Skip to content

Latest commit

 

History

History
97 lines (97 loc) · 62.3 KB

20200626.md

File metadata and controls

97 lines (97 loc) · 62.3 KB

ArXiv cs.CV --Fri, 26 Jun 2020

1.Parametric Instance Classification for Unsupervised Visual Feature Learning ⬇️

This paper presents parametric instance classification (PIC) for unsupervised visual feature learning. Unlike the state-of-the-art approaches which do instance discrimination in a dual-branch non-parametric fashion, PIC directly performs a one-branch parametric instance classification, revealing a simple framework similar to supervised classification and without the need to address the information leakage issue. We show that the simple PIC framework can be as effective as the state-of-the-art approaches, i.e. SimCLR and MoCo v2, by adapting several common component settings used in the state-of-the-art approaches. We also propose two novel techniques to further improve effectiveness and practicality of PIC: 1) a sliding-window data scheduler, instead of the previous epoch-based data scheduler, which addresses the extremely infrequent instance visiting issue in PIC and improves the effectiveness; 2) a negative sampling and weight update correction approach to reduce the training time and GPU memory consumption, which also enables application of PIC to almost unlimited training images. We hope that the PIC framework can serve as a simple baseline to facilitate future study.

2.An Analysis of SVD for Deep Rotation Estimation ⬇️

Symmetric orthogonalization via SVD, and closely related procedures, are well-known techniques for projecting matrices onto $O(n)$ or $SO(n)$. These tools have long been used for applications in computer vision, for example optimal 3D alignment problems solved by orthogonal Procrustes, rotation averaging, or Essential matrix decomposition. Despite its utility in different settings, SVD orthogonalization as a procedure for producing rotation matrices is typically overlooked in deep learning models, where the preferences tend toward classic representations like unit quaternions, Euler angles, and axis-angle, or more recently-introduced methods. Despite the importance of 3D rotations in computer vision and robotics, a single universally effective representation is still missing. Here, we explore the viability of SVD orthogonalization for 3D rotations in neural networks. We present a theoretical analysis that shows SVD is the natural choice for projecting onto the rotation group. Our extensive quantitative analysis shows simply replacing existing representations with the SVD orthogonalization procedure obtains state of the art performance in many deep learning applications covering both supervised and unsupervised training.

3.Layout Generation and Completion with Self-attention ⬇️

We address the problem of layout generation for diverse domains such as images, documents, and mobile applications. A layout is a set of graphical elements, belonging to one or more categories, placed together in a meaningful way. Generating a new layout or extending an existing layout requires understanding the relationships between these graphical elements. To do this, we propose a novel framework, LayoutTransformer, that leverages a self-attention based approach to learn contextual relationships between layout elements and generate layouts in a given domain. The proposed model improves upon the state-of-the-art approaches in layout generation in four ways. First, our model can generate a new layout either from an empty set or add more elements to a partial layout starting from an initial set of elements. Second, as the approach is attention-based, we can visualize which previous elements the model is attending to predict the next element, thereby providing an interpretable sequence of layout elements. Third, our model can easily scale to support both a large number of element categories and a large number of elements per layout. Finally, the model also produces an embedding for various element categories, which can be used to explore the relationships between the categories. We demonstrate with experiments that our model can produce meaningful layouts in diverse settings such as object bounding boxes in scenes (COCO bounding boxes), documents (PubLayNet), and mobile applications (RICO dataset).

4.Space-Time Correspondence as a Contrastive Random Walk ⬇️

This paper proposes a simple self-supervised approach for learning representations for visual correspondence from raw video. We cast correspondence as link prediction in a space-time graph constructed from a video. In this graph, the nodes are patches sampled from each frame, and nodes adjacent in time can share a directed edge. We learn a node embedding in which pairwise similarity defines transition probabilities of a random walk. Prediction of long-range correspondence is efficiently computed as a walk along this graph. The embedding learns to guide the walk by placing high probability along paths of correspondence. Targets are formed without supervision, by cycle-consistency: we train the embedding to maximize the likelihood of returning to the initial node when walking along a graph constructed from a `palindrome' of frames. We demonstrate that the approach allows for learning representations from large unlabeled video. Despite its simplicity, the method outperforms the self-supervised state-of-the-art on a variety of label propagation tasks involving objects, semantic parts, and pose. Moreover, we show that self-supervised adaptation at test-time and edge dropout improve transfer for object-level correspondence.

5.Learning to simulate complex scenes ⬇️

Data simulation engines like Unity are becoming an increasingly important data source that allows us to acquire ground truth labels conveniently. Moreover, we can flexibly edit the content of an image in the engine, such as objects (position, orientation) and environments (illumination, occlusion). When using simulated data as training sets, its editable content can be leveraged to mimic the distribution of real-world data, and thus reduce the content difference between the synthetic and real domains. This paper explores content adaptation in the context of semantic segmentation, where the complex street scenes are fully synthesized using 19 classes of virtual objects from a first person driver perspective and controlled by 23 attributes. To optimize the attribute values and obtain a training set of similar content to real-world data, we propose a scalable discretization-and-relaxation (SDR) approach. Under a reinforcement learning framework, we formulate attribute optimization as a random-to-optimized mapping problem using a neural network. Our method has three characteristics. 1) Instead of editing attributes of individual objects, we focus on global attributes that have large influence on the scene structure, such as object density and illumination. 2) Attributes are quantized to discrete values, so as to reduce search space and training complexity. 3) Correlated attributes are jointly optimized in a group, so as to avoid meaningless scene structures and find better convergence points. Experiment shows our system can generate reasonable and useful scenes, from which we obtain promising real-world segmentation accuracy compared with existing synthetic training sets.

6.A causal view of compositional zero-shot recognition ⬇️

People easily recognize new visual categories that are new combinations of known components. This compositional generalization capacity is critical for learning in real-world domains like vision and language because the long tail of new combinations dominates the distribution. Unfortunately, learning systems struggle with compositional generalization because they often build on features that are correlated with class labels even if they are not "essential" for the class. This leads to consistent misclassification of samples from a new distribution, like new combinations of known components.
Here we describe an approach for compositional generalization that builds on causal ideas. First, we describe compositional zero-shot learning from a causal perspective, and propose to view zero-shot inference as finding "which intervention caused the image?". Second, we present a causal-inspired embedding model that learns disentangled representations of elementary components of visual objects from correlated (confounded) training data. We evaluate this approach on two datasets for predicting new combinations of attribute-object pairs: A well-controlled synthesized images dataset and a real world dataset which consists of fine-grained types of shoes. We show improvements compared to strong baselines.

7.SmallBigNet: Integrating Core and Contextual Views for Video Classification ⬇️

Temporal convolution has been widely used for video classification. However, it is performed on spatio-temporal contexts in a limited view, which often weakens its capacity of learning video representation. To alleviate this problem, we propose a concise and novel SmallBig network, with the cooperation of small and big views. For the current time step, the small view branch is used to learn the core semantics, while the big view branch is used to capture the contextual semantics. Unlike traditional temporal convolution, the big view branch can provide the small view branch with the most activated video features from a broader 3D receptive field. Via aggregating such big-view contexts, the small view branch can learn more robust and discriminative spatio-temporal representations for video classification. Furthermore, we propose to share convolution in the small and big view branch, which improves model compactness as well as alleviates overfitting. As a result, our SmallBigNet achieves a comparable model size like 2D CNNs, while boosting accuracy like 3D CNNs. We conduct extensive experiments on the large-scale video benchmarks, e.g., Kinetics400, Something-Something V1 and V2. Our SmallBig network outperforms a number of recent state-of-the-art approaches, in terms of accuracy and/or efficiency. The codes and models will be available on this https URL.

8.Backdoor Attacks on Facial Recognition in the Physical World ⬇️

Backdoor attacks embed hidden malicious behaviors inside deep neural networks (DNNs) that are only activated when a specific "trigger" is present on some input to the model. A variety of these attacks have been successfully proposed and evaluated, generally using digitally generated patterns or images as triggers. Despite significant prior work on the topic, a key question remains unanswered: "can backdoor attacks be physically realized in the real world, and what limitations do attackers face in executing them?" In this paper, we present results of a detailed study on DNN backdoor attacks in the physical world, specifically focused on the task of facial recognition. We take 3205 photographs of 10 volunteers in a variety of settings and backgrounds and train a facial recognition model using transfer learning from VGGFace. We evaluate the effectiveness of 9 accessories as potential triggers, and analyze impact from external factors such as lighting and image quality. First, we find that triggers vary significantly in efficacy and a key factor is that facial recognition models are heavily tuned to features on the face and less so to features around the periphery. Second, the efficacy of most trigger objects is. negatively impacted by lower image quality but unaffected by lighting. Third, most triggers suffer from false positives, where non-trigger objects unintentionally activate the backdoor. Finally, we evaluate 4 backdoor defenses against physical backdoors. We show that they all perform poorly because physical triggers break key assumptions they made based on triggers in the digital domain. Our key takeaway is that implementing physical backdoors is much more challenging than described in literature for both attackers and defenders and much more work is necessary to understand how backdoors work in the real world.

9.Dynamically Mitigating Data Discrepancy with Balanced Focal Loss for Replay Attack Detection ⬇️

It becomes urgent to design effective anti-spoofing algorithms for vulnerable automatic speaker verification systems due to the advancement of high-quality playback devices. Current studies mainly treat anti-spoofing as a binary classification problem between bonafide and spoofed utterances, while lack of indistinguishable samples makes it difficult to train a robust spoofing detector. In this paper, we argue that for anti-spoofing, it needs more attention for indistinguishable samples over easily-classified ones in the modeling process, to make correct discrimination a top priority. Therefore, to mitigate the data discrepancy between training and inference, we propose to leverage a balanced focal loss function as the training objective to dynamically scale the loss based on the traits of the sample itself. Besides, in the experiments, we select three kinds of features that contain both magnitude-based and phase-based information to form complementary and informative features. Experimental results on the ASVspoof2019 dataset demonstrate the superiority of the proposed methods by comparison between our systems and top-performing ones. Systems trained with the balanced focal loss perform significantly better than conventional cross-entropy loss. With complementary features, our fusion system with only three kinds of features outperforms other systems containing five or more complex single models by 22.5% for min-tDCF and 7% for EER, achieving a min-tDCF and an EER of 0.0124 and 0.55% respectively. Furthermore, we present and discuss the evaluation results on real replay data apart from the simulated ASVspoof2019 data, indicating that research for anti-spoofing still has a long way to go.

10.Lifted Disjoint Paths with Application in Multiple Object Tracking ⬇️

We present an extension to the disjoint paths problem in which additional \emph{lifted} edges are introduced to provide path connectivity priors. We call the resulting optimization problem the lifted disjoint paths problem. We show that this problem is NP-hard by reduction from integer multicommodity flow and 3-SAT. To enable practical global optimization, we propose several classes of linear inequalities that produce a high-quality LP-relaxation. Additionally, we propose efficient cutting plane algorithms for separating the proposed linear inequalities. The lifted disjoint path problem is a natural model for multiple object tracking and allows an elegant mathematical formulation for long range temporal interactions. Lifted edges help to prevent id switches and to re-identify persons. Our lifted disjoint paths tracker achieves nearly optimal assignments with respect to input detections. As a consequence, it leads on all three main benchmarks of the MOT challenge, improving significantly over state-of-the-art.

11.Estimating Displaced Populations from Overhead ⬇️

We introduce a deep learning approach to perform fine-grained population estimation for displacement camps using high-resolution overhead imagery. We train and evaluate our approach on drone imagery cross-referenced with population data for refugee camps in Cox's Bazar, Bangladesh in 2018 and 2019. Our proposed approach achieves 7.41% mean absolute percent error on sequestered camp imagery. We believe our experiments with real-world displacement camp data constitute an important step towards the development of tools that enable the humanitarian community to effectively and rapidly respond to the global displacement crisis.

12.One Thousand and One Hours: Self-driving Motion Prediction Dataset ⬇️

We present the largest self-driving dataset for motion prediction to date, with over 1,000 hours of data. This was collected by a fleet of 20 autonomous vehicles along a fixed route in Palo Alto, California over a four-month period. It consists of 170,000 scenes, where each scene is 25 seconds long and captures the perception output of the self-driving system, which encodes the precise positions and motions of nearby vehicles, cyclists, and pedestrians over time. On top of this, the dataset contains a high-definition semantic map with 15,242 labelled elements and a high-definition aerial view over the area. Together with the provided software kit, this collection forms the largest, most complete and detailed dataset to date for the development of self-driving, machine learning tasks such as motion forecasting, planning and simulation. The full dataset is available at this http URL.

13.DanHAR: Dual Attention Network For Multimodal Human Activity Recognition Using Wearable Sensors ⬇️

Human activity recognition (HAR) in ubiquitous computing has been beginning to incorporate attention into the context of deep neural networks (DNNs), in which the rich sensing data from multimodal sensors such as accelerometer and gyroscope is used to infer human activities. Recently, two attention methods are proposed via combining with Gated Recurrent Units (GRU) and Long Short-Term Memory (LSTM) network, which can capture the dependencies of sensing signals in both spatial and temporal domains simultaneously. However, recurrent networks often have a weak feature representing power compared with convolutional neural networks (CNNs). On the other hand, two attention, i.e., hard attention and soft attention, are applied in temporal domains via combining with CNN, which pay more attention to the target activity from a long sequence. However, they can only tell where to focus and miss channel information, which plays an important role in deciding what to focus. As a result, they fail to address the spatial-temporal dependencies of multimodal sensing signals, compared with attention-based GRU or LSTM. In the paper, we propose a novel dual attention method called DanHAR, which introduces the framework of blending channel attention and temporal attention on a CNN, demonstrating superiority in improving the comprehensibility for multimodal HAR. Extensive experiments on four public HAR datasets and weakly labeled dataset show that DanHAR achieves state-of-the-art performance with negligible overhead of parameters. Furthermore, visualizing analysis is provided to show that our attention can amplifies more important sensor modalities and timesteps during classification, which agrees well with human common intuition.

14.Deep Convolutional GANs for Car Image Generation ⬇️

In this paper, we investigate the application of deep convolutional GANs on car image generation. We improve upon the commonly used DCGAN architecture by implementing Wasserstein loss to decrease mode collapse and introducing dropout at the end of the discrimiantor to introduce stochasticity. Furthermore, we introduce convolutional layers at the end of the generator to improve expressiveness and smooth noise. All of these improvements upon the DCGAN architecture comprise our proposal of the novel BoolGAN architecture, which is able to decrease the FID from 195.922 (baseline) to 165.966.

15.Discontinuous and Smooth Depth Completion with Binary Anisotropic Diffusion Tensor ⬇️

We propose an unsupervised real-time dense depth completion from a sparse depth map guided by a single image. Our method generates a smooth depth map while preserving discontinuity between different objects. Our key idea is a Binary Anisotropic Diffusion Tensor (B-ADT) which can completely eliminate smoothness constraint at intended positions and directions by applying it to variational regularization. We also propose an Image-guided Nearest Neighbor Search (IGNNS) to derive a piecewise constant depth map which is used for B-ADT derivation and in the data term of the variational energy. Our experiments show that our method can outperform previous unsupervised and semi-supervised depth completion methods in terms of accuracy. Moreover, since our resulting depth map preserves the discontinuity between objects, the result can be converted to a visually plausible point cloud. This is remarkable since previous methods generate unnatural surface-like artifacts between discontinuous objects.

16.Audeo: Audio Generation for a Silent Performance Video ⬇️

We present a novel system that gets as an input video frames of a musician playing the piano and generates the music for that video. Generation of music from visual cues is a challenging problem and it is not clear whether it is an attainable goal at all. Our main aim in this work is to explore the plausibility of such a transformation and to identify cues and components able to carry the association of sounds with visual events. To achieve the transformation we built a full pipeline named \textit{Audeo}' containing three components. We first translate the video frames of the keyboard and the musician hand movements into raw mechanical musical symbolic representation Piano-Roll (Roll) for each video frame which represents the keys pressed at each time step. We then adapt the Roll to be amenable for audio synthesis by including temporal correlations. This step turns out to be critical for meaningful audio generation. As a last step, we implement Midi synthesizers to generate realistic music. \textit{Audeo} converts video to audio smoothly and clearly with only a few setup constraints. We evaluate \textit{Audeo} on in the wild' piano performance videos and obtain that their generated music is of reasonable audio quality and can be successfully recognized with high precision by popular music identification software.

17.Deep Learning for Cornea Microscopy Blind Deblurring ⬇️

The goal of this project is to build a deep-learning solution that deblurs cornea scans, used for medical examination. The spherical shape of the eye prevents ophtamologist from having completely sharp image. Provided with a stack of corneas from confocal images, our approach is to build a model that performs an upscaling of the images using an SR (Super Resolution) Network.

18.PropagationNet: Propagate Points to Curve to Learn Structure Information ⬇️

Deep learning technique has dramatically boosted the performance of face alignment algorithms. However, due to large variability and lack of samples, the alignment problem in unconstrained situations, \emph{e.g}\onedot large head poses, exaggerated expression, and uneven illumination, is still largely unsolved. In this paper, we explore the instincts and reasons behind our two proposals, \emph{i.e}\onedot Propagation Module and Focal Wing Loss, to tackle the problem. Concretely, we present a novel structure-infused face alignment algorithm based on heatmap regression via propagating landmark heatmaps to boundary heatmaps, which provide structure information for further attention map generation. Moreover, we propose a Focal Wing Loss for mining and emphasizing the difficult samples under in-the-wild condition. In addition, we adopt methods like CoordConv and Anti-aliased CNN from other fields that address the shift-variance problem of CNN for face alignment. When implementing extensive experiments on different benchmarks, \emph{i.e}\onedot WFLW, 300W, and COFW, our method outperforms state-of-the-arts by a significant margin. Our proposed approach achieves 4.05% mean error on WFLW, 2.93% mean error on 300W full-set, and 3.71% mean error on COFW.

19.Self-Segregating and Coordinated-Segregating Transformer for Focused Deep Multi-Modular Network for Visual Question Answering ⬇️

Attention mechanism has gained huge popularity due to its effectiveness in achieving high accuracy in different domains. But attention is opportunistic and is not justified by the content or usability of the content. Transformer like structure creates all/any possible attention(s). We define segregating strategies that can prioritize the contents for the applications for enhancement of performance. We defined two strategies: Self-Segregating Transformer (SST) and Coordinated-Segregating Transformer (CST) and used it to solve visual question answering application. Self-segregation strategy for attention contributes in better understanding and filtering the information that can be most helpful for answering the question and create diversity of visual-reasoning for attention. This work can easily be used in many other applications that involve repetition and multiple frames of features and would reduce the commonality of the attentions to a great extent. Visual Question Answering (VQA) requires understanding and coordination of both images and textual interpretations. Experiments demonstrate that segregation strategies for cascaded multi-head transformer attention outperforms many previous works and achieved considerable improvement for VQA-v2 dataset benchmark.

20.SACT: Self-Aware Multi-Space Feature Composition Transformer for Multinomial Attention for Video Captioning ⬇️

Video captioning works on the two fundamental concepts, feature detection and feature composition. While modern day transformers are beneficial in composing features, they lack the fundamental problems of selecting and understanding of the contents. As the feature length increases, it becomes increasingly important to include provisions for improved capturing of the pertinent contents. In this work, we have introduced a new concept of Self-Aware Composition Transformer (SACT) that is capable of generating Multinomial Attention (MultAtt) which is a way of generating distributions of various combinations of frames. Also, multi-head attention transformer works on the principle of combining all possible contents for attention, which is good for natural language classification, but has limitations for video captioning. Video contents have repetitions and require parsing of important contents for better content composition. In this work, we have introduced SACT for more selective attention and combined them for different attention heads for better capturing of the usable contents for any applications. To address the problem of diversification and encourage selective utilization, we propose the Self-Aware Composition Transformer model for dense video captioning and apply the technique on two benchmark datasets like ActivityNet and YouCookII.

21.SS-CAM: Smoothed Score-CAM for Sharper Visual Feature Localization ⬇️

Deep Convolution Neural Networks are often referred to as black-box models due to minimal understandings of their internal actions. As an effort to develop more complex explainable deep learning models, many methods have been proposed to reveal the internal mechanism of the decisionmaking process. In this paper, built on the top of Score-CAM, we introduce an enhanced visual explanation in terms of visual sharpness called SS-CAM, which produces sharper localizations of object features within an image by smoothing. We evaluate our method on three well-known datasets: ILSVRC 2012, Stanford40 and PASCAL VOC 2007 dataset. Our approach outperforms when evaluated on both fairness and localization tasks.

22.Searching towards Class-Aware Generators for Conditional Generative Adversarial Networks ⬇️

Conditional Generative Adversarial Networks (cGAN) were designed to generate images based on the provided conditions, e.g., class-level distributions. However, existing methods have used the same generating architecture for all classes. This paper presents a novel idea that adopts NAS to find a distinct architecture for each class. The search space contains regular and class-modulated convolutions, where the latter is designed to introduce class-specific information while avoiding the reduction of training data for each class generator. The search algorithm follows a weight-sharing pipeline with mixed-architecture optimization so that the search cost does not grow with the number of classes. To learn the sampling policy, a Markov decision process is embedded into the search algorithm and a moving average is applied for better stability. We evaluate our approach on CIFAR10 and CIFAR100. Besides demonstrating superior performance, we deliver several insights that are helpful in designing efficient GAN models. Code is available \url{this https URL}.

23.SRFlow: Learning the Super-Resolution Space with Normalizing Flow ⬇️

Super-resolution is an ill-posed problem, since it allows for multiple predictions for a given low-resolution image. This fundamental fact is largely ignored by state-of-the-art deep learning based approaches. These methods instead train a deterministic mapping using combinations of reconstruction and adversarial losses. In this work, we therefore propose SRFlow: a normalizing flow based super-resolution method capable of learning the conditional distribution of the output given the low-resolution input. Our model is trained in a principled manner using a single loss, namely the negative log-likelihood. SRFlow therefore directly accounts for the ill-posed nature of the problem, and learns to predict diverse photo-realistic high-resolution images. Moreover, we utilize the strong image posterior learned by SRFlow to design flexible image manipulation techniques, capable of enhancing super-resolved images by, e.g., transferring content from other images. We perform extensive experiments on faces, as well as on super-resolution in general. SRFlow outperforms state-of-the-art GAN-based approaches in terms of both PSNR and perceptual quality metrics, while allowing for diversity through the exploration of the space of super-resolved solutions.

24.Kinematic-Structure-Preserved Representation for Unsupervised 3D Human Pose Estimation ⬇️

Estimation of 3D human pose from monocular image has gained considerable attention, as a key step to several human-centric applications. However, generalizability of human pose estimation models developed using supervision on large-scale in-studio datasets remains questionable, as these models often perform unsatisfactorily on unseen in-the-wild environments. Though weakly-supervised models have been proposed to address this shortcoming, performance of such models relies on availability of paired supervision on some related tasks, such as 2D pose or multi-view image pairs. In contrast, we propose a novel kinematic-structure-preserved unsupervised 3D pose estimation framework, which is not restrained by any paired or unpaired weak supervisions. Our pose estimation framework relies on a minimal set of prior knowledge that defines the underlying kinematic 3D structure, such as skeletal joint connectivity information with bone-length ratios in a fixed canonical scale. The proposed model employs three consecutive differentiable transformations named as forward-kinematics, camera-projection and spatial-map transformation. This design not only acts as a suitable bottleneck stimulating effective pose disentanglement but also yields interpretable latent pose representations avoiding training of an explicit latent embedding to pose mapper. Furthermore, devoid of unstable adversarial setup, we re-utilize the decoder to formalize an energy-based loss, which enables us to learn from in-the-wild videos, beyond laboratory settings. Comprehensive experiments demonstrate our state-of-the-art unsupervised and weakly-supervised pose estimation performance on both Human3.6M and MPI-INF-3DHP datasets. Qualitative results on unseen environments further establish our superior generalization ability.

25.Neural Architecture Design for GPU-Efficient Networks ⬇️

Many mission-critical systems are based on GPU for inference. It requires not only high recognition accuracy but also low latency in responding time. Although many studies are devoted to optimizing the structure of deep models for efficient inference, most of them do not leverage the architecture of \textbf{modern GPU} for fast inference, leading to suboptimal performance. To address this issue, we propose a general principle for designing GPU-efficient networks based on extensive empirical studies. This design principle enables us to search for GPU-efficient network structures effectively by a simple and lightweight method as opposed to most Neural Architecture Search (NAS) methods that are complicated and computationally expensive. Based on the proposed framework, we design a family of GPU-Efficient Networks, or GENets in short. We did extensive evaluations on multiple GPU platforms and inference engines. While achieving $\geq 81.3%$ top-1 accuracy on ImageNet, GENet is up to $6.4$ times faster than EfficienNet on GPU. It also outperforms most state-of-the-art models that are more efficient than EfficientNet in high precision regimes. Our source code and pre-trained models will be released soon.

26.The flag manifold as a tool for analyzing and comparing data sets ⬇️

The shape and orientation of data clouds reflect variability in observations that can confound pattern recognition systems. Subspace methods, utilizing Grassmann manifolds, have been a great aid in dealing with such variability. However, this usefulness begins to falter when the data cloud contains sufficiently many outliers corresponding to stray elements from another class or when the number of data points is larger than the number of features. We illustrate how nested subspace methods, utilizing flag manifolds, can help to deal with such additional confounding factors. Flag manifolds, which are parameter spaces for nested subspaces, are a natural geometric generalization of Grassmann manifolds. To make practical comparisons on a flag manifold, algorithms are proposed for determining the distances between points $[A], [B]$ on a flag manifold, where $A$ and $B$ are arbitrary orthogonal matrix representatives for $[A]$ and $[B]$, and for determining the initial direction of these minimal length geodesics. The approach is illustrated in the context of (hyper) spectral imagery showing the impact of ambient dimension, sample dimension, and flag structure.

27.Time for a Background Check! Uncovering the impact of Background Features on Deep Neural Networks ⬇️

With increasing expressive power, deep neural networks have significantly improved the state-of-the-art on image classification datasets, such as ImageNet. In this paper, we investigate to what extent the increasing performance of deep neural networks is impacted by background features? In particular, we focus on background invariance, i.e., accuracy unaffected by switching background features and background influence, i.e., predictive power of background features itself when foreground is masked. We perform experiments with 32 different neural networks ranging from small-size networks to large-scale networks trained with up to one Billion images. Our investigations reveal that increasing expressive power of DNNs leads to higher influence of background features, while simultaneously, increases their ability to make the correct prediction when background features are removed or replaced with a randomly selected texture-based background.

28.Road obstacles positional and dynamic features extraction combining object detection, stereo disparity maps and optical flow data ⬇️

One of the most relevant tasks in an intelligent vehicle navigation system is the detection of obstacles. It is important that a visual perception system for navigation purposes identifies obstacles, and it is also important that this system can extract essential information that may influence the vehicle's behavior, whether it will be generating an alert for a human driver or guide an autonomous vehicle in order to be able to make its driving decisions. In this paper we present an approach for the identification of obstacles and extraction of class, position, depth and motion information from these objects that employs data gained exclusively from passive vision. We performed our experiments on two different data-sets and the results obtained shown a good efficacy from the use of depth and motion patterns to assess the obstacles' potential threat status.

29.Extended Labeled Faces in-the-Wild (ELFW): Augmenting Classes for Face Segmentation ⬇️

Existing face datasets often lack sufficient representation of occluding objects, which can hinder recognition, but also supply meaningful information to understand the visual context. In this work, we introduce Extended Labeled Faces in-the-Wild (ELFW), a dataset supplementing with additional face-related categories -- and also additional faces -- the originally released semantic labels in the vastly used Labeled Faces in-the-Wild (LFW) dataset. Additionally, two object-based data augmentation techniques are deployed to synthetically enrich under-represented categories which, in benchmarking experiments, reveal that not only segmenting the augmented categories improves, but also the remaining ones benefit.

30.Diffusion-Weighted Magnetic Resonance Brain Images Generation with Generative Adversarial Networks and Variational Autoencoders: A Comparison Study ⬇️

We show that high quality, diverse and realistic-looking diffusion-weighted magnetic resonance images can be synthesized using deep generative models. Based on professional neuroradiologists' evaluations and diverse metrics with respect to quality and diversity of the generated synthetic brain images, we present two networks, the Introspective Variational Autoencoder and the Style-Based GAN, that qualify for data augmentation in the medical field, where information is saved in a dispatched and inhomogeneous way and access to it is in many aspects restricted.

31.Multimarginal Wasserstein Barycenter for Stain Normalization and Augmentation ⬇️

Variations in hematoxylin and eosin (H&E) stained images (due to clinical lab protocols, scanners, etc) directly impact the quality and accuracy of clinical diagnosis, and hence it is important to control for these variations for a reliable diagnosis. In this work, we present a new approach based on the multimarginal Wasserstein barycenter to normalize and augment H&E stained images given one or more references. Specifically, we provide a mathematically robust way of naturally incorporating additional images as intermediate references to drive stain normalization and augmentation simultaneously. The presented approach showed superior results quantitatively and qualitatively as compared to state-of-the-art methods for stain normalization. We further validated our stain normalization and augmentations in the nuclei segmentation task on a publicly available dataset, achieving state-of-the-art results against competing approaches.

32.Anomaly Detection using Deep Reconstruction and Forecasting for Autonomous Systems ⬇️

We propose self-supervised deep algorithms to detect anomalies in heterogeneous autonomous systems using frontal camera video and IMU readings. Given that the video and IMU data are not synchronized, each of them are analyzed separately. The vision-based system, which utilizes a conditional GAN, analyzes immediate-past three frames and attempts to predict the next frame. The frame is classified as either an anomalous case or a normal case based on the degree of difference estimated using the prediction error and a threshold. The IMU-based system utilizes two approaches to classify the timestamps; the first being an LSTM autoencoder which reconstructs three consecutive IMU vectors and the second being an LSTM forecaster which is utilized to predict the next vector using the previous three IMU vectors. Based on the reconstruction error, the prediction error, and a threshold, the timestamp is classified as either an anomalous case or a normal case. The composition of algorithms won runners up at the IEEE Signal Processing Cup anomaly detection challenge 2020. In the competition dataset of camera frames consisting of both normal and anomalous cases, we achieve a test accuracy of 94% and an F1-score of 0.95. Furthermore, we achieve an accuracy of 100% on a test set containing normal IMU data, and an F1-score of 0.98 on the test set of abnormal IMU data.

33.Smooth Adversarial Training ⬇️

It is commonly believed that networks cannot be both accurate and robust, that gaining robustness means losing accuracy. It is also generally believed that, unless making networks larger, network architectural elements would otherwise matter little in improving adversarial robustness. Here we present evidence to challenge these common beliefs by a careful study about adversarial training. Our key observation is that the widely-used ReLU activation function significantly weakens adversarial training due to its non-smooth nature. Hence we propose smooth adversarial training (SAT), in which we replace ReLU with its smooth approximations to strengthen adversarial training. The purpose of smooth activation functions in SAT is to allow it to find harder adversarial examples and compute better gradient updates during adversarial training. Compared to standard adversarial training, SAT improves adversarial robustness for "free", i.e., no drop in accuracy and no increase in computational cost. For example, without introducing additional computations, SAT significantly enhances ResNet-50's robustness from 33.0% to 42.3%, while also improving accuracy by 0.9% on ImageNet. SAT also works well with larger networks: it helps EfficientNet-L1 to achieve 82.2% accuracy and 58.6% robustness on ImageNet, outperforming the previous state-of-the-art defense by 9.5% for accuracy and 11.6% for robustness.

34.Does Adversarial Transferability Indicate Knowledge Transferability? ⬇️

Despite the immense success that deep neural networks (DNNs) have achieved, adversarial examples, which are perturbed inputs that aim to mislead DNNs to make mistakes have recently led to great concern. On the other hand, adversarial examples exhibit interesting phenomena, such as adversarial transferability. DNNs also exhibit knowledge transfer, which is critical to improving learning efficiency and learning in domains that lack high-quality training data. In this paper, we aim to turn the existence and pervasiveness of adversarial examples into an advantage. Given that adversarial transferability is easy to measure while it can be challenging to estimate the effectiveness of knowledge transfer, does adversarial transferability indicate knowledge transferability? We first theoretically analyze the relationship between adversarial transferability and knowledge transferability and outline easily checkable sufficient conditions that identify when adversarial transferability indicates knowledge transferability. In particular, we show that composition with an affine function is sufficient to reduce the difference between two models when adversarial transferability between them is high. We provide empirical evaluation for different transfer learning scenarios on diverse datasets, including CIFAR-10, STL-10, CelebA, and Taskonomy-data - showing a strong positive correlation between the adversarial transferability and knowledge transferability, thus illustrating that our theoretical insights are predictive of practice.

35.Scalable Spectral Clustering with Nystrom Approximation: Practical and Theoretical Aspects ⬇️

Spectral clustering techniques are valuable tools in signal processing and machine learning for partitioning complex data sets. The effectiveness of spectral clustering stems from constructing a non-linear embedding based on creating a similarity graph and computing the spectral decomposition of the Laplacian matrix. However, spectral clustering methods fail to scale to large data sets because of high computational cost and memory usage. A popular approach for addressing these problems utilizes the Nystrom method, an efficient sampling-based algorithm for computing low-rank approximations to large positive semi-definite matrices. This paper demonstrates how the previously popular approach of Nystrom-based spectral clustering has severe limitations. Existing time-efficient methods ignore critical information by prematurely reducing the rank of the similarity matrix associated with sampled points. Also, current understanding is limited regarding how utilizing the Nystrom approximation will affect the quality of spectral embedding approximations. To address the limitations, this work presents a principled spectral clustering algorithm that makes full use of the information obtained from the Nystrom method. The proposed method exhibits linear scalability in the number of input data points, allowing us to partition large complex data sets. We provide theoretical results to reduce the current gap and present numerical experiments with real and synthetic data. Empirical results demonstrate the efficacy and efficiency of the proposed method compared to existing spectral clustering techniques based on the Nystrom method and other efficient methods. The overarching goal of this work is to provide an improved baseline for future research directions to accelerate spectral clustering.

36.A novel and reliable deep learning web-based tool to detect COVID-19 infection form chest CT-scan ⬇️

The corona virus is already spread around the world in many countries, and it has taken many lives. Furthermore, the world health organization (WHO) has announced that COVID-19 has reached the global epidemic stage. Early and reliable diagnosis using chest CT-scan can assist medical specialists in vital circumstances. In this study, we introduce a computer aided diagnosis (CAD) web service to detect COVID-19 based on chest CT- scan images and deep learning approach. A public database containing 746 participants were used in this experiment. A novel combination of the Densely connected convolutional network (DenseNet) in order to extract spatial features and a Nu-SVM was applied on the feature maps were implemented to distinguish between COVID-19 and healthy controls. A number of well-known deep neural network architectures consisting of ResNet, Inception and MobileNet were also applied and compared to main model in order to prove efficiency of the hybrid system. The developed flask web service in this research uses the trained model to provide a RESTful COVID-19 detector, which takes only 39 milliseconds to process one image. The source code is also available 2. The proposed methodology achieved 90.80% recall, 89.76% precision and 90.61% accuracy. The method also yields an AUC of 95.05%. Based on the findings, it can be inferred that it is feasible to use the proposed technique as an automated tool for diagnosis of COVID-19.

37.Training Variational Networks with Multi-Domain Simulations: Speed-of-Sound Image Reconstruction ⬇️

Speed-of-sound has been shown as a potential biomarker for breast cancer imaging, successfully differentiating malignant tumors from benign ones. Speed-of-sound images can be reconstructed from time-of-flight measurements from ultrasound images acquired using conventional handheld ultrasound transducers. Variational Networks (VN) have recently been shown to be a potential learning-based approach for optimizing inverse problems in image reconstruction. Despite earlier promising results, these methods however do not generalize well from simulated to acquired data, due to the domain shift. In this work, we present for the first time a VN solution for a pulse-echo SoS image reconstruction problem using diverging waves with conventional transducers and single-sided tissue access. This is made possible by incorporating simulations with varying complexity into training. We use loop unrolling of gradient descent with momentum, with an exponentially weighted loss of outputs at each unrolled iteration in order to regularize training. We learn norms as activation functions regularized to have smooth forms for robustness to input distribution variations. We evaluate reconstruction quality on ray-based and full-wave simulations as well as on tissue-mimicking phantom data, in comparison to a classical iterative (L-BFGS) optimization of this image reconstruction problem. We show that the proposed regularization techniques combined with multi-source domain training yield substantial improvements in the domain adaptation capabilities of VN, reducing median RMSE by 54% on a wave-based simulation dataset compared to the baseline VN. We also show that on data acquired from a tissue-mimicking breast phantom the proposed VN provides improved reconstruction in 12 milliseconds.

38.Epoch-evolving Gaussian Process Guided Learning ⬇️

In this paper, we propose a novel learning scheme called epoch-evolving Gaussian Process Guided Learning (GPGL), which aims at characterizing the correlation information between the batch-level distribution and the global data distribution. Such correlation information is encoded as context labels and needs renewal every epoch. With the guidance of the context label and ground truth label, GPGL scheme provides a more efficient optimization through updating the model parameters with a triangle consistency loss. Furthermore, our GPGL scheme can be further generalized and naturally applied to the current deep models, outperforming the existing batch-based state-of-the-art models on mainstream datasets (CIFAR-10, CIFAR-100, and Tiny-ImageNet) remarkably.

39.Collaborative Boundary-aware Context Encoding Networks for Error Map Prediction ⬇️

Medical image segmentation is usually regarded as one of the most important intermediate steps in clinical situations and medical imaging research. Thus, accurately assessing the segmentation quality of the automatically generated predictions is essential for guaranteeing the reliability of the results of the computer-assisted diagnosis (CAD). Many researchers apply neural networks to train segmentation quality regression models to estimate the segmentation quality of a new data cohort without labeled ground truth. Recently, a novel idea is proposed that transforming the segmentation quality assessment (SQA) problem intothe pixel-wise error map prediction task in the form of segmentation. However, the simple application of vanilla segmentation structures in medical image fails to detect some small and thin error regions of the auto-generated masks with complex anatomical structures. In this paper, we propose collaborative boundaryaware context encoding networks called AEP-Net for error prediction task. Specifically, we propose a collaborative feature transformation branch for better feature fusion between images and masks, and precise localization of error regions. Further, we propose a context encoding module to utilize the global predictor from the error map to enhance the feature representation and regularize the networks. We perform experiments on IBSR v2.0 dataset and ACDC dataset. The AEP-Net achieves an average DSC of 0.8358, 0.8164 for error prediction task,and shows a high Pearson correlation coefficient of 0.9873 between the actual segmentation accuracy and the predicted accuracy inferred from the predicted error map on IBSR v2.0 dataset, which verifies the efficacy of our AEP-Net.

40.Perfusion Quantification from Endoscopic Videos: Learning to Read Tumor Signatures ⬇️

Intra-operative identification of malignant versus benign or healthy tissue is a major challenge in fluorescence guided cancer surgery. We propose a perfusion quantification method for computer-aided interpretation of subtle differences in dynamic perfusion patterns which can be used to distinguish between normal tissue and benign or malignant tumors intra-operatively in real-time by using multispectral endoscopic videos. The method exploits the fact that vasculature arising from cancer angiogenesis gives tumors differing perfusion patterns from the surrounding tissue, and defines a signature of tumor which could be used to differentiate tumors from normal tissues. Experimental evaluation of our method on a cohort of colorectal cancer surgery endoscopic videos suggests that the proposed tumor signature is able to successfully discriminate between healthy, cancerous and benign tissue with 95% accuracy.

41.Empirical Analysis of Overfitting and Mode Drop in GAN Training ⬇️

We examine two key questions in GAN training, namely overfitting and mode drop, from an empirical perspective. We show that when stochasticity is removed from the training procedure, GANs can overfit and exhibit almost no mode drop. Our results shed light on important characteristics of the GAN training procedure. They also provide evidence against prevailing intuitions that GANs do not memorize the training set, and that mode dropping is mainly due to properties of the GAN objective rather than how it is optimized during training.

42.Fine granularity access in interactive compression of 360-degree images based on rate adaptive channel codes ⬇️

In this paper, we propose a new interactive compression scheme for omnidirectional images. This requires two characteristics: efficient compression of data, to lower the storage cost, and random access ability to extract part of the compressed stream requested by the user (for reducing the transmission rate). For efficient compression, data needs to be predicted by a series of references that have been pre-defined and compressed. This contrasts with the spirit of random accessibility. We propose a solution for this problem based on incremental codes implemented by rate adaptive channel codes. This scheme encodes the image while adapting to any user request and leads to an efficient coding that is flexible in extracting data depending on the available information at the decoder. Therefore, only the information that is needed to be displayed at the user's side is transmitted during the user's request as if the request was already known at the encoder. The experimental results demonstrate that our coder obtains better transmission rate than the state-of-the-art tile-based methods at a small cost in storage. Moreover, the transmission rate grows gradually with the size of the request and avoids a staircase effect, which shows the perfect suitability of our coder for interactive transmission.

43.Deep Residual 3D U-Net for Joint Segmentation and Texture Classification of Nodules in Lung ⬇️

In this work we present a method for lung nodules segmentation, their texture classification and subsequent follow-up recommendation from the CT image of lung. Our method consists of neural network model based on popular U-Net architecture family but modified for the joint nodule segmentation and its texture classification tasks and an ensemble-based model for the fol-low-up recommendation. This solution was evaluated within the LNDb 2020 medical imaging challenge and produced the best nodule segmentation result on the final leaderboard.

44.Block-matching in FPGA ⬇️

Block-matching and 3D filtering (BM3D) is an image denoising algorithm that works in two similar steps. Both of these steps need to perform grouping by block-matching. We implement the block-matching in an FPGA, leveraging its ability to perform parallel computations. Our goal is to enable other researchers to use our solution in the future for real-time video denoising in video cameras that use FPGAs (such as the AXIOM Beta).

45.Blacklight: Defending Black-Box Adversarial Attacks on Deep Neural Networks ⬇️

The vulnerability of deep neural networks (DNNs) to adversarial examples is well documented. Under the strong white-box threat model, where attackers have full access to DNN internals, recent work has produced continual advancements in defenses, often followed by more powerful attacks that break them. Meanwhile, research on the more realistic black-box threat model has focused almost entirely on reducing the query-cost of attacks, making them increasingly practical for ML models already deployed today.
This paper proposes and evaluates Blacklight, a new defense against black-box adversarial attacks. Blacklight targets a key property of black-box attacks: to compute adversarial examples, they produce sequences of highly similar images while trying to minimize the distance from some initial benign input. To detect an attack, Blacklight computes for each query image a compact set of one-way hash values that form a probabilistic fingerprint. Variants of an image produce nearly identical fingerprints, and fingerprint generation is robust against manipulation. We evaluate Blacklight on 5 state-of-the-art black-box attacks, across a variety of models and classification tasks. While the most efficient attacks take thousands or tens of thousands of queries to complete, Blacklight identifies them all, often after only a handful of queries. Blacklight is also robust against several powerful countermeasures, including an optimal black-box attack that approximates white-box attacks in efficiency. Finally, Blacklight significantly outperforms the only known alternative in both detection coverage of attack queries and resistance against persistent attackers.

46.Compositional Explanations of Neurons ⬇️

We describe a procedure for explaining neurons in deep representations by identifying compositional logical concepts that closely approximate neuron behavior. Compared to prior work that uses atomic labels as explanations, analyzing neurons compositionally allows us to more precisely and expressively characterize their behavior. We use this procedure to answer several questions on interpretability in models for vision and natural language processing. First, we examine the kinds of abstractions learned by neurons. In image classification, we find that many neurons learn highly abstract but semantically coherent visual concepts, while other polysemantic neurons detect multiple unrelated features; in natural language inference (NLI), neurons learn shallow lexical heuristics from dataset biases. Second, we see whether compositional explanations give us insight into model performance: vision neurons that detect human-interpretable concepts are positively correlated with task performance, while NLI neurons that fire for shallow heuristics are negatively correlated with task performance. Finally, we show how compositional explanations provide an accessible way for end users to produce simple "copy-paste" adversarial examples that change model behavior in predictable ways.

47.Minimum Cost Active Labeling ⬇️

Labeling a data set completely is important for groundtruth generation. In this paper, we consider the problem of minimum-cost labeling: classifying all images in a large data set with a target accuracy bound at minimum dollar cost. Human labeling can be prohibitive, so we train a classifier to accurately label part of the data set. However, training the classifier can be expensive too, particularly with active learning. Our min-cost labeling uses a variant of active learning to learn a model to predict the optimal training set size for the classifier that minimizes overall cost, then uses active learning to train the classifier to maximize the number of samples the classifier can correctly label. We validate our approach on well-known public data sets such as Fashion, CIFAR-10, and CIFAR-100. In some cases, our approach has 6X lower overall cost relative to human labeling, and is always cheaper than the cheapest active learning strategy.

48.On Mitigating Random and Adversarial Bit Errors ⬇️

The design of deep neural network (DNN) accelerators, i.e., specialized hardware for inference, has received considerable attention in past years due to saved cost, area, and energy compared to mainstream hardware. We consider the problem of random and adversarial bit errors in quantized DNN weights stored on accelerator memory. Random bit errors arise when optimizing accelerators for energy efficiency by operating at low voltage. Here, the bit error rate increases exponentially with voltage reduction, causing devastating accuracy drops in DNNs. Additionally, recent work demonstrates attacks on voltage controllers to adversarially reduce voltage. Adversarial bit errors have been shown to be realistic through attacks targeting individual bits in accelerator memory. Besides describing these error models in detail, we make first steps towards DNNs robust to random and adversarial bit errors by explicitly taking bit errors into account during training. Our random or adversarial bit error training improves robustness significantly, potentially leading to more energy-efficient and secure DNN accelerators.