under low-SNR conditions. Our approach leverages the internal image statistics of cryo-EM movies and does not require training on ground-truth data. When applied to a single-particle dataset of apoferritin, we show that the resolution of 3D structures obtained from SR micrographs can surpass the limits imposed by the imaging system. Our results indicate that the combination of low magnification imaging with image SR has the potential to accelerate cryo-EM data collection without sacrificing resolution.

101.Run Away From your Teacher: Understanding BYOL by a Novel Self-Supervised Approach ⬇️

Recently, a newly proposed self-supervised framework Bootstrap Your Own Latent (BYOL) seriously challenges the necessity of negative samples in contrastive learning frameworks. BYOL works like a charm despite the fact that it discards the negative samples completely and there is no measure to prevent collapse in its training objective. In this paper, we suggest understanding BYOL from the view of our proposed interpretable self-supervised learning framework, Run Away From your Teacher (RAFT). RAFT optimizes two objectives at the same time: (i) aligning two views of the same data to similar representations and (ii) running away from the model's Mean Teacher (MT, the exponential moving average of the history models) instead of BYOL's running towards it. The second term of RAFT explicitly prevents the representation collapse and thus makes RAFT a more conceptually reliable framework. We provide basic benchmarks of RAFT on CIFAR10 to validate the effectiveness of our method. Furthermore, we prove that BYOL is equivalent to RAFT under certain conditions, providing solid reasoning for BYOL's counter-intuitive success.

102.Locally Linear Embedding and its Variants: Tutorial and Survey ⬇️

This is a tutorial and survey paper for Locally Linear Embedding (LLE) and its variants. The idea of LLE is fitting the local structure of manifold in the embedding space. In this paper, we first cover LLE, kernel LLE, inverse LLE, and feature fusion with LLE. Then, we cover out-of-sample embedding using linear reconstruction, eigenfunctions, and kernel mapping. Incremental LLE is explained for embedding streaming data. Landmark LLE methods using the Nystrom approximation and locally linear landmarks are explained for big data embedding. We introduce the methods for parameter selection of number of neighbors using residual variance, Procrustes statistics, preservation neighborhood error, and local neighborhood selection. Afterwards, Supervised LLE (SLLE), enhanced SLLE, SLLE projection, probabilistic SLLE, supervised guided LLE (using Hilbert-Schmidt independence criterion), and semi-supervised LLE are explained for supervised and semi-supervised embedding. Robust LLE methods using least squares problem and penalty functions are also introduced for embedding in the presence of outliers and noise. Then, we introduce fusion of LLE with other manifold learning methods including Isomap (i.e., ISOLLE), principal component analysis, Fisher discriminant analysis, discriminant LLE, and Isotop. Finally, we explain weighted LLE in which the distances, reconstruction weights, or the embeddings are adjusted for better embedding; we cover weighted LLE for deformed distributed data, weighted LLE using probability of occurrence, SLLE by adjusting weights, modified LLE, and iterative LLE.

103.A System for Automatic Rice Disease Detectionfrom Rice Paddy Images Serviced via a Chatbot ⬇️

A rice disease diagnosis LINE Bot System from paddy field images was presented in this paper. An easy-to-use automatic rice disease diagnosis system was necessary to help rice farmers improve yield and quality. We targeted on the images took from the paddy environment without special sample preparation. We used a deep learning neural networks technique to detect rice disease in the images. We purposed object detection model training and refinement process to improve the performance of our previous rice leaf diseases detection research. The process was based on analyzing the model's predictive results and could be repeatedly used to improve the quality of the database in the next training of the model. The deployment model for our LINE Bot system was created from the selected best performance technique in our previous paper, YOLOv3, trained by refined training data set. The performance of deployment model was measured on 5 target classes by average mAP improved from 82.74% in previous paper to 89.10%. We purposed Rice Disease LINE Bot system used this deployment model. Our system worked automatically real-time to suggest primary rice disease diagnosis results to the users in the LINE group. Our group included of rice farmers and rice disease experts, and they could communicate freely via chat. In the real LINE Bot deployment, the model's performance measured by our own defined measurement Average True Positive Point was 78.86%. It took approximately 2-3 seconds for detection process in our system servers.

104.MRI-Guided High Intensity Focused Ultrasound of Liver and Kidney ⬇️

High Intensity Focused Ultrasound (HIFU) can be used to achieve a local temperature increase deep inside the human body in a non-invasive way. MRI guidance of the procedure allows in situ target definition. In addition, MRI can be used to provide continuous temperature mapping during HIFU for spatial and temporal control of the heating procedure and prediction of the final lesion based on the received thermal dose. Temperature mapping of mobile organs as kidney and liver is challenging, as well as real-time processing methods for feedback control of the HIFU procedure. In this paper, recent technological advances are reviewed in MR temperature mapping of these organs, in motion compensation of the HIFU beam, in intercostal HIFU sonication, and in volumetric ablation and feedback control strategies. Recent pre-clinical studies have demonstrated the feasibility of each of these novel methods. The perspectives to translate those advances into the clinic are addressed. It can be concluded that MR guided HIFU for ablation in liver and kidney appears feasible but requires further work on integration of technologically advanced methods.

105.LRTA: A Transparent Neural-Symbolic Reasoning Framework with Modular Supervision for Visual Question Answering ⬇️

The predominant approach to visual question answering (VQA) relies on encoding the image and question with a "black-box" neural encoder and decoding a single token as the answer like "yes" or "no". Despite this approach's strong quantitative results, it struggles to come up with intuitive, human-readable forms of justification for the prediction process. To address this insufficiency, we reformulate VQA as a full answer generation task, which requires the model to justify its predictions in natural language. We propose LRTA [Look, Read, Think, Answer], a transparent neural-symbolic reasoning framework for visual question answering that solves the problem step-by-step like humans and provides human-readable form of justification at each step. Specifically, LRTA learns to first convert an image into a scene graph and parse a question into multiple reasoning instructions. It then executes the reasoning instructions one at a time by traversing the scene graph using a recurrent neural-symbolic execution module. Finally, it generates a full answer to the given question with natural language justifications. Our experiments on GQA dataset show that LRTA outperforms the state-of-the-art model by a large margin (43.1% v.s. 28.0%) on the full answer generation task. We also create a perturbed GQA test set by removing linguistic cues (attributes and relations) in the questions for analyzing whether a model is having a smart guess with superficial data correlations. We show that LRTA makes a step towards truly understanding the question while the state-of-the-art model tends to learn superficial correlations from the training data.

106.Neural Group Testing to Accelerate Deep Learning ⬇️

Recent advances in deep learning have made the use of large, deep neural networks with tens of millions of parameters. The sheer size of these networks imposes a challenging computational burden during inference. Existing work focuses primarily on accelerating each forward pass of a neural network. Inspired by the group testing strategy for efficient disease testing, we propose neural group testing, which accelerates by testing a group of samples in one forward pass. Groups of samples that test negative are ruled out. If a group tests positive, samples in that group are then retested adaptively. A key challenge of neural group testing is to modify a deep neural network so that it could test multiple samples in one forward pass. We propose three designs to achieve this without introducing any new parameters and evaluate their performances. We applied neural group testing in an image moderation task to detect rare but inappropriate images. We found that neural group testing can group up to 16 images in one forward pass and reduce the overall computation cost by over 73% while improving detection performance.

107.Backdoor Attacks on the DNN Interpretation System ⬇️

Interpretability is crucial to understand the inner workings of deep neural networks (DNNs) and many interpretation methods generate saliency maps that highlight parts of the input image that contribute the most to the prediction made by the DNN. In this paper we design a backdoor attack that alters the saliency map produced by the network for an input image only with injected trigger that is invisible to the naked eye while maintaining the prediction accuracy. The attack relies on injecting poisoned data with a trigger into the training data set. The saliency maps are incorporated in the penalty term of the objective function that is used to train a deep model and its influence on model training is conditioned upon the presence of a trigger. We design two types of attacks: targeted attack that enforces a specific modification of the saliency map and untargeted attack when the importance scores of the top pixels from the original saliency map are significantly reduced. We perform empirical evaluation of the proposed backdoor attacks on gradient-based and gradient-free interpretation methods for a variety of deep learning architectures. We show that our attacks constitute a serious security threat when deploying deep learning models developed by untrusty sources. Finally, in the Supplement we demonstrate that the proposed methodology can be used in an inverted setting, where the correct saliency map can be obtained only in the presence of a trigger (key), effectively making the interpretation system available only to selected users.

108.Upgraded W-Net with Attention Gates and its Application in Unsupervised 3D Liver Segmentation ⬇️

Segmentation of biomedical images can assist radiologists to make a better diagnosis and take decisions faster by helping in the detection of abnormalities, such as tumors. Manual or semi-automated segmentation, however, can be a time-consuming task. Most deep learning based automated segmentation methods are supervised and rely on manually segmented ground-truth. A possible solution for the problem would be an unsupervised deep learning based approach for automated segmentation, which this research work tries to address. We use a W-Net architecture and modified it, such that it can be applied to 3D volumes. In addition, to suppress noise in the segmentation we added attention gates to the skip connections. The loss for the segmentation output was calculated using soft N-Cuts and for the reconstruction output using SSIM. Conditional Random Fields were used as a post-processing step to fine-tune the results. The proposed method has shown promising results, with a dice coefficient of 0.88 for the liver segmentation compared against manual segmentation.

109.Semantic SLAM with Autonomous Object-Level Data Association ⬇️

It is often desirable to capture and map semantic information of an environment during simultaneous localization and mapping (SLAM). Such semantic information can enable a robot to better distinguish places with similar low-level geometric and visual features and perform high-level tasks that use semantic information about objects to be manipulated and environments to be navigated. While semantic SLAM has gained increasing attention, there is little research on semanticlevel data association based on semantic objects, i.e., object-level data association. In this paper, we propose a novel object-level data association algorithm based on bag of words algorithm, formulated as a maximum weighted bipartite matching problem. With object-level data association solved, we develop a quadratic-programming-based semantic object initialization scheme using dual quadric and introduce additional constraints to improve the success rate of object initialization. The integrated semantic-level SLAM system can achieve high-accuracy object-level data association and real-time semantic mapping as demonstrated in the experiments. The online semantic map building and semantic-level localization capabilities facilitate semantic-level mapping and task planning in a priori unknown environment.

110.Seismic Facies Analysis: A Deep Domain Adaptation Approach ⬇️

Deep neural networks (DNNs) can learn accurately from large quantities of labeled input data, but DNNs sometimes fail to generalize to test data sampled from different input distributions. Unsupervised Deep Domain Adaptation (DDA) proves useful when no input labels are available, and distribution shifts are observed in the target domain (TD). Experiments are performed on seismic images of the F3 block 3D dataset from offshore Netherlands (source domain; SD) and Penobscot 3D survey data from Canada (target domain; TD). Three geological classes from SD and TD that have similar reflection patterns are considered. In the present study, an improved deep neural network architecture named EarthAdaptNet (EAN) is proposed to semantically segment the seismic images. We specifically use a transposed residual unit to replace the traditional dilated convolution in the decoder block. The EAN achieved a pixel-level accuracy >84% and an accuracy of ~70% for the minority classes, showing improved performance compared to existing architectures. In addition, we introduced the CORAL (Correlation Alignment) method to the EAN to create an unsupervised deep domain adaptation network (EAN-DDA) for the classification of seismic reflections fromF3 and Penobscot. Maximum class accuracy achieved was ~99% for class 2 of Penobscot with >50% overall accuracy. Taken together, EAN-DDA has the potential to classify target domain seismic facies classes with high accuracy.

111.A Novel Memory-Efficient Deep Learning Training Framework via Error-Bounded Lossy Compression ⬇️

Deep neural networks (DNNs) are becoming increasingly deeper, wider, and non-linear due to the growing demands on prediction accuracy and analysis quality. When training a DNN model, the intermediate activation data must be saved in the memory during forward propagation and then restored for backward propagation. However, state-of-the-art accelerators such as GPUs are only equipped with very limited memory capacities due to hardware design constraints, which significantly limits the maximum batch size and hence performance speedup when training large-scale DNNs.
In this paper, we propose a novel memory-driven high performance DNN training framework that leverages error-bounded lossy compression to significantly reduce the memory requirement for training in order to allow training larger networks. Different from the state-of-the-art solutions that adopt image-based lossy compressors such as JPEG to compress the activation data, our framework purposely designs error-bounded lossy compression with a strict error-controlling mechanism. Specifically, we provide theoretical analysis on the compression error propagation from the altered activation data to the gradients, and then empirically investigate the impact of altered gradients over the entire training process. Based on these analyses, we then propose an improved lossy compressor and an adaptive scheme to dynamically configure the lossy compression error-bound and adjust the training batch size to further utilize the saved memory space for additional speedup. We evaluate our design against state-of-the-art solutions with four popular DNNs and the ImageNet dataset. Results demonstrate that our proposed framework can significantly reduce the training memory consumption by up to 13.5x and 1.8x over the baseline training and state-of-the-art framework with compression, respectively, with little or no accuracy loss.